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Abstract: Low-dose computed tomography (LDCT) can effectively reduce radiation exposure in 

patients. However, with such dose reductions, large increases in speckled noise and streak artifacts 

occur, resulting in seriously degraded reconstructed images. The non-local means (NLM) method has 

shown potential for improving the quality of LDCT images. In the NLM method, similar blocks are 

obtained using fixed directions over a fixed range. However, the denoising performance of this method 

is limited. In this paper, a region-adaptive NLM method is proposed for LDCT image denoising. In 

the proposed method, pixels are classified into different regions according to the edge information of 

the image. Based on the classification results, the adaptive searching window, block size and filter 

smoothing parameter could be modified in different regions. Furthermore, the candidate pixels in the 

searching window could be filtered based on the classification results. In addition, the filter parameter 

could be adjusted adaptively based on intuitionistic fuzzy divergence (IFD). The experimental results 

showed that the proposed method performed better in LDCT image denoising than several of the 

related denoising methods in terms of numerical results and visual quality. 

Keywords: low-dose computed tomography; non-local means; intuitionistic fuzzy divergence; image 

denoising; edge detection 
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1. Introduction 

With the wide use of X-ray computed tomography (CT) in clinics, the risk of X-ray radiation-

induced genetic, cancerous and other diseases is of great concern to patients and operators alike [1−3]. 

Low-dose computed tomography (LDCT) is an effective technique to reduce patients’ radiation 

exposure and related hazards. However, with the reduction in dose, large increases in speckled noise 

and artifacts occur, resulting in seriously degraded reconstructed images. Three research methods that 

address this problem include projection data denoising, iterative reconstruction and post-processing 

methods. Among these three methods, post-processing removes noise and artifacts directly from 

reconstructed CT images. Moreover, it has good compatibility with existing hospital CT equipment. 

Over the last few decades, a large number of image denoising algorithms have been proposed. These 

algorithms can be divided into two categories, traditional algorithms and deep learning algorithms. Kang 

et al. [4] introduced deep learning into low-dose CT images, initiating extensive research on deep 

learning in this direction. Chen et al. combined a convolutional neural network with residual encoder 

and decoder, and they proposed the classic RED-CNN algorithm [5]. Yang et al. [6] used Wasserstein 

distance in an adversarial generative network and introduced VGG-19 to calculate visual loss, which had 

good effect in the application of low-dose CT images. Chen et al. [7] combined a low-dose CT image 

denoising task with detection to achieve good results. Li et al. [8] improved the performance of the 

denoising network by introducing the residual attention module. Bera and Biswas [9] used image 

neighborhood information, noise characteristics, local details and other information to improve the 

adversarial generation network from the convolution module, loss function and discriminant function, 

respectively. The successful application of deep learning in low-dose CT images is remarkable. However, 

deep learning algorithms depend largely on the data, which is difficult for clinical LDCT images. In 

addition, deep learning models have poor interpretation and weak generalization ability now. 

Among the traditional methods, patch-based algorithms that make use of local and non-local self-

similarities in images have shown excellent performance [10−13], the non-local means (NLM) 

method being a typical example of this type of algorithm. By using repetitive structures and 

redundant information in images, the NLM method can remove noise by averaging pixels with 

similar structures in a non-local neighborhood [14]. Owing to its excellent performance, the NLM 

algorithm has been widely applied to CT images. Liu et al. proposed a large-scale NLM (LNLM) 

method for LDCT images [15], further improving the LNLM method by adding the process of 

artifact suppression [16]. Li et al. proposed an adaptive NLM filter, in which the local noise level of 

the CT image was estimated to modify the classic NLM algorithm, achieving good performance on 

CT images [17]. Zhang et al. proposed an adaptive NLM algorithm, based on a local principle 

neighborhood, which exhibited good performance in noise and artifact reduction in LDCT images [18]. 

