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Abstract: Statistical modeling and forecasting of time-to-events data are crucial in every applied
sector. For the modeling and forecasting of such data sets, several statistical methods have been intro-
duced and implemented. This paper has two aims, i.e., (i) statistical modeling and (ii) forecasting. For
modeling time-to-events data, we introduce a new statistical model by combining the flexible Weibull
model with the Z-family approach. The new model is called the Z flexible Weibull extension (Z-FWE)
model, where the characterizations of the Z-FWE model are obtained. The maximum likelihood esti-
mators of the Z-FWE distribution are obtained. The evaluation of the estimators of the Z-FWE model
is assessed in a simulation study. The Z-FWE distribution is applied to analyze the mortality rate of
COVID-19 patients. Finally, for forecasting the COVID-19 data set, we use machine learning (ML)
techniques i.e., artificial neural network (ANN) and group method of data handling (GMDH) with the
autoregressive integrated moving average model (ARIMA). Based on our findings, it is observed that
ML techniques are more robust in terms of forecasting than the ARIMA model.
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1. Introduction

The first infected case of the COVID-19 pandemic appeared in China during the last week of De-
cember 2019. Since that, the deadly pandemic has caused a dramatic loss of human life around the
globe and presented a serious challenge to all sectors of life. For example, (i) to read about the COVID-
19’s effect on the economy, we refer to [1], (ii) education [2], (iii) healthcare [3], (iv) Business sectors
[4], (v) sports sectors [5], and (vi) tourism sector [6].

Among the mentioned sectors affected by the COVID-19 epidemic, the healthcare sector is the most
affected area. Based on the latest updates up to November 18, 2021, 10:36 GMT, around 255.9 million
cases were registered worldwide, 5.1422 million people have died, and the total number of recovered
cases has reached 231.26 million. The top five countries with the most registered COVID-19 cases
are (i) United States of America (USA) with 48.29 million, (ii) India with 34.48 million, (iii) Brazil
with 21.978 million, (iv) United Kingdom with 9.675 million, (v) Russia with 9.219 mission. The top
five countries with the most death cases due to COVID-19 are (i) USA with 0.787 million, (ii) Brazil
with 0.611 million, (iii) India 0.464 million, (iv) Mexico with 0.291 million, and (v) Russia with 0.260
million, https://www.worldometers.info/coronavirus.

The implementation of statistical models for dealing with lifetime data in healthcare sectors is very
crucial and an important research area. In the available statistical distributions, the flexible weibull
extension (FWE) model has attracted researchers [7]. The CDF (cumulative distribution function)
M(y;κκκ) of the FWE model is

M(y;κκκ) = 1 − e−eτ1y−
τ2
y
, y ≥ 0, (1.1)

where κκκ = (τ1, τ2) with τ1 > 0 and τ2 > 0.
Corresponding to the CDF in Eq (1.1), the PDF (probability density function) m(y;κκκ) of the FWE

distribution is

m(y;κκκ) =
(
τ1 +

τ2

y2

)
eτ1y− τ2y e−eτ1y−

τ2
y
, y > 0.

El-Gohary et al. [8] developed the inverse version of the FWE distribution with CDF, given by

M(y;κκκ) = e−e
τ1
y −τ2y

, y ≥ 0.

El-Gohary et al. [9] further generalized the WFE model by using the exponentiation strategy with
CDF, given by

M(y; θ1, κκκ) =
(
1 − e−eτ1y−

τ2
y
)θ1
, θ1 > 0, y ≥ 0.

El-Damcese et al. [10] investigated another generalization of the FWE model by adopting the
Kumaraswamy approach with CDF, given by

M(y; θ1, θ2, κκκ) = 1 −
(
1 −

(
1 − e−eτ1y−

τ2
y
)θ1)θ2

, θ1 > 0, θ2 > 0, y ≥ 0.

This paper introduces a further extension of the FWE model to improve the fitting power of the

FWE model. To perform this activity, we combine M(y;κκκ) = 1 − e−eτ1y−
τ2
y with the Z-family approach

[11]. The CDF T (y; β, κκκ) of the Z-family is
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T (y; β, κκκ) = 1 −
M̄(y;κκκ)
βM(y;κκκ) , y ∈ R, β > 0, (1.2)

with SF (survival function) S (y; β, κκκ) = 1 − T (y; β, κκκ), given by

S (y; β, κκκ) =
M̄(y;κκκ)
βM(y;κκκ) , y ∈ R, (1.3)

where M̄(y;κκκ) = 1 − M(y;κκκ).
Corresponding to T (y; β, κκκ), the PDF t(y; β, κκκ) = d

dyT (y; β, κκκ) and HF (hazard function) h(y; β, κκκ) =
t(y;β,κκκ)

1−T (y;β,κκκ) are given by

t(y; β, κκκ) =
m(y;κκκ)
βM(y;κκκ)

[
1 +

(
log β

)
M̄(y;κκκ)

]
, y ∈ R,

and

h(y; β, κκκ) =
m(y;κκκ)
M̄(y;κκκ)

[
1 +

(
log β

)
M̄(y;κκκ)

]
, y ∈ R,

respectively.

By incorporating M(y;κκκ) = 1 − e−eτ1y−
τ2
y in Eq (1.2), we obtain a new model, namely, the Z-flexible

Weibull extension (Z-FWE) distribution. The Z-FWE is a more flexible version of the FWE model.
This fact is illustrated by applying the Z-FWE distribution to a data set in the health sector.

2. The Z-FWE distribution

If Y has the Z-FWE model with parameters β > 0, τ1 > 0, and τ2 > 0, its CDF is

T (y; β, κκκ) = 1 −
e−eτ1y−

τ2
y

β

1−e−e
τ1y−

τ2
y

 , y ≥ 0, (2.1)

with PDF

t(y; β, κκκ) =

(
τ1 +

τ2
y2

)
eτ1y− τ2y e−eτ1y−

τ2
y

β

1−e−e
τ1y−

τ2
y


[
1 +

(
log β

)
e−eτ1y−

τ2
y
]
, y > 0, (2.2)

respectively.
Different behaviors for the PDF of the Z-FWE distribution are shown visually in Figures 1 and 2.
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Figure 1. The plots of the PDF of the Z-FWE distribution.
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Figure 2. The plots of the PDF of the Z-FWE distribution.

Proposition 1. The PDF of the proposed model has a Unimodal (U) shape of bimodal (B) shape.

