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Abstract: As a key issue in orchestrating various biological processes and functions, protein post-
translational modification (PTM) occurs widely in the mechanism of protein’s function of animals and 
plants. Glutarylation is a type of protein-translational modification that occurs at active ε-amino groups 
of specific lysine residues in proteins, which is associated with various human diseases, including 
diabetes, cancer, and glutaric aciduria type I. Therefore, the issue of prediction for glutarylation sites 
is particularly important. This study developed a brand-new deep learning-based prediction model for 
glutarylation sites named DeepDN_iGlu via adopting attention residual learning method and DenseNet. 
The focal loss function is utilized in this study in place of the traditional cross-entropy loss function to 
address the issue of a substantial imbalance in the number of positive and negative samples. It can be 
noted that DeepDN_iGlu based on the deep learning model offers a greater potential for the 
glutarylation site prediction after employing the straightforward one hot encoding method, with 
Sensitivity (Sn), Specificity (Sp), Accuracy (ACC), Mathews Correlation Coefficient (MCC), and Area 
Under Curve (AUC) of 89.29%, 61.97%, 65.15%, 0.33 and 0.80 accordingly on the independent test 
set. To the best of the authors’ knowledge, this is the first time that DenseNet has been used for the 
prediction of glutarylation sites. DeepDN_iGlu has been deployed as a web server 
(https://bioinfo.wugenqiang.top/~smw/DeepDN_iGlu/) that is available to make glutarylation site 
prediction data more accessible. 

Keywords: post-translational modification; glutarylation site prediction; DenseNet; attention residual 
learning; focal loss function 
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1. Introduction  

Cells require adaptive strategies to maintain metabolic homeostasis, and post-translational 
modifications (PTMs) are one of the known adaptive mechanisms [1−3]. Post-translational 
modifications refers to the covalent addition of certain functional groups to a protein after the 
translation process [4]. These modifications are critical to functional proteomic because they regulate 
activity, localization, and interaction with other cellular molecules such as proteins, nucleic acids, 
lipids and cofactors. Cognition and identification of PTM sites can be of direct correlation to cellular 
processes, including protein degradation, subcellular localization [5] and cellular signaling events [6]. 
Glutarylation, one of the PTM which occur at active ε-amino groups of specific lysine residues in 
proteins, was first experimentally identified by Tan et al. [3] in 2014. The study of Tan’s group, which 
combined chemical and biochemical methods, shows that recognizing and understanding glutarylation 
sites is vital to scientific investigations in many biological processes, such as metabolic processes and 
mitochondrial functions. Due to the shortcomings of the labor-intensive and time-consuming of the 
traditional biological sequencing techniques, convenient and available computational methods are 
required to reduce the cost of obtaining biological information. The use of computational methods to 
predict various PTM sites led to the creation of a number of matching predictors that provide novel 
ideas for the identification of PTM sites, including CarbonylDB [7], SulSite-GTB [8], Mal-Prec [9], 
iDPGK [10], DeepPPSite [11] and DeepSuccinylSite [12]. 

Although glutarylation is a PTM reported lately, there are already several prediction tools for 
glutarylation, and the predictor based on traditional machine learning model first appeared. SVM 
algorithm seems to be quite popular among researchers in 2018. Since Ju and He [13] proposed the 
first predictor for glutarylation sites based on a biased support vector machine algorithm, Xu et al. [14] 
and Huang et al. [15] also successively built iGlu-Lys and MDDGlutar predictors based on SVM 
algorithm, and both have imbalanced datasets, especially the iGlu-Lys predictor with PSPM feature 
encoding technique achieved MCCs (Mathews Correlation Coefficients) of 0.5098 and 0.5213 for 
the 10-fold cross-validation and independent testing, respectively. 

The key and challenging step in building predictors of PTM sites is the feature engineering. 
Whether the manually extracting features from existing web applications [16] or using  the complex 
and varied feature encoding methods [17], as well as the feature selection [18] when the feature 
dimension is large, this step involves how to effectively provide reliable features for the model while 
minimizing the complexity of the model computation. 