Another prior understanding of an image is that there are always several regions with different 

characteristics in an image—that is, smooth, edge and texture regions. However, in the classic NLM 

algorithm, a fixed patch size and search window of fixed size are used for all pixels in the entire image, 

limiting the performance of this method, especially in edge-included regions. Several improved 

versions of the original NLM have been proposed in recent years. By taking advantage of the local 

geometry of the image, Deledalle et al. proposed replacing square patches with various shapes to 

calculate the weights of neighboring pixels [19]. Khellah proposed an improved NLM method for 

texture image denoising by using the dominant neighborhood structure to determine the most similar 

pixels surrounding any given pixel within the search window [20]. Similarly, an NLM image-denoising 
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method based on a local binary descriptor (LBD) was proposed in [21]. These algorithms selected 

similar pixels and excluded dissimilar ones by using different features in a fixed square search window.  

Some researchers have improved the NLM algorithm by employing an adaptive search window. 

A modified NLM algorithm was proposed, in which the search window size was adaptively selected 

based on gray level differences [22]. This study demonstrated that a large search window could be 

beneficial in removing noise for pixels in a smooth region, with a small search window size being 

suitable for pixels in non-smooth regions. Liu et al. proposed an improved block-matching and 3D 

filtering (BM3D) approach that searched for candidate matching blocks along the edge directions [23]. 

By considering the advantages of the above-mentioned algorithms, an improved NLM method is 

proposed for LDCT image denoising in this study. In the proposed algorithm, an adaptive searching 

window and adaptive filtering are used in different regions for image denoising. Specifically, in smooth 

regions, a large isotropic square search window is selected to search for similar candidates, a large 

block size being used to calculate the weight coefficients. In the edge-included regions, the weight 

coefficients are calculated using a small block size in a small searching window. Moreover, to improve 

the removal of streak artifacts and speckle noise, the smoothing parameters for denoising are 

adaptively changed according to the noise intensity. 

The remainder of this paper proceeds as follows: Section 2 briefly introduces the classic NLM 

algorithm and the principle of bidirectional chain codes. Section 3 presents the proposed denoising 

algorithm in detail. Section 4 analyzes parameter selection, presents the experimental results and 

compares the proposed method with several related algorithms. Finally, Section 5 concludes the paper. 

2. NLM denoising algorithm 

The problem of denoising can be mathematically shown by estimating the latent clean image X

from the noise-degraded observation model: 

                                 VXY +=          (1) 

where V  is the additive noise. The estimated pixel values can be calculated using the weighted 

average of all gray values in the entire image or a predefined non-local search window. It can be 

expressed as 

                        = =
num
j jjiwi 1 )(),()(ˆ YX         (2) 

where Y  is the noisy image, X̂  is the denoised image, num  is the total number of pixels in Y , 

)( jY  is the pixel intensity at position j , and ),( jiw  is the weight coefficient calculated by 
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where 
2

,2|||| a  is the Gaussian weighted Euclidean distance, kN  is the patch centered at k , and h

is a smoothing parameter used to control the amount of denoising. 
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3. Proposed methods 

In the classic NLM algorithm, a fixed isotropic search window is used for all pixels in the entire 

image. This method has limitations in image denoising, especially for edge-included regions. The basic 

idea of our proposed algorithm is to select adaptive searching windows and adaptive filter parameters 

based on the region property for the calculation of weight coefficients. Specifically, in smooth regions, 

large isotropic searching windows and large filter parameters are selected for better denoising and 

smoothing. In edge-included regions, small searching windows and small filter parameters are selected 

for edge preservation. In the proposed method, to distinguish the edge region from that contaminated 

by streak artifacts, the edge-included regions are extracted based on the grayscale category information 

of each pixel. In the non-edge region, the filter parameter is adjusted adaptively by means of 

intuitionistic fuzzy divergence (IFD), which reflects the intensity of the streak artifact. 

The proposed algorithm has three main steps, as shown in Figure 1, the details of which are 

described below. 

LDCT Image

Pre-denoising

Edge detection and pixels classification

Pixels lie in 

non-edge region

Large searching 

window and 

large block size

Pixels lie in 

edge region

Small searching 

window and small 

block size

NLM denoising with pixels 

in different classifications 
 

Figure 1. A block diagram of the proposed algorithm. 