Proof. The first derivative of the PDF of the Z-FWE distribution model is determined as follows

d
dy

t(y; β, κκκ) =
eτ1y−3eτ1y−

τ2
y −

2τ2
y βe−e

τ1y−
τ2
y
−1

y4 e
τ2
y +eτ1y−

τ2
y
[
τ2

2 + τ
2
1y4 + 2τ2y (τ1y − 1)

]
×

(
log(β) + eeτ1y−

τ2
y
)
−

eτ1y−3eτ1y−
τ2
y −

2τ2
y βe−e

τ1y−
τ2
y
−1

y4

× eτ1y
(
τ2 + τ1y2

)2
(
log2(β) + 3 log(β)eeτ1y−

τ2
y
+ e2eτ1y−

τ2
y
)
,

d
dy

t(y; β, κκκ) =
eτ1y−3eτ1y−

τ2
y −

2τ2
y βe−e

τ1y−
τ2
y
−1

y4 L(y; β, κκκ),

where

L(y; β, κκκ) = Z(y; β, κκκ)
[
τ2

2 + τ
2
1y4 + 2τ2y (τ1y − 1)

]
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− R(y; β, κκκ)
(
log2(β) + 3 log(β)eeτ1y−

τ2
y
+ e2eτ1y−

τ2
y
)
.

The terms Z(y; β, κκκ) and R(y; β, κκκ) are given by

Z(y; β, κκκ) = e
τ2
y +eτ1y−

τ2
y
(
log(β) + eeτ1y−

τ2
y
)
,

and
R(y; β, κκκ) = eτ1y

(
τ2 + τ1y2

)2
,

respectively.
We can see that d

dy t(y; β, κκκ) and L(y; β, κκκ) have the same signs. Also, Z(y; β, κκκ) and R(y; β, κκκ) > 0
∀ y, τ1 > 0, τ2 > 0, and β ≥ 0.37. When the sign of L(y; β, κκκ) changes from + to −, then there
is a unique critical point which maximize the PDF of the Z-FWE distribution and give a unimodal
shape. When the sign of L(y; β, κκκ) changes from + to − twice, then there are two critical points which
maximize the PDF of the Z-FWE distribution and give a bimodal shape.

The unimodal band biomodal behaviors of the PDF of the Z-FWE distribution are also proved
numerically. The numerical results in Table 1 confirm the unimodal and bimodal behaviors of the PDF
of the Z-FWE distribution.

Remark 1. The plots in Figure 1 are actually one plot, but we divided them into three plots to show
that the PDF of the Z-FWE distribution can be bimodal. If we combine them in one plot, then, the
bimodal shape of the Z-FWE distribution doesn’t appear due to the range of the function. The actual
range of the plot is from 0.00001 to 2. We have divided this range into three pieces, such as (i) 0.00001
to 0.00010 (ii) 0.00010 to 0.010, and (iii) 0.010 to 2.

Table 1. Some numerical values for L(y; β, κκκ).

Parameters values Measures Measures values Results

τ1 = 0.0001 τ2 = 0.00001 β = 0.37
y −→ 10−8 10−6 0.5 1.5 15 50 10000 100000

B PDF
L −→ 1.13007×10422 1.03080×10−8 -0.000046 -0.00014 0.00083 0.2729 -2.8949×1010 -1.9409×1019148

τ1 = 0.001 τ2 = 0.01 β = 0.75
y −→ 10−8 10−6 0.5 1.5 15 50 10000 20000

B PDF
L −→ 2.1606×10434290 6.27199×104338 -0.0645362 -0.197144 -1.96613 0.622783 -1.8573×1019146 -3.47908×10421408943

τ1 = 0.1 τ2 = 0.25 β = 1.5
y −→ 10−8 10−6 0.5 1.5 15 50 80 100

U PDF
L −→ 9.8012×1010857360 3.6658×10108572 -1.7303 -7.8697 -1.23457×107 -1.7075×10135 -1.71954×102590 -3.2969×1019094

τ1 = 2.2 τ2 = 0.0001 β = 0.37
y −→ 10−8 10−6 10−4 0.01 0.1 0.2 5 10

B PDF
L −→ 5.0609×104332 1.51416×1033 -5.34296×10−9 -9.302293×10−6 0.00239836 0.0251161 -1.72409×1052013 -3.94217×103113784610

τ1 = 2.4 τ2 = 5.5 β = 1.1
y −→ 10−8 10−6 10−4 0.01 0.1 0.2 5 10

U PDF
L −→ 3.6902×10238861966 1.48159×102388621 5.2089×1023887 2.40261×10240 2.47911×1025 2.79741×1013 -6.8501×1047065 -8.05508×1013274553069

τ1 = 2.4 τ2 = 2.5 β = 1.1
y −→ 10−8 10−6 10−4 0.01 0.1 0.2 5 10

U PDF
L −→ 2.04752×10108573621 1.0969×101085737 1.5755×1010858 2.54468×10109 4.62999×1011 1.68683×106 -1.7082×1085752 -5.22575×1017918772372

τ1 = 1.5 τ2 = 1.5 β = 1.0
y −→ 10−8 10−6 10−4 0.01 0.1 3 10 15

U PDF
L −→ 4.341804×1065144172 1.1886×10651442 5.8796×106514 3.09466×1065 6.52243×106 -5.27417×1051 -7.1416×101169 -1.78388×104645267231

3. The heavy-tailed characteristic

This section offers the heavy-tailed behavior and regular variational results of the Z-FWE distribu-
tion. Probability distributions that are right-skewed and possess heavy-tailed behavior are very useful
in providing the best description of the biomedical data sets. A probability model is called a heavy-
tailed distribution, if it satisfies

lim
y−→∞

epy [1 − T (y; β, κκκ)
]
= ∞, ∀ p > 0.

An important property of the heavy-tailed probability distributions is called the regular variational
property (RVP). A probability distribution is called regularly varying, if it satisfies
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1 − T (py; β, κκκ)
1 − T (y; β, κκκ)

= pa, ∀ p > 0, a > 0,

where a represents an index of regular variation.
Here, we derive the RVP of the Z-FWE distribution. According to Karamata’s theorem (Seneta

[12]), in terms of SF S (y; β, κκκ), we have
Theorem: If S (y;κκκ) = 1 − M (y;κκκ) is the SF of the regular varying model, then S (y; β, κκκ) is also a

regular varying distribution.
Proof: Suppose limy−→∞

S (py;β,κκκ)
S (y;β,κκκ) = f (p) is finite but non-zero ∀ p > 0. Then, using Eq (1.3), we

have

S (py; β, κκκ)
S (y; β, κκκ)

=
S (py;κκκ) eM(y;κκκ)

S (y;κκκ) eM(py;κκκ) . (3.1)

Applying limy−→∞ on both sides of Eq (3.1), we get

lim
y−→∞

S (py; β, κκκ)
S (y; β, κκκ)

= lim
y−→∞

S (py;κκκ)
S (y;κκκ)

×
eM(y;κκκ)

eM(py;κκκ) . (3.2)

Using Eq (1.1) in Eq (3.2), we get

lim
y−→∞

S (py; β, κκκ)
S (y; β, κκκ)

= lim
y−→∞

S (py;κκκ)
S (y;κκκ)

×
e

1−e−e
τ1y−

τ2
y



e

1−e−e
τ1(py)−

τ2
(py)