The ratio of non-glutarylation sites to glutarylation sites always surpasses 2:1 and often even 5:1 
in the natural environment, as in the case of other PTMs, such as succinylation [19]. To address the 
severe bias problem of traditional machine learning models [20] caused by the imbalance of positive 
and negative samples, it is common approach to balance the data before feeding them into the model [21], 
including up-sampling (increasing minority class samples), down-sampling (decreasing majority class 
samples) and hybrid-sampling (increasing minority class samples while decreasing majority class 
samples), which results in an excellent performance for traditional machine learning models. For 
instance, Ju and Wang [22] in 2020 applied the Positive-Unlabeled Learning approach to build a 
predictor of glutarylation called PUL-GLU, which is essentially down-sampling. Compared to the 
MCC of 0.54 at 10-fold cross-validation, it decreased by about half on the independent test set, 
indicating that the generalization ability of the model is still challenging. 

With recent rise of deep learning algorithms, the problem above has been solved to a certain extent. 
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Deep learning is a sub-discipline of machine learning, which is based on artificial neural network and 
has demonstrated splendid performance in proteomics, for instance in retention time prediction, 
MS/MS spectrum prediction, de novo peptide sequencing, major histocompatibility complex-peptide 
binding prediction, and protein structure prediction [23,24]. Automatic feature extraction is a 
significant advantage of the deep learning-based method, comparing with the traditional machine 
learning-based method. 

Benefit from the ease of extracting data representation, glutarylation predictors based on deep 
learning algorithms have emerged. To the best of our knowledge, there are two deep learning-based 
predictors have been proposed recently. Sheraz Naseer et al. [25] employed a series deep models and 
combined with embedding method for feature extraction, which eventually demonstrated an 
outstanding score of 0.94 in terms of accuracy. LSTM and its derived deep networks were applied by 
Liu et al. [26] in their predictor named DNN-E to improve protein sequence representation and obtain 
a great performance with accuracy, specificity, sensitivity, and correlation coefficient of 0.79, 0.89, 0.59, 
and 0.51, respectively, which suggests that there should be a huge potential for deep learning 
techniques in the field of glutarylation sites prediction. 

 

Figure 1. The overall flow chart of DeepDN_iGlu. 
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In this study, we propose a novel deep learning-based prediction model DeepDN_iGlu to meet 
the current demand in the task of recognizing the glutarylation site. The overall flow chart is shown in 
Figure 1. The data collecting and encoding procedure, which is ultimately just a straightforward one-
hot encoding method is depicted in the figure’s top half. Then the core network architecture of this 
study is depicted in the middle of the figure. It consists of 4 dense blocks with the same structure (a 4-
layer dense block with a growth rate of k = 32), 3 transitions layers between them (all consist of an 
ELU, a 1 × 1 one-dimensional convolution (Conv 1D) and a 2 × 2 average pooling), a layer of SERNet, 
and a sigmoid classifier to produce the output findings. Finally, the specific evaluation performance 
will be presented in Section 3. 

2. Materials and methods 

2.1. Benchmark dataset 

The previous study by Ju and He [13] served as the source for the benchmark data in this work. 
To increase the credibility of the data, they extracted 211 proteins with glutarylation sites from the 
PLDM [27] database and used the CD-HIT [28,29] tool to eliminate proteins with a similarity of more 
than 40%. In this study, 187 proteins with 646 glutarylation sites were the end result. 167 proteins, 
which contained 590 glutarylation sites and 3498 non-glutarylation lysine sites, were employed as the 
source of the training set. The remaining 20 proteins, which contained 56 glutarylation sites and 428 
non-glutarylation lysine sites, were then randomly chosen as the independent test set. Then, applying 
Chou’s peptide cleavage method [30], each amino acid sequence that may contain k-glu is represented 
as Eq (1). 