3.1. Pixel classification and edge extraction 

In this study, the edge-included and non-edge regions are distinguished based on the 

classification information of local blocks. For each pixel in an image, we select a 3 × 3 patch and 

align it to a vector. The pixels centered at each block are then divided into K categories using the K-

means clustering method. The classification result using the K-means clustering method is sensitive 

to the selection of the initial point and the noise. To reduce the influence of noise and obtain rich 

edge information, the LDCT image is preprocessed using the classic NLM algorithm. In addition, 

we determined the initial points and the number of categories based on experience and a statistical 
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histogram of the image. The histograms of the three images are shown in the second column in 

Figure 2. We can see that the histogram of the preprocessed image in Figure 2(c1) is closer to the 

truth than that of the LDCT image. There are five to six major gray levels in the image. According to 

the histogram information, we experiencedly selected six points in the preprocessed image as the initial 

values, as shown in Figure 3(a). Following that, pixels in the preprocessed image are classified into 

six groups, as shown in Figure 3(b)−(g). The classification results are shown in Figure 3(h). Finally, 

the gradient modulus of each pixel in the classification image is calculated. The location where the 

gradient modulus is not equal to zero belongs to the edge region.  

 

Figure 2. The edge detection results of the Shepp-Logan phantom. In the first column, 

from top to bottom, they are the Shepp-Logan phantom simulation, the corresponding 

LDCT image and the pre-processed image using the NLM method. The second column is 

the corresponding histograms of the images in the first column. The third colum includes 

the corresponding edge images of the images in first column using the Sobel operator. The 

fourth column includes the detected edge images using the Canny operator. The fifth 

column includes the detected edge images using the IFD method in this paper. 

Figure 2 shows the results of edge detection on the Shepp-Logan phantom image using different 

methods. From top to bottom, the images in the first column are the Shepp-Logan phantom simulation, 

the corresponding LDCT image reconstructed from simulated noisy sinograms by using the filtered 

back-projection (FBP) method and the preprocessed image denoised using the NLM method. The 

images in the third to the fifth columns are the detected edge images of those in the first column using 

the Sobel operator, the Canny operator and the IFD method (it will be described in Section 3.2.1), 

respectively. It can be seen that the edges in the images in the fourth column are richer and more 

accurate than those in the second and third columns, the edge extraction method used in this study 

being more resilient to streak artifacts—that is, the detected edge information in Figure 2(c4) is closer 

     
(a1)                 (a2)                (a3)              (a4)             (a5) 

     
(b1)                 (b2)                (b3)              (b4)             (b5) 

     
(c1)                 (c2)                (c3)              (c4)             (c5) 
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to that in Figure 2(a4). 

Based on the edge extraction results, for non-edge regions, a large search window and block size 

were used, whereas for edge included regions, the search window and block size were both small. 

 

Figure 3. Display of pixel classification display. 

3.2. Adaptive filter parameter 

In the NLM algorithm, the selection of filtering parameters has a significant influence on the 

denoising results. However, in an LDCT image, a large filter parameter can reduce streak artifacts, but 

accompanying image blurring occurs. Meanwhile, a small filter parameter is not conducive to noise 

removal, especially for streak artifacts. For better denoising performance, in this study, the filter 

parameter for each pixel is adjusted adaptively by means of IFD between a smooth template and a 

local block centered at the current pixel. 

3.2.1. Intuitionistic fuzzy divergence 

Intuitionistic fuzzy divergence (IFD) is a method for measuring the degree of similarity between 

two fuzzy sets. The larger the IFD distance is, the more dissimilar the two sets are. The definition of 

IFD is 
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where A  and B are two fuzzy sets, )( ijA a  represents the degree of membership of element ija  

in set A , )( ijB b  represents the degree of membership of element ijb  in set B , )( ijA a  is the 
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hesitation degree of element ija  to set A , and )( ijB b  is the hesitation degree of element ijb  to 

set B . 

3.2.2. Adaptive filter parameter based on IFD 

We define a template of size 3 × 3, in which all elements are zero. The template represents 

the smooth region, which we denote as O . For each pixel 0x  in the LDCT image, the local block 

of size 3 × 3 is denoted as P . O  and P  are the two fuzzy sets used for the LDCT image-

denoising problem. 