,

lim
y−→∞

S (py; β, κκκ)
S (y; β, κκκ)

= lim
y−→∞

S (py;κκκ)
S (y;κκκ)

×
e

(
1−e−eτ1∞−

τ2
∞

)

e

1−e−e
τ1(p∞)−

τ2
(p∞)


,

lim
y−→∞

S (py; β, κκκ)
S (y; β, κκκ)

= lim
y−→∞

S (py;κκκ)
S (y;κκκ)

×
e
(
1−e−e∞−0

)

e

1−e−e
τ1(∞)−

τ2
(∞)


,

lim
y−→∞

S (py; β, κκκ)
S (y; β, κκκ)

= lim
y−→∞

S (py;κκκ)
S (y;κκκ)

×
e
(
1−e−e∞

)
e
(
1−e−e∞−0 ) ,

lim
y−→∞

S (py; β, κκκ)
S (y; β, κκκ)

= lim
y−→∞

S (py;κκκ)
S (y;κκκ)

×
e(1−e−∞)

e(1−e−∞) ,

lim
y−→∞

S (py; β, κκκ)
S (y; β, κκκ)

= lim
y−→∞

S (py;κκκ)
S (y;κκκ)

×
e(1−0)

e(1−0) ,

lim
y−→∞

S (py; β, κκκ)
S (y; β, κκκ)

= lim
y−→∞

S (py;κκκ)
S (y;κκκ)

× 1,

lim
y−→∞

S (py; β, κκκ)
S (y; β, κκκ)

= f (p) , (3.3)

where f (p) has the form pa. So, the expression in Eq (3.3) is finite and non-zero ∀ p > 0. thus,
S (py; β, κκκ) is a regular varying distribution.
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4. Characterizations of the Z-FWE model

This section offers the characterizations of the Z-FWE distribution via implementing three different
approaches. These characterizations are obtained using (i) a simple relationship between two TMs
(truncated moments), (ii) the HF, and (iii) the CE (conditional expectation) of a function of the RV
(random variable).

4.1. Characterization using the TMs

The result of the first characterization is obtained due to the theorem in Glänzel [13], see the below
Theorem 1. It is important to note that the result of the first characterization also holds true when the
interval expressed by W is not closed.

Furthermore, it could also be implemented when the CDF F is not in closed form. As Glänzel [14]
showed that this characterization is stable even under weak convergence.

Theorem 1. Consider a given PS (probability space) (Ω,F ,P) and let W = [θ1, θ2] represents an
interval for some θ1 < θ2

(
θ1 = −∞, θ2 = ∞ might as well be allowed

)
. Now, let Y : Ω → W be a

continuous RV with the CDF T and let g(.) and h(.) be two real functions defined on the interval W
such that

E
[
g (Y) | Y ≥ y

]
= E

[
h (Y) | Y ≥ y

]
ϑ (y) , y ∈ W,

is defined with some real function ϑ. Let suppose that g, h ∈ K1 (W), ϑ ∈ K2 (W) and T is twice CD
(continuously differentiable) and strictly MF (monotone function) on the set W. Also, let assume that
the equation ϑh = g has no real solution in the interior of W. Then T is uniquely determined by the
functions g, h and ϑ, particularly

T (y) =
∫ y

a
K

∣∣∣∣∣ ϑ′ (v)
ϑ (v) h (v) − g (v)

∣∣∣∣∣ exp (−s (v)) dv,

where s is a solution of the DE (differential equation) given by s′ = ϑ′ h
ϑ h −g and the quantity K represents

a normalization constant, such that
∫

W
dT = 1.

Proposition 2. Let Y : Ω → (0,∞) be a continuous RV and let h (y) =
[
1 + log (β) e−eτ1y−

τ2
y
]−1

and

g (y) = h (y) e−eτ1y−
τ2
y for y > 0. The RV Y has PDF in Eq (2.2) if and only if the function ϑ defined in

Theorem 1 has the form

ϑ (y) =
1
2

e−eτ1y−
τ2
y
, y > 0.

Proof. Let Y be a RV with PDF in Eq (2.2), then

(1 − T (y)) E
[
h (Y) | Y ≥ y

]
= e−eτ1y−

τ2
y
, y > 0,

and

(1 − T (y)) E
[
h (Y) | Y ≥ y

]
=

1
2

e−2eτ1y−
τ2
y
, y > 0,

Mathematical Biosciences and Engineering Volume 20, Issue 2, 2847–2873.
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and finally

ϑ (y) h (y) − g (y) = −
1
2

h (y) e−eτ1y−
τ2
y
< 0 f or y > 0.

Conversely, if the function κ is given as mentioned above, then

s′ (y) =
ϑ′ (y) h (y)

ϑ (y) h (y) − g (y)
=

(
τ1 +

τ2

y2

)
eτ1y− τ2y ,

and hence

s (y) = eτ1y− τ2y , y > 0.

Now, in view of the result in Theorem 1, Y has PDF in Eq (2.2).
Corollary 1. Consider a RV Y : Ω → (0,∞) and let the function h (y) be as defined in Proposition

2. The PDF of Y is Eq (2.2), if and only if the functions g and ϑ defined in Theorem 1 satisfying the
below DE

ϑ′ (x) h (x)
ϑ (x) h (x) − g (x)

=

(
τ1 +

τ2

y2

)
eτ1y− τ2y , y > 0.

Corollary 2. The general solution of the DE in Corollary 1 is

ϑ (y) = eeτ1y−
τ2
y

[
−

∫ (
τ1 +

τ2

y2

)
eτ1y− τ2y e−eτ1y−

τ2
y (h (y))−1 g (y) +C

]
,

where the term C is a constant quantity. It should be noted that a set of functions obeying the DE
provided above is given in Proposition 2 with C = 0.

4.2. Characterization using the HF

It is obvious that the HF, hT , of a twice differentiable DF, T with PDF t, obeys the first order DE

t ′(y)
t (y)

=
h′T (y)
hT (y)

− hT (y).

In terms of the HF, this is the only characterization available for many univariate CMs (continuous
models). In terms of the HF, the following characterization establishes a characterization of Z-FWE
distribution, which is not of the trivial form proivded above.

Proposition 3. Consider Y : Ω → (0,∞) be a continuous RV. Then Y has the PDF in Eq (2.2), if
and only if its HF hT (y) obyes the DE

h′T (y) −
(
τ1 +

τ2

y2

)
hT (y) = −eτ1y− τ2y −eτ1y−

τ2
y

2τ2

y3 +

(
τ1 +

τ2

y2

)2
 , y > 0,

with the initial condition given by limy→0 hT (y) = 0.
Proof. Is straightforward and hence omitted.
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4.3. Characterization using the CE

The CE is a well-known approach to characterize statistical distributions; see Hamedani [15]. Here,
we use this approach to characterize the Z-FWE distribution.