 𝑓ఋሺ𝐾ሻ ൌ 𝐴ିఋ𝐴ିሺఋିଵሻ ⋯ 𝐴ିଶ𝐴ିଵ𝐾𝐴ାଵ𝐴ାଶ ⋯ 𝐴ାሺఋିଵሻ𝐴ାఋ (1) 

where K stands for the central lysine residue, and A for the amino acid residue right next to K. The 
distance between each amino acid residue and the central lysine residue K is shown by the subscript. 
The distance is 1 if A is adjacent to the central lysine residue K, 2 if A is separated from it by an amino 
acid residue, and so on. The subscript’s positive sign (+) denotes a position downstream of the central 
lysine residue K, whereas the subscript’s negative sign (–) denotes a position upstream of K. 𝛿 is the 
value of the farthest distance from the central lysine K.  

The experimental results, according to Ju’s article, are better when 𝛿 = 17, which means that the 
amino acid sequence length L (also known as window size), which was used in this investigation, 
is 17 × 2 + 1 = 35. It is worth noting that amino acid sequence complementation was carried out using 
unknown amino acid X in cases where the central lysine residue K had less than 17 amino acid residues 
on either end to guarantee that all amino acid sequences were the same length for subsequent tests. We 
obtained a total of 3988 amino acid sequences after cutting the 187 chosen peptides according to the 
aforementioned rules, of which the amino acid sequences whose central lysine has been confirmed by 
prior experiments to be a glutarylation site were identified as positive samples and the remaining amino 
acid sequences were identified as negative samples. Table 1 displays the benchmark dataset’s specifics. 
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Table 1. The specifics of the benchmark dataset. 

Original dataset Number of proteins Positive site Negative site 
Training dataset 167 590 3498 
Testing dataset 20 56 428 

2.2. Feature extraction methods 

The appropriate features of protein sequences play very important roles in the prediction of PTM 
sites. In this paper, three candidate coding methods are used: one hot, EAAC and K-Spaced. It should 
be noted that the value of the second dimension must be set to 21 in order to all three encoding methods 
to be combined. In this paper, an amino acid sequence after one hot encoding, EAAC encoding and K-
spaced encoding respectively all end up as two-dimensional matrices with sizes of 35 × 21, 31 × 21 
and 210 × 21 respectively, keeping the size of the second dimension as 21 (20 amino acids plus an 
unknown amino acid X), then we can concatenate the matrices by rows. For three matrices, then we 
can end up with (35 + 31 + 210) × 21 = 276 × 21 input matrices, which is the final encoding matrix 
after the fusion of the three coding methods. 

2.2.1. One hot encoding 

One hot encoding is a common coding method in feature engineering, which is favored by 
researchers for its unique differentiated encoding as well as its simplicity, speed and convenience. First, 
the amino acids are arranged alphabetically and labeled starting with 0 in one hot encoding. Given that 
there are 20 amino acid species and an unknown amino acid X is added at the end, the amino acids are 
labeled as “0, 1, 2, 3, 4, 5, 6, 7, …, 20” respectively in alphabetical order 
“ACDEFGHIKLMNPQRSTVWYX”. Second, each amino acid was coded separately, and the length 
of the encoding sequences was the total number of amino acids (20 amino acids plus one unknown 
amino acid X), and the coding elements were 0 and 1, where the position corresponding to the amino 
acid label was coded as 1 and the remaining positions were coded as 0. For example, amino acid A is 
coded as (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) amino acid C is coded as (0, 1, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) and so on. 

Therefore, in this study, an amino acid sequence of length L = 35, is encoded as a 35 × 21 two-
dimensional matrix with elements 0 and 1. 

2.2.2. EAAC encoding 

EAAC is a variation of AAC that treats the full amino acid sequence as a sliding window that 
may be adjusted in size rather than counting the frequency of occurrence of each individual amino acid 
within the entire amino acid sequence. For an amino acid sequence, EAAC is encoded in the following 
specific way. 