In this paper, we calculate the IFD at )( 0,0 ji  by using the following equation: 
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where )( 0,0 ji  is the coordinate of the center pixel 0x  in P , ija  is the element in P , and ijo  is 

the corresponding pixel in the template O . 

In Eq (4), the membership function and the hesitation degree function are key factors in 

calculating the IFD between the two sets. In this paper, a membership function that uses both gradient 

information and local variance information is proposed for pixels in set P . 
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where 
2  is the normalized local variance of pixel ija . 

The hesitation degree function is 

))(1()( 1 ijij apa  −= ,        (8) 

where 1p  is a coefficient. In this paper, 5.01 =p . 

For pixels in set O , the membership function 0)( =ijo , and the hesitation degree function is 

))(1()( 2 ijij opo  −= ,        (9) 

where 2p  is a coefficient. In this paper, 5.02 =p . 

Based on Eqs (4)−(9), the IFD for all pixels in the LDCT image can be calculated. For each pixel, 

the greater the IFD value is, the higher the pixel is polluted by streak artifacts and speckle noise. 

Accordingly, an adaptive filter parameter is proposed as follows: 
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where ),( jih  is the filter parameter for the pixel located at ),( ji ,   is the standard deviation of 

noise, and )( OIIFD ij，  is the IFD between the template O  and the local block centered at ),( ji  

in the image ijI . 

file:///C:/Program%20Files%20(x86)/Youdao/Dict/8.9.6.0/resultui/html/index.html%23/javascript:;
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3.3. Adaptive filter parameter 

Based on Eq (3), the weight coefficient can be calculated in its search window. However, a large 

number of pixels that are significantly different from the center pixel values may be included in the 

search window, especially in the regions near the edge. To improve the denoising performance, 

dissimilar pixels are removed based on the pixel classification information obtained in step 1 and 

described in Section 3.1. In Figure 4(a), the center pixel circled in blue is the current pixel to be 

denoised. It can be seen that there are many points that have significantly different gray values from 

the center point in the searching window. Figure 4(b) shows the pixel classification results. By 

removing pixels in different classifications, the remaining black pixels in Figure 4(c) are similar pixels 

used for the denoising of the center pixel. 

 

Figure 4. (a) A pixel and its searching window, (b) the classification information of pixels 

in the searching window, (c) similar pixels used for denoising of the center pixel. 

4. Experimental results 

In this section, we evaluated the performance of the proposed method through experiments on the 

Shepp-Logan head phantom, as shown in Figure 4(a). The denoising results obtained using our 

proposed method were compared to several related methods, including the NLM method, the TV 

algorithm [24] and the improved NLM algorithm in [22] (denoted as GLD-NLM). 

Two evaluation criteria were used in this study to objectively evaluate the quality of the denoised 

images. The first is the peak-signal-to-noise ratio (PSNR), which is the most common and widely used 

objective evaluation standard for image quality. The PSNR between two images X  and Y , both of 

size NM  , can be calculated as follows: 

)/255(log10),( 2
10 MSEYXPSNR =       (11) 
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The other criterion is that of structural similarity (SSIM). The SSIM between windows x  and 

y  of size WW   can be defined as 

   
(a)                     (b)                     (c) 
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where xμ   is the average of x  , yμ   is the average of y  , 2
xσ   is the variance of x  , 

2
yσ   is the 

variance of y  , xyσ   is the covariance of x   and y  , and the positive constants 1c   and 2c   are 

used to avoid a null denominator. 

4.1. Phantom study 

4.1.1. Visual assessment 

In the classic NLM algorithm, the block size was 7 × 7, the searching window was 21 × 21, and the 

filter parameter was =h . In the GLD-NLM algorithm, the parameters were selected based on [22]. 

In the proposed method, the large block size was 9 × 9, the small block size was 5 × 5, the large searching 

window was 29 × 29, and the small searching window was 15 × 15. The filter parameter h   was 

calculated using Eq (10). The grouping number K in the edge extraction stage was set empirically 

according to the LDCT images. In our experiment it was 6 for both the Shepp-Logan head phantom and 

the clinal image. The noise variance was selected according to experiments. 