Proposition 4. Let Y : Ω→ (λ1, λ2) be a continuous RV with CDF T . Let φ (y) be a differentiable
function on (λ1, λ2) with limy→0+ φ (y) = 1. Then for η , 1,

E
[
φ (Y) | Y ≥ y

]
= ηφ (y) , y ∈ (λ1, λ2) ,

if and only if

φ (y) = (1 − F (y))
1
η−1 , y ∈ (λ1, λ2) .

Remark 2. For (λ1, λ1) = (0,∞) , φ (y) = e−
1
2 e
τ1y−

τ2
y

β

1
2

1−e−e
τ1y−

τ2
y


and η = 2

3 , Proposition 2 provides a charac-

terization of Z-FWE distribution.

5. Estimation and simulation

This section is composed of two subsections. The very first subsection offers the derivation of
the estimators

(
τ̂1, τ̂2, β̂

)
of the parameters (τ1, τ2, β) of the Z-FWE distribution. Whereas, the second

subsection, offers the evaluation of τ̂1, τ̂2 and β̂ through a simulation study.

5.1. Estimation

Here, we obtain the estimators τ̂1, τ̂2 and β̂ of the parameters of the Z-FWE model τ1, τ2 and β,
respectively. The estimators τ̂1, τ̂2 and β̂ are obtained by using five different approaches. These methods
are the (i) maximum likelihood estimation, (ii) ordinary least-square estimation, (iii) weighted least-
square estimation, (iv) maximum product of spacing estimation, and (v) Anderson-Darling estimation.

5.1.1. Maximum likelihood estimation

Consider a RS (random sample) say y1, y2, ..., yn taken from t(y; β, κκκ). Then in link to t(y; β, κκκ), the
LF (likelihood function) λ (y; β, κκκ) is

λ (y; β, κκκ) =
n∏

k=1

t(yk; β, κκκ). (5.1)

Using Eq (2.2) in Eq (5.1), we have

λ (y; β, κκκ) =
n∏

k=1

(
τ1 +

τ2
y2

k

)
eτ1yk−

τ2
yk e−e

τ1yk−
τ2
yk

β

1−e−e
τ1yk−

τ2
yk


[
1 +

(
log β

)
e−e

τ1yk−
τ2
yk

]
. (5.2)

Corresponding to Eq (5.2), the log LF δ (y; β, κκκ) is given by
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δ (y; β, κκκ) =
n∑

k=1

log
(
τ1 +

τ2

y2
k

)
+

n∑
k=1

(
τ1yk −

τ2

yk

)
−

n∑
k=1

(
1 − e−e

τ1yk−
τ2
yk

)
log β

−

n∑
k=1

eτ1yk−
τ2
yk +

n∑
k=1

log
[
1 +

(
log β

)
e−e

τ1yk−
τ2
yk

]
.

With respect to τ1, τ2 and β, the partial derivatives of δ (y; β, κκκ) are given by

∂

∂τ1
δ (y; β, κκκ) =

n∑
k=1

1(
τ1 +

τ2
y2

k

) + n∑
k=1

yk −

n∑
k=1

(
log β

)
yke
τ1yk−

τ2
yk e−e

τ1yk−
τ2
yk

−

n∑
k=1

yke
τ1yk−

τ2
yk −

n∑
k=1

(
log β

)
yke
τ1yk−

τ2
yk e−e

τ1yk−
τ2
yk[

1 +
(
log β

)
e−e

τ1yk−
τ2
yk

] ,

∂

∂τ2
δ (y; β, κκκ) =

n∑
k=1

1
y2

k(
τ1 +

τ2
y2

k

) − n∑
k=1

1
y2

k

+

n∑
k=1

(
log β

)
y2

k

eτ1yk−
τ2
yk e−e

τ1yk−
τ2
yk

+

n∑
k=1

1
y2

k

eτ1yk−
τ2
yk +

n∑
k=1

(log β)
y2

k
eτ1yk−

τ2
yk e−e

τ1yk−
τ2
yk[

1 +
(
log β

)
e−e

τ1yk−
τ2
yk

] ,
and

∂

∂β
δ (y; β, κκκ) = −

∑n
k=1

(
1 − e−e

τ1yk−
τ2
yk
)

β
+

n∑
k=1

1
β
e−e

τ1yk−
τ2
yk[

1 +
(
log β

)
e−e

τ1yk−
τ2
yk

] ,
respectively.

In solving ∂
∂τ1
δ (y; β, κκκ) = 0, ∂

∂τ2
δ (y; β, κκκ) = 0, and ∂

∂β
δ (y; β, κκκ) = 0, we get the maximum likelihood

estimators (MLEs) τ̂1, τ̂2 and β̂, respectively.

5.1.2. Ordinary least-square estimation

Let y(1), y(2), · · · , y(n) be the order statistics of a sample of size n from T (y; β, κκκ) in Eq (1.2). The
ordinary least-squares estimators (OLSEs) β̂OLS E and κ̂κκOLS E can be obtained by minimizing

V (β, κκκ) =
n∑

k=1

[
T

(
y(k)|β, κκκ

)
−

i
n + 1

]2

,

with respect to β and κκκ. Or equivalently, the OLSEs follow by solving the non-linear equations
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n∑
k=1

[
T

(
y(k)|β, κκκ

)
−

i
n + 1

]
∆m

(
y(k)|β, κκκ

)
= 0, m = 1, 2,

where

∆1
(
y(k)|β, κκκ

)
=
∂

∂β
T

(
y(k)|β, κκκ

)
,

and

∆2
(
y(k)|β, κκκ

)
=
∂

∂κκκ
T

(
y(k)|β, κκκ

)
.

Note that the solution of ∆m for m = 1, 2 can be obtained numerically.

5.1.3. Weighted least-square estimation

The weighted least-squares estimators (WLSEs) β̂WLS E and κ̂κκWLS E can be obtained by minimizing

W (β, κκκ) =
n∑

k=1

(n + 1)2 (n + 2)
k (n − k + 1)

[
T

(
y(k)|β, κκκ

)
−

k
n + 1

]2

.

Moreover, the WLSEs can also be obtained by solving the non-linear equations

n∑
k=1

(n + 1)2 (n + 2)
k (n − k + 1)

[
T

(
y(k)|β, κκκ

)
−

k
n + 1

]2

∆m
(
y(k)|β, κκκ

)
= 0, m = 1, 2.

5.1.4. Maximum product of spacing estimation

Let Dk (β, κκκ) = T
(
y(k)|β, κκκ

)
−T

(
y(k−1)|β, κκκ

)
, for k = 1, 2, . . . , n+1, be the uniform spacing of a random

sample from the Z-FWE distribution, where T
(
y(0)|β, κκκ

)
= 0, T

(
y(n+1)|β, κκκ

)
= 1, and

∑n+1
k=1 Dk (β, κκκ) = 1.