1) First, set the window size (windows), such as windows = 5, which means that 5 consecutive 
amino acids are selected each time as the basis for calculating the frequency of each amino acid 
(including a dummy residue X), which is recorded as the set S1. 

2) Calculate the frequency of each amino acid in S1, and the sum of the frequencies of all amino 
acids in S1 is 1. 
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3) Slide the window backward to Step 1). 
4) Repeat Steps 2) and 3) until the last 5 amino acids in the amino acid sequence are boxed. 
In this paper, windows = 5, then an amino acid sequence of length 35 (L = 35) is encoded as a 

two-dimensional matrix with dimensions (35 – 5 + 1) × 21 = 31 × 21. It is worth noting that EAAC 
encoding degenerates into AAC encoding when windows = L = 35, however when windows = 1, it 
produces the same output as one hot encoding. 

2.2.3. K-spaced encoding 

In contrast to the encoding approach that focuses only on individual amino acids, K-spaced 
encoding turns its attention to amino acid pairs. This encoding approach extracts the feature 
information implied by amino acid sequences from another perspective, taking into account the 
significance of amino acid pairs in feature selection. The steps for K-spaced encoding are as follows. 

1) First, the maximum interval k_max of amino acid pairs is specified, such as k_max = 2, which 
means that the amino acid pair interval k is taken as 0, 1, 2, respectively. The distance between two 
amino acids (designated as A1 and A2, respectively) that make up an amino acid pair in an amino acid 
sequence is indicated by the amino acid interval. For example, if k = 0, it means that A1 and A2 are 
adjacent to each other in the amino acid sequence (interval is 0). The sets S1, S2, and S3 are used to 
denote the cases of all amino acid pairings that may be derived from an amino acid sequence for k = 0, 1 
and 2, respectively. 

2) Calculate the frequencies of all possible amino acid pairs (21 × 21 species) occurring in S1, S2 
and S3, respectively, and the sum of the frequencies of all amino acid pairs is 1. 

In this study, we use k_max = 9 and K-spaced encoding to create a two-dimensional matrix with 
a dimension of 21 × (9 + 1) 21 × = 210 × 21 using an amino acid sequence of length L = 35. 

2.3. Classification model 

The goodness of a classification model directly determines the accuracy of the classification 
results. In this paper, we adopt DenseNet, which has recently made great achievements in the field of 
deep learning. To the best of the author’s knowledge, this is the first application of DenseNet to the 
prediction of glutarylation sites, although there have been some related studies on the prediction of 
other PTM sites, such as succinylation [31] and acetylation [32]. The overall structure of the model is 
shown in Figure 1, where ‘dense block × 4 and transition × 3’ means that there are 4 structurally 
identical dense blocks (all consist of a 4-layer dense blocks with growth rate = 32) and three 
intervening transition layers (all consist of an ELU, a 1 × 1 Conv 1D and a 2 × 2 average pooling) here. 
Each sequence of amino acids is transformed into a two-dimensional matrix after simple feature 
encoding, which is used as the input matrix X of the deep learning network. The input matrix X retains 
the original information while extracting the deep features after multiple layers of stacked dense 
convolutional blocks. Then, the stacked dense convolutional blocks were followed by SERNet which 
incorporating the attention residual learning method to maximize the retention of the original 
information and extract the final features. Finally, a sigmoid function was used to obtain the 
classification results. 
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2.3.1. DenseNet 

DenseNet [33] proposed a radical dense connectivity mechanism that interconnects all layers, 
specifically noting that a later layer will preserve the information of all the layers before it. The reuse 
of feature maps from different layers enhances the propagation of features and improves the feature 
extraction capability of the network, while reducing the parameters for network training. The DenseNet 
connectivity mechanism is illustrated by the network architecture in Figure 1. 