In this paper, a non-stationary Gaussian distribution model is used to simulate noise in 

projection domain. 

IimGuassiany iii ,2,1),,(~ =       (14) 

= =
J
j jiji uam 1          (15) 

 /im
ii ef=         (16) 

where im   is the mean value calculated by (15), i   is variance calculated by (16), ija   is the 

element of the system matrix, and if  and   are parameters that depend on the configuration of the 

CT device system. 

The simulated low dose Shepp-Logan phantoms under different dose levels are shown in 

Figure 5. Figure 5(a) is the simulated clean image, and Figure 5(b)−(f) shows the reconstructed 

LDCT image from the simulated noisy sinogram using the FBP method (Hanning filter with cutoff 

at 80% Nyquist frequency). The parameters for the LDCT images are (b) 50=if , 22000= , (c) 

100=if  , 22000=  , (d) 200=if  , 22000=  , (e) 800=if  , 62000=  , (f) 300=if  , 22000=  , 

respectively.  

The denoising results by using NLM, TV, GLD-NLM and the proposed method are shown in 

Figure 6. As can be seen in the two charts, the proposed method shows more proficiency in image 

denoising. 

Figures 7–9 show the denoised results of the low dose image in Figure 5(d) in order to further 

compare the visual effects of the denoised images. Figure 7(c)–(f) shows the denoising results obtained 

using the NLM, TV, GLD-NLM and proposed methods, respectively. Figures 8 and 9 show the partially 

enlarged details of the two regions of interest—that is, ROI1 and ROI2—marked by red rectangles in 
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Figure 7(a). The TV model, as a classical image restoration method, has been successfully applied in 

LDCT images and achieved competitive denoising results; however, it could not achieve good results 

in noise removal and detail protection simultaneously. In Figure 8(d), the details are significantly 

blurred. In Figure 9(d), there is an obvious block effect near the edge region. The classic NLM 

algorithm is superior in protecting image details; however, the streak artifacts are protected at the same 

time. As shown in Figure 7(c), many streak artifacts remain in the denoised image. From the partially 

enlarged images in Figures 8(c) and 9(c), it can be seen that regions that were originally seriously 

contaminated by streak artifacts in the LDCT image are still full of noise in the denoised image. The 

GLD-NLM algorithm performs well for Gaussian noise denoising; however, for streak artifacts and 

speckle noise in LDCT images, its performance is poor. By contrast, the proposed method performs 

well in LDCT image denoising. From Figures 8(f) and 9(f), it can be seen that the noise is almost 

removed, the image edges being relatively clear. 

 

Figure 5. Simulated Shepp-Logan phantom in different low dose levels. 

 

(a)                                    (b) 

Figure 6. Comparison of denoising performances on the images in Figure 4 among NLM, 

TV, GLD-NLM and the proposed method. (a) PSNR, (b) SSIM. 
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Figure 7. Comparison of several related algorithms. (a) The original Shepp-Logan 

phantom, (b) the reconstructed LDCT image from simulated noisy sinogram using the FBP 

method (Hanning filter with cutoff at 80% Nyquist frequency), (c) NLM, (d) TV, (e) GLD-

NLM, (f) proposed method. 

 

Figure 8. Comparison of partially enlarged detail ROI1. (a) Original Shepp-Logan 

phantom, (b) LDCT image, (c) NLM, (d) TV, (e) GLD-NLM, (f) proposed method. 

 

Figure 9. Comparison of partially enlarged detail ROI2. (a) Original Shepp-Logan 

phantom, (b) LDCT image, (c) NLM, (d) TV, (e) GLD-NLM, (f) proposed method. 

4.1.2. Quantitative assessment 

The objective evaluations of the NLM, TV, GLD-NLM and proposed methods are shown in 

Table 1. The PSNR and SSIM values produced using these methods for the Shepp-Logan phantom 

in Figure 4(c) were calculated using Eqs (11)–(13), the maximum values among all the methods 

being highlighted in bold. As can be seen from the table, both the PSNR and SSIM values of the 

proposed method are the maximum values. 