Then, the maximum product of spacing estimators (MPSEs) β̂MPS E and κ̂κκMPS E can be obtained by
maximizing the geometric mean of the spacing

T (β, κκκ) =

 n+1∏
k=1

Dk (β, κκκ)


1

n+1

,

with respect to β and κκκ, or, equivalently, by maximizing the logarithm of the geometric mean of sample
spacing

H (β, κκκ) =
1

n + 1

n+1∑
k=1

log Dk (β, κκκ) .

The MPSEs of the Z-FWE parameters can be obtained by solving the nonlinear equations defined
by

1
n + 1

n+1∑
k=1

1
Dk (β, κκκ)

[
∆m

(
y(k)|β, κκκ

)
− ∆m

(
y(k−1)|β, κκκ

)]
= 0, m = 1, 2.
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5.1.5. The Anderson-Darling estimation

The Anderson-Darling estimators (ADEs) of the parameters of the Z-FWE distribution are obtained
by minimizing

A (β, κκκ) = −n −
1
n

n∑
k=1

(2k − 1)
[
log T

(
y(k)|β, κκκ

)
+ log S

(
y(k)|β, κκκ

)]
,

with respect to β and κκκ. These ADEs can also be obtained by solving the non-linear equations

n∑
k=1

(2k − 1)
[
∆m

(
y(k)|β, κκκ

)
T

(
y(k)|β, κκκ

) − ∆ j
(
y(n+1−k)|β, κκκ

)
S

(
y(n+1−k)|β, κκκ

) ]
= 0, m = 1, 2.

5.2. Simulation study

Furthermore, we investigate the performances of τ̂1, τ̂2, and β̂ via a simulation study. To carry out
the evaluation of τ̂1, τ̂2, and β̂, random samples, say, n = 20, 50, 150, 300 are generated from t(y; β, κκκ)
using the inverse DF approach.

The evaluation of τ̂1, τ̂2, and β̂ has been done for three sets of parameters values such as (a) τ̂1 =

0.6, τ̂2 = 1.3, β̂ = 0.9 (b) τ̂1 = 0.12, τ̂2 = 0.8, β̂ = 1.2, and (c) τ̂1 = 1.3, τ̂2 = 1.5, β̂ = 0.7.

Furthermore, certain statistical methodologies such as (i) MSEs and (ii) absolute biases were se-
lected to check the performances of τ̂1, τ̂2, and β̂. The values of the selected measures were respectively
obtained using the expressions

MS E(ϵ̂ϵϵ) =
1

600

n∑
k=1

(ϵ̂ϵϵ − ϵϵϵ)2 ,

and

∣∣∣∣∣Bias(ϵ̂ϵϵ)
∣∣∣∣∣ =

∣∣∣∣∣∣ 1
600

n∑
k=1

(ϵ̂ϵϵ − ϵϵϵ)

∣∣∣∣∣∣,
where ϵ̂ϵϵ = (β, κκκ) .

Corresponding to (a) τ̂1 = 0.6, τ̂2 = 1.3, β̂ = 0.9 (b) τ̂1 = 0.12, τ̂2 = 0.8, β̂ = 1.2, and (c) τ̂1 =

1.3, τ̂2 = 1.5, β̂ = 0.7. the simulation results of the Z-FWE model are provided in Table 2.
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Table 2. The simulation results of the Z-FWE distribution using the different estimation
methods.

p Criteria MLE LSE WLSE MPSE ADE
τ1 = 0.8, τ2 = 1.3, β = 0.9
20 |Bias| 0.12745895 0.12984254 0.13145896 0.16369694 0.14369857

MSE 0.01369548 0.01699527 0.01936955 0.03265855 0.02968856
50 |Bias| 0.07023698 0.08593632 0.09745269 0.11236985 0.07452996

MSE 0.00696585 0.00742696 0.00892024 0.01496657 0.00639957
150 |Bias| 0.04025955 0.04128963 0.04593582 0.05985352 0.04236958

MSE 0.00230288 0.00285295 0.00369021 0.00597102 0.00283015
300 |Bias| 0.02336951 0.02478037 0.03352865 0.03259560 0.03252014

MSE 0.00112023 0.00141260 0.00123695 0.00289635 0.00147848
τ1 = 0.12, τ2 = 0.8, β = 1.2
20 |Bias| 0.14789622 0.15236974 0.14890395 0.18930325 0.17485630

MSE 0.02023985 0.03636920 0.03630215 0.05014790 0.04012856
50 |Bias| 0.09639519 0.10303255 0.10920203 0.12306954 0.11425036

MSE 0.01021589 0.01636985 0.01547496 0.02036991 0.01636982
150 |Bias| 0.04852036 0.06696350 0.06745622 0.07412696 0.07012650

MSE 0.00523694 0.00530236 0.00595621 0.00669521 0.00610236
300 |Bias| 0.03203695 0.03365541 0.04012556 0.05120356 0.03746222

MSE 0.00210236 0.00242369 0.00345890 0.00463697 0.00323405
τ1 = 1.3, τ2 = 1.5, β = 0.7
20 |Bias| 0.66256985 0.67458852 0.68520136 0.73265996 0.69203214

MSE 0.25369414 0.25896894 0.28957748 0.29652120 0.26358544
50 |Bias| 0.31258967 0.32369841 0.33695252 0.38569520 0.33737712

MSE 0.11482069 0.12987039 0.13698549 0.14529602 0.12369501
150 |Bias| 0.18595452 0.19395225 0.20369521 0.24473699 0.21032369

MSE 0.03636654 0.03852178 0.03715985 0.04236985 0.03920369
300 |Bias| 0.11532684 0.12399596 0.10158697 0.15639023 0.12699529

MSE 0.00936998 0.00985632 0.01058554 0.01239857 0.01158859

6. Data analysis

This section is devoted to data analysis to illustrate the crucial role of the Z-FWE in data modeling.
To carry out the illustration of the Z-FWE model, a data set from the medical sector is considered. The
data consists of one hundred and six (106) observations and represents the mortality rate of patients
during the COVID-19 pandemic in Mexico. This was recorded during the period between March 4,
2020, to July 20, 2020; see Almongy et al. [16]. For the simplicity of analysis, each observation
is divided by five and is given by: 1.7652, 1.2210, 1.8782, 2.9924, 2.0766, 1.4534, 2.6440, 3.2996,
2.3330, 1.2030, 2.1710, 1.2244, 1.3312, 0.6880, 1.1708, 2.1370, 2.0070, 1.0484, 0.8688, 1.0286,
1.5260, 2.9208, 1.5806, 1.2740, 0.7074, 1.2654, 0.9460, 0.6430, 1.8568, 2.5756, 1.7626, 2.0086,
1.4520, 1.1970, 1.2824, 0.6790, 0.8848, 1.9870, 1.5680, 1.9100, 0.6998, 0.7502, 1.3936, 0.6572,
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2.0316, 1.6216, 1.3394, 1.4302, 1.3120, 0.4154, 0.7556, 0.5976, 0.6672, 1.3628, 1.6650, 1.5708,
1.7102, 0.6456, 1.4972, 1.3250, 1.2280, 0.9818, 0.9322, 1.0784, 2.4084, 1.7392, 0.3630, 0.6654,
1.0812, 1.2364, 0.2082, 0.3600, 0.9898, 0.8178, 0.6718, 0.4140, 0.6596, 1.0634, 1.0884, 0.9114,
0.8584, 0.5000, 1.3070, 0.9296, 0.9394, 1.0918, 0.8240, 0.7844, 0.6438, 0.2804, 0.4876, 0.6514,
0.7264, 0.6466, 0.6054, 0.4704, 0.2410, 0.6436, 0.5852, 0.5202, 0.4130, 0.6058, 0.4116, 0.4652,
0.5012, 0.3846.