      
(a)              (b)              (c)               (d)               (e)              (f) 

 
(a)              (b)              (c)              (d)              (e)              (f) 

      
(       (a)          (b)          (c)          (d)          (e)          (f) 
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Table 1. Comparison of the denoising outcomes of the Shepp-Logan phantom. 

Shepp-Logan 

phantom 

Whole ROI1 ROI2 

PSNR SSIM PSNR SSIM PSNR SSIM 

Noisy 18.3171 0.2148 16.3667 0.6807 14.323 0.4538 

NLM 23.8261 0.4975 21.9658 0.8193 19.9681 0.6648 

TV 22.4618 0.5633 21.2553 0.7827 20.9558 0.8061 

NLM-GLD 22.7169 0.5015 21.4792 0.7732 18.6847 0.617 

Proposed method 24.1361 0.5822 22.4887 0.8427 23.0489 0.9069 

4.2. Clinical data 

In this section, a low-dose clinical abdominal image slice (as shown in Figure 9(a1)) obtained 

from the Mayo Clinic (USA) [25] was used to verify the effectiveness and feasibility of the 

proposed denoising algorithm. The slice was obtained from a patient with liver cancer, and the 

image size was 512 × 512. 

4.2.1. Visual assessment 

The denoising results obtained using the proposed method were compared with those obtained 

using the NLM, GLD-NLM and TV methods. The experimental results are shown in Figure 

10(a1)−(f1). The enlarged images of the region of interest (ROI)—in this case referring to the liver 

tumor marked with a white box—are shown in Figure 10(a2)−(f2). Figure 10(a1) shows a low-dose 

clinical abdominal image slice, with Figure10(b1) showing a high-dose clinical abdominal image slice. 

Figure 10(c1)−(f1) shows the denoising results using NLM, GLD-NLM, TV and proposed methods, 

respectively. We can see that the images obtained using the NLM and GLD-NLM methods still suffer 

from noise and artifacts. The TV method achieved good results in noise removal and detail protection, 

but there is an obvious blocking effect in noisy areas. By contrast, the denoised image using the 

proposed method is significantly reduced, and the image edge is relatively clear. 

 

 
(a)             (b)             (c)              (d)             (e)             (f) 

Figure 10. Comparison of denoised results of various algorithms: (a) LDCT, (b) standard 

dose CT, (c) NLM, (d) GLD-NLM, (e) TV and (f) proposed method. 



2843 

Mathematical Biosciences and Engineering  Volume 20, Issue 2, 2831−2846. 

4.2.2. Quantitative assessment 

Table 2. PSNR and SSIM evaluation of the original LDCT images, standard dose CT 

images and the processed LDCT images. 

 
LDCT NLM NLM-GLD TV Proposed 

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

Whole 34.86 0.82 37.76 0.91 37.45 0.90 36.59 0.93 38.23 0.92 

Cancer 26.52 0.70 29.76 0.83 29.06 0.81 29.00 0.89 31.78 0.90 

ROI1 26.76 0.71 29.59 0.83 28.95 0.80 29.12 0.88 31.76 0.92 

ROI2 26.19 0.65 30.41 0.84 29.36 0.79 29.34 0.90 31.64 0.90 

ROI3 26.20 0.70 27.98 0.77 27.77 0.77 29.12 0.86 30.78 0.89 

ROI4 28.05 0.85 32.43 0.94 31.89 0.93 29.71 0.94 33.27 0.95 

ROI5 26.05 0.74 29.19 0.85 28.72 0.83 29.36 0.92 29.82 0.86 

ROI6 27.90 0.82 30.96 0.92 30.81 0.91 30.51 0.93 31.01 0.93 

To evaluate the quality of the denoised image, PSNR and SSIM techniques were used to 

quantitatively evaluate the whole clinical abdominal image and the area of interest (liver tumor). The 

definitions of PSNR and SSIM are given in Eqs (11)−(13). In addition, six other ROIs (designated by 

the red square) in Figure 7(a1) were selected for quantitative description analysis. Three flat areas are 

marked ROI1, ROI2 and ROI3, and three edge areas are labeled ROI4, ROI5 and ROI6. 