The summary measures of this data are: smallest observation (minimum) = 0.2082, 1st Quartile
= 0.6578, Median = 1.0559, Mean = 1.1645, 3rd Quartile = 1.5188, the largest value (maximum) =
3.2996, variance = 0.4225, and standard deviation = 0.6500. Corresponding to the mortality rate data,
the total time test (TTT) plot is obtained in Figure 3. In addition to the TTT plot, the histogram of the
mortality rate data is also provided within the same figure.
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Figure 3. Histogram and TTT plot of the mortality rate data.

Using the given mortality rate data, we show the closer-fitting capability of the Z-WFE distribution.
To perform the numerical illustration of the Z-FWE distribution, its comparison is done with some
well-known competing models. These models include the (i) baseline FWE model, (ii) the exponenti-
ated version of the FWE distribution, namely, exponentiated FWE (E-FWE), (iii) Weibull model, (iv)
a generalization of the Weibull, namely, exponentiated Weibull (E-Weibull) distribution, (v) another
famous extension of the Weibull is called, the Kumaraswamy Weibull (K-Weibull) distribution, (v)
another generalized form of the Weibull model, namely, a modified new flexible Weibull extension
(MNFWE) distribution, and (vi) a new modified flexible Weibull extension (NMFWE) distribution.

The above-mentioned competing models are very popular for modeling and describing real-
phenomena of nature. The SFs of the selected competing models are

• FWE

M(y;κκκ) = e−eτ1y−
τ2
y
, y ≥ 0,

where τ1 > 0 and τ2 > 0.

Mathematical Biosciences and Engineering Volume 20, Issue 2, 2847–2873.



2861

• E-FWE

M(y; θ1, κκκ) =
(
1 − e−eτ1y−

τ2
y
)θ1
, y ≥ 0,

where τ1 > 0, τ2 > 0, and θ1 > 0.
• Weibull

M(y;κκκ) = 1 − e−τ2yτ1 , y ≥ 0,

where τ1 > 0 and τ2 > 0.
• E-Weibull

M(y; θ1, κκκ) =
(
1 − e−τ2yτ1

)θ1
, y ≥ 0,

where τ1 > 0, τ2 > 0, and θ1 > 0.
• K-Weibull

M(y; θ1, θ2, κκκ) = 1 −
[
1 −

(
1 − e−τ2yτ1

)θ1]θ2
, y ≥ 0,

where τ1 > 0, τ2 > 0, θ1 > 0, and θ2 > 0.
• MNFWE

M(y; θ, λ, κκκ) = 1 − e−λ{e
(τ2yτ1+θy)}, y ≥ 0,

where τ1 > 0, τ2 > 0, θ > 0, and λ > 0.
• NMFWE

M (y; λ,κκκ) =
λ − λe−eτ1y−

τ2
y

λ − e−eτ1y−
τ2
y
, y ≥ 0.

After selecting the competing models, the very next step is to choose statistical tools to evaluate
the performance of the Z-FWE and other models. For the evaluation of these distributions, certain
statistical tools and tests were chosen. These tools are given by

• Akaike information criterion
The Akaike information criterion (AIC) is a mathematical approach for testing and evaluating
how close/well a probability model fits the given data. In the literature, the AIC is calculated
to compare different selected competing models and determine which one better fits the data set
under consideration. In this paper, we consider the AIC to compare the fitting results of the
Z-FWE distribution with other considered competing distributions. It is calculated as

AIC = 2k − 2ℓ.

• Bayesian information criterion
Another criterion that we considered as a comparative tool is called the Bayesian information
criterion (BIC). It is also called the Schwarz information criterion. For a given data set, the BIC
also determine the best competing model among a finite set of models. It is calculated as

BIC = k log (n) − 2ℓ.

• Corrected Akaike information criterion
The Corrected Akaike information criterion (CAIC) is another useful statistical tool for checking
the quality of the fitting of the possible competing distributions. For a given data set, a probability
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model with the lowest value of CAIC is considered the best competing distribution. The CAIC is
calculated as

CAIC =
2nk

n − k − 1
− 2ℓ.

• Hannan–Quinn information criterion
The Hannan–Quinn information criterion (HQIC) is another statistical criterion for model selec-
tion among a set of possible competing statistical distributions. It can be used as an alternative to
AIC and BIC for checking the fitting power of the competing distributions. It is given as

HQIC = 2k log
(
log (n)

)
− 2ℓ.

• Anderson Darling test
The Anderson Darling (AD) test is a well-known statistical procedure to check whether a sample
of the underlined data is drawn from a given statistical distribution. The AD test is most often
implemented in contexts where a family of statistical distributions is being tested. The AD test
statistic is calculated as

AD = −n −
1
n

n∑
l=1

(2l − 1)
[
log T (ul) + log {1 − T (un−l+1)}

]
.

• Cramér-von Mises test
The Cramér-von Mises (CM) test is another useful statistical approach used for judging the good-
ness of fit of the given probability distributions. The CM test statistic is calculated as

CM =
1

12n
+

n∑
l=1

[
2l − 1

2n
− T (ul)

]2

.

• Kolmogorov-Smirnov test
The Kolmogorov–Smirnov (KS) test is a prominent statistical approach that is used to quantify the
distance between the empirical CDF of the sample and the CDF of the reference probability dis-
tribution. A lower distance between the empirical CDF and the CDF of the probability indicates
the best fitting of the corresponding probability distribution. The KS test statistic is calculated as

KS = supu [Tn (u) − T (u)] .

Furthermore, another statistical quantity called p-value is also considered a tool for the illustration
of the fitted model. A higher p-value associated with any model indicates the best competitor among
the competing models.

After performing the analysis, the numerical values of τ̂1, τ̂2, β̂, θ̂1, θ̂2, θ̂, and λ̂ are presented in Table
3. Whereas, the values of the comparative tools are presented in Tables 4 and 5.
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Table 3. The numerical values of τ̂1, τ̂2, β̂, θ̂1, and θ̂2 using the mortality rate data.