Table 2 lists the PSNR and SSIM values of the original LDCT images, the ROIs after applying 

the NLM, GLD-NLM, TV and proposed methods. It can be seen that the proposed algorithm has the 

largest PSNR value and the second largest SSIM value for the whole image, the largest PSNR value 

in all ROIs and the largest SSIM value in most ROIs. Clearly, the proposed method has a good trade-

off between noise reduction and edge preservation. 

4.3. Calculation time 

The experiments in this paper were implemented in MATLAB 2010b 32bit on a personal 

computer equipped with a CPU G620 @2.60 GHz and 8 GB memory. The running times of different 

methods are listed in Table 3. The data are the average times for 256 × 256 simulated LDCT images. 

The running time of the TV algorithm is related to the iteration error or the number of iterations. 

From Table 3, when the iteration error is set as 1e-5, the running time is 15.04 s. When the iteration 

error is set as 1e-4, the running time reduced by 75%. In this paper, the former is used because of 

the higher image quality. The NLM-based methods are time-consuming. This is mainly because of 

the heavy calculation of the weight matrix in formula (3). In the NLM-GLD method and our 

proposed method, basic NLM algorithm is used for preprocessing. There is no doubt that using it 

directly will greatly increase the running time. By removing the Gaussian weighed kernel, the 

running time of NLM-GLD is reduced sharply, although the NLM algorithm is used almost twice. 

In the proposed method, the calculation of distance between two similar patches is changed into the 

formula (17), as follows. By calculating the first two terms ahead of the for loop structure, the 

running time of the proposed method reduced to 22.03 s. 
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                 (17) 

where 
2

,2|||| a  is the Gaussian weighted Euclidean distance, kN  is the patch centered at pixel k , 

and ( ) ( )NN ji YY   denotes the convolution operation of ( )N iY  and ( )N jY . 

Table 3. Running time (in seconds) of different methods. 

Method NLM TV NLM-GLD Proposed method 

Time (s) 92.87 15.04 56.26 22.03 

5. Discussion 

Although similar ideas are adopted in our paper and in [22], that is, a large search window could 

be beneficial in removing noise for pixels in a smooth region, a small search window size being suitable 

for pixels in non-smooth regions, there are several differences between the two methods. In [22], the 

search window size was adaptively selected based on gray level differences. In our method, the pixels 

are classified into several regions according to the K-means algorithm. In reference [22], the searching 

window is square for each pixel, and all pixels in the searching window are involved in the calculation 

of weight coefficients. However, in our method, in the non-smooth regions, the non-local similar pixels 

in the searching window are filtered again based on edge information. Only pixels along with the edge 

are used to calculate the weight coefficients. It is beneficial for protecting the edge details in the image. 

Moreover, the smoothing parameters for denoising are adaptively changed according to the noise 

intensity in the LDCT images. From the experimental results, we can see that our method outperforms 

the method in [22]. 

6. Conclusions 

In this paper, we proposed a region-adaptive NLM denoising method for LDCT images. In the 

proposed method, the size of the searching window and block size were adaptively selected for 

different regions based on pixel classification results. For non-edge regions, a large search window 

and block size were used for better denoising. For edge-included regions, a small search window 

and block size were used for edge protection. Further, we filtered the pixels in the search window 

based on pixel classification results, removing pixels of different categories and retaining pixels of 

the same category. Moreover, the filter parameter was adjusted adaptively based on the severity of 

the noise, by means of IFD. Overall, through all of the above efforts, denoising performance was 

improved. Experiments on the Shepp-Logan phantom showed that the proposed method was 

effective, outperforming several related denoising methods. The main limitation is that the 

parameters in our method are not all decided automatically. For example, the grouping number K in 

the edge extraction stage is set empirically according to the LDCT images. Although the running 

time has been reduced greatly in our method, there is still a gap for real-time applications. In the 

future works, automatic adaptive parameters and multiscale characteristic will be studied to combine 

with our method to further improve denoising performance. The running time can be further 

improved by optimizing the code structure. 
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