Model τ̂1 τ̂2 β̂ θ̂1 θ̂2 θ̂ λ̂

Z-FWE 0.60578
(0.06790)

1.30376
(0.20545)

1.52213
(0.68089)

- - - -

FWE 0.64201
(0.05039)

1.11759
(0.10961)

- - - - -

E-FWE 0.65089
(0.11588)

1.35112
(2.14650)

- 0.82677
(1.39368)

- - -

Weibull 1.92159
(0.14090)

0.58694
(0.07121)

- - - - -

E-Weibull 1.00398
(0.32020)

1.78865
(0.75560)

- 4.02508
(3.10070)

- - -

K-Weibull 1.44294
(0.14370)

3.76192
(NaN)

- 3.13605
(1.63131)

0.24665
(NaN)

- -

NMFWE 0.61568
(0.06012)

1.33469
(0.20807)

- - - - 2.86140
(1.76820)

MNFWE 1.45714
(0.17835)

1.52803
(0.90054)

- - - 4.11707
(1.05217)

0.038181
(0.00983)

Table 4. The analytical measures of the fitted models.

Model AIC CAIC BIC HQIC
Z-FWE 186.07860 186.31390 194.06900 189.31720
FWE 189.04580 189.16230 196.37270 191.20480
E-FWE 187.01970 187.25500 195.01000 190.25820
Weibull 191.38590 191.50240 196.71280 193.54490
E-Weibull 188.2469 0 188.48220 196.23720 191.48540
K-Weibull 189.18680 189.58290 199.84060 193.50490
NMFWE 186.12600 186.36130 194.11630 189.36450
MNFWE 214.87380 215.26980 225.52750 219.19180

Table 5. The analytical measures of the fitted models.

Model CM AD KS p-value
Z-FWE 0.03228 0.20038 0.04683 0.97420
FWE 0.03963 0.26343 0.05313 0.92580
E-FWE 0.03866 0.25671 0.05589 0.89500
Weibull 0.10233 0.65790 0.06967 0.68220
E-Weibull 0.05380 0.29853 0.06758 0.71820
NMFWE 0.03276 0.20485 0.05085 0.94680
MNFWE 0.26322 1.70311 0.09473 0.29740
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From the numerical illustrations in Tables 4 and 5, we observe that the Z-FWE distribution is the
best competitor for modeling the mortality rate data. For the Z-FWE distributions, the numerical
values of the selected measures are AIC = 186.07860, CAIC = 186.31390, BIC = 194.06900, HQIC
= 189.31720, CM = 0.03228, AD = 0.20038, KS = 0.04683, with p-value = 0.97420. Whereas,
the second best model is the NMFWE distribution. For the NMFWE distribution, the values of the
analytical measures are AIC = 186.12600, CAIC = 186.36130, BIC = 194.11630, HQIC = 189.36450,
CM = 0.03276, AD = 0.20485, KS = 0.05085, and p-value = 0.94680.

From the above discussion, as well as the results in Tables 4 and 5, it is now obvious that the Z-FWE
is the best choice for modeling the mortality rate data. Visual support for the numerical illustrations
is presented in Figure 4. For the visual illustration of the Z-FWE distribution, the plots of the CDF,
SF, PP, and QQ functions were obtained. These plots visually confirm the best fitting of the Z-FWE
distribution.
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Figure 4. Visual illustration of the Z-FWE model using the mortality rate data.

7. Forecasting models

In the previous section, we compared several distributions with the Z-FWE model using the mortal-
ity rate of patients due to the COVID-19 pandemic in Mexico. In this section, the study compares time
series and machine learning techniques through forecasting on the same data set. Autoregressive Inte-
grated Moving Average is a time series model, whereas Artificial Neural Network and group methods
of data handling. For comparison purposes, we divide the data set into two parts: a training set and a
testing set. The training set consists of 80 percent data and the testing set consists of 20 percent data,
followed by [17]. The models are estimated on training data and then their performance is assessed on
testing data. Below, the following methods are elaborated.
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7.1. Autoregressive integrated moving average Model

Numerous linear models have been devised in the literature on time series forecasting. Among them,
the ARIMA model is the most well-known and frequently used over the previous few decades that has
enjoyed fruitful applications in engineering, economics, and finance [18]. Basically, the ARIMA model
has included the components, the autoregressive (AR) and moving average (MA). If the underlying
time series is non-stationary, then it is transformed by using differencing approach [19].

ARIMA model specification is needed in several steps. In the initial step, we apply the autocorre-
lation function (ACF) and partial autocorrelation (PACF) to determine the order of AR and MA terms
included in the model. In the second step, the estimated model is passed through diagnostic tests. If
the estimated model is not suitable, a new tentative model should be diagnosed and will be followed by
the same steps i.e., parameters estimation and model verification. This whole process is repeated until
an adequate model is finally selected. In the last step, the final model can be utilized for forecasting
aims [20]. Mathematically, the ARIMA model can be expressed as:

ϑ(U)∇d(Mt − π) = φ(U)βt,

where βt and Mt represent the error term and observed value at time t, respectively. ϑ(U) = 1 −∑p
u=1 ϑuUu and φ(U) = 1 −

∑q
v=1 φvUv are polynomials in U of degree p and q, ϑu(1, 2, ..., p) and

φv(1, 2, ..., q) are the unknown parameters of the model. ∇ = (1 − U), where U is the backward
shift operator, d denotes the length of difference, p and q indicate the length of AR and MA terms,
respectively.

7.2. Machine learning techniques

Qurban et al. [21] declared that nonlinear problems are commonly overcome by machine learning
(ML) techniques. The most widely used ML techniques are Artificial neural networks (ANNs) and the
group method of data handling (GMDH).

7.2.1. Artificial neural network

The ANN models can model a wide range of non-linear problems. In comparison with other non-
linear models, ANN can approximate a huge group of nonlinear functions with good accuracy. This
accuracy is achieved due to the parallel processing of the information from the data. The construction
of the ANN model does not require any prior assumption regarding model form. Rather, the model
is substantially ascertained by the characteristics of the data [22]. There are many types of ANN, but
multilayer perceptron (MLP), is one of the most popular forms of ANN for forecasting in time series
setup. The nexus between input and output layers has the following mathematical representation

Mt = φ0 +

q∑
v=1

φvρ

φ0u +

p∑
u=1

φuvMt−i + βt

 ,
where φuv(u = 1, 2, ..., p, v = 1, 2, ..., q) and φv(v = 0, 1, 2, ..., q) represent connection weights, p
denotes input layers and q denotes the number of hidden layers. There is no hard and fast rule to select
the input layers and hidden layers. The sole possible way is the error and trial approach to select the
optimum number of p and q; see Khashei and Hajirahimi [23].
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7.2.2. Group method of data handling

The GMDH-type neural network can be illustrated as a collection of neurons where numerous pairs
are related throughout every layer utilizing quadratic polynomial, which in turn induces new neurons
all over the next layers. Such type of information can be utilized while connecting the input layers with
the output layer. If the primary structure is tentative then it leads to a slight improvement in parameters
estimation of a model. Primarily, the GMDH tries to achieve the hierarchic solution, by seeking a
large set of simple models, keeping the best, and developing them iteratively to get a composition
of functions like a statistical model [24]. The polynomial nodes or building blocks have often the
quadratic form

M = φ0 + φ1u1 + φ2u2 + +φ3u2
1 + +φ4u2

2 + +φ5u1u2,

M is the output of the model, ui(i = 1, 2) shows the input variables and the weight vector φ.

7.3. Error metrics and Diebold Mariano test

The predictive power of the statistical models is assessed by using metrics computed from a holdout
set (test data). From a statistical point of view, the forecast error is a more plausible criterion to judge
the forecasting ability and choose the best method. The commonly used criteria such as root-mean-
square error (RMSE), and mean absolute error (MAE) (Diebold and Mariano [25]) test are employed
in this study.

7.3.1. Root mean square error

The RMSE measures the magnitude of error in forecast comparison, and it is a quadratic scaled
measure. The RMSE gives relatively more weight to large errors. A low value of RMSE for the model
is preferred for a good forecast. It is given as

RMS E =

√√
1
H

H∑
t=1

(
Yt − Ŷt

)2
.

7.3.2. Mean absolute error

The mean absolute error (MAE) is another widely implemented measure of forecasting accuracy. It
is defined as

MAE =

∣∣∣∣∣∣∣ 1
H

H∑
t=1

(
Yt − Ŷt

)2

∣∣∣∣∣∣∣ .
In the RMSE and MAPE formulas, Yt and Ŷt indicate the actual and forecast values respectively,

and H shows the forecast horizon.
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7.3.3. Diebold and Mariano test

When using different models for the prediction of a single variable, then it is better to check which
model outperforms in terms of prediction. For this purpose, Diebold and Mariano (DM) test can be
used. The DM statistic is a squared error difference mean of two competing predictive models, whose
covariance matrix is obtained by accounting for the autocorrelation produced in the multistep forecasts.
The DM test statistic tests the null hypotheses that two models have the same forecasting ability, i.e.,
to test forecast errors of two sets, say e1i and e2i having equal mean. A loss function is defined to
evaluate the forecast error, mainly squared forecast error and absolute forecast error are used. The
corresponding test statistics are used for hypothesis testing, that the two models have equal predictive
performance, which is given by

DM =
D̄√

Var(D̄)
,

where D̄ = 1
p

∑p
k=1 Dk, the D̄ has an asymptotic variance is expressed as

Var(D̄) =
1
p

ω0 + 2
p−1∑
k=1

ωk

 ,
where ω0 is the variance of Dk and ωk is the kth autocovariance of Dk and p is the number of forecast
steps, which is estimated by

ω̂l =
1
p

p∑
k=i+1

(
Dk − D̄

) (
Dk−i − D̄

)
.

7.4. Empirical results

In this section, we elaborate on the findings of our prediction experiments along with a graphical
representation. Figure 5 indicates the non-stationarity pattern in the series. In other words, the statisti-
cal properties such as mean, variance, and covariance of the original series are not constant over time.
It represents a trend in the data, but we require a plain series having no trend. To achieve stationary
series, we performed a differenced transformation. The ACF and PACF of the original and differenced
series are given in Figure 6. It can be observed that the ACF associated with the original series is
gradually dropping, but after transformation, the ACF declines at a swift pace. This shows that the
COVID-19 series is the first difference stationary.
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Figure 5. Trend of mortality rate data.
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Figure 6. ACF and PACF for level (first row) and differenced data (second row).

Mathematical Biosciences and Engineering Volume 20, Issue 2, 2847–2873.



2869

Table 6. The analytical measures of the fitted models.

Test χ2 p-value
Box-Ljung test 23.697 0.10
JB test 1.932 0.38

The output of the Box-Ljung test and Jarqua-Bera test are reported in Table 6. The corresponding p-
values are greater than 5 percent, thus we cannot reject the null hypothesis, under which it is assumed
that the residuals of the estimated model are random and normally distributed. In other words, it is
stated that the residuals of the estimated model are normally distributed and uncorrelated. Thus, the
model can be used for forecasting.

Another way to know the randomness and normality of the residuals of the fitted model is by
considering the graphs of ACF, PACF, and QQ-plot of the residuals; see Figure 7. They reveal that
the residuals are random and normally distributed.
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Figure 7. Diagnostic check.

The RMSE and MAE using the COVID-19 dataset are given in Table 7. We can observe that RMSE
and MAE associated with machine learning (ML) algorithms such as ANN and GMDH are consider-
ably lower than the time series model. Thus, it can be inferred that machine learning algorithms are
superior to traditional time series models in terms of forecasting. Moreover, considering ML algo-
rithms, the GMDH has produced a more accurate forecast than ANN. The forecast comparison is also
portrayed in Figure 8. The plots in Figure 8 reveal that the ML algorithms, particularly GMDH, have
captured the COVID-19 trend very well. Basically, these error metrics are loss functions, and in the
field of statistics and econometrics, we are often interested in statistical differences. Therefore, apply
the DM test for this purpose.
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Figure 8. Forecast comparison across univariate model.

Table 7. Error Metrics.

Criteria ARIMA ANN GMDH
RMSE 0.359 0.274 0.139
MAE 0.320 0.214 0.130

The values in Table 8 indicate the p-values for the DM test. Under the null hypothesis, it is assumed
that models in row and column have the same forecasting accuracy. Under the rival hypothesis, the
model in the column is more accurate than the row model. We found another piece of evidence in
the form of a statistical test. From Table 8, it is quite clear that p-values are sufficiently small, which
clearly demonstrates that the ML algorithms have high predictive power than ARIMA model.

Table 8. Diebold and Mariano test.

Models ARIMA ANN GMDH
ARIMA - 0.001 0.001
ANN - - 0.001
GMDH - - -

8. Concluding remarks

The COVID-19 pandemic has dramatically affected the economy, education, and health sectors,
etc. Among them, the health sector is the most affected one. To have the best description and knowl-
edge of the COVID-19 pandemic, numerous statistical studies have appeared. This paper offers a new
statistical model for analyzing the mortality rate of the COVID-19 pandemic in Mexico. Some char-
acterizations along with estimators of the new model were obtained. The new model was named the
Z-FWE distribution and applied to the COVID-19 data in comparison with other statistical models.
Based on the findings of this research, it is shown that the Z-FWE model was the best competitor for
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dealing with mortality rate data. Later, we compared the predictive power of ML techniques, i.e., ANN
and GMDH, with the ARIMA. For comparison, we used RMSE, MAE, and DM tests. Based on all
these criteria, it is inferred that ML techniques are superior in terms of forecasting than the ARIMA
model. Furthermore, GMDH outperformed the ANN while getting small forecast errors. The study
recommends that policymakers can utilize ML techniques, particularly GMDH, for forecasting the
mortality rate of COVID-19 patients.
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