The primary module of DenseNet that implements the dense connectivity method is called dense 
block. Each layer in a dense block serves as the input for the subsequent layer and is connected to all 
the layers that came before it in the channel dimension. For a dense block with L layers, the total 
number of connections is L (L + 1)/2. The connections are highly dense, and the output of the Lth layer 
of the network is formulated as Eq (2). 

 𝑥௅ ൌ  𝐻௅ሺሾ𝑥଴, 𝑥ଵ, … , 𝑥௅ିଵሿሻ (2) 

where 𝐻௅ሺ൉ሻ  represents the non-linear transformation function (non-linear transformation), it is a 
combined layer, which may contain, for example, BN, ReLU, convolution and other layers. In this 
research, ELU, and Conv 1D are employed together, as shown in Figure 1. Four dense blocks with the 
same structure were employed (a 4-layer dense block with a growth rate of k = 32). 

The transition layer is yet another vital component of DenseNet. The transition layer connects 
two adjacent dense blocks and reduces the size of the feature map. In this paper, a total of 3 (4 – 1 = 
3) transition layers are required as 4 dense blocks are finally selected. The transition layer consists of 
an ELU, a 1 × 1 Conv 1D and a 2 × 2 average pooling. The transition layer can act as a compression 
model. Assuming that the number of feature-maps in the dense block before transition is m, the 
transition layer can generate 𝜃 ൈ 𝑚 feature-maps, where 𝜃 (0 ൏ 𝜃 ൑ 1) is the compression rate. When 
𝜃 ൌ 1, there is no compression and no change in the number of feature-maps following the transition 
layer. In this study, 𝜃 ൌ 0.5, meaning that the number of feature-maps drops to half from its initial 
value following the transition layer. 

2.3.2. SENet combined with attention residual learning 

In this work, we suggest a SENet incorporating the attention residual learning method, which is 
explained as follows: The standard procedure in SENet is to first perform global average pooling in 
the spatial dimension (which is called Squeeze), after which channel attention is learned through two 
fully connected layers, normalized with sigmoid (which is called Excitation), and then multiplied with 
the original matrix A to produce the feature matrix B after weighting in the spatial dimension. We 
suggest incorporating attention residual learning into SENet in this paper. The specific method, which 
in theory is based on the Shortcut Connection concept of ResNet, is to add the newly acquired matrix 
B to the original matrix A following excitation, so we call it SERNet for short, as shown in the SERNet 
section of Network Architectures of Figure 1. This can meet the goals of both acquiring the spatial 
dimensional weighting and maintaining the original matrix information. In the experiments, the two 
fully connected layers in Excitation have an output dimension of 96 and 6, and the activation functions 
are ReLU and sigmoid, respectively. 
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2.3.3. Focal loss function 

The focal loss function is employed in this study to make up for the shortcomings of the traditional 
cross-entropy loss function, which pays insufficient attention to minority samples due to the significant 
imbalance in the number of glutarylation sites and non-glutarylation sites samples. 

The focal loss function was proposed by Lin et al. [34] to address the problem of model 
performance degradation caused by category imbalance in sense object detection, which is also a 
common problem in PTM sites prediction. Therefore, the focal loss function is introduced in this paper 
to give a new idea to the data imbalance problem arising in the PTM sites prediction task. The focal 
loss formulation is shown in Eqs (3) and (4). 

 𝑝௧ = ൜
𝑝,                        if 𝑦 ൌ 1

1 െ 𝑝,                   otherwise (3) 

 𝐹𝐿(𝑝௧) ൌ െ𝛼௧(1 െ 𝑝௧)ఊ log (𝑝௧) (4) 

where y denotes the sample label, 𝑝  (𝑝𝜖ሾ0, 1ሿ ) denotes the probability that the predicted sample 
belongs to 1, and 𝛼௧ ሺ𝛼௧𝜖ሾ0, 1ሿሻ in Eq (4) is called the weighting factor, controlling the shared weight 
of positive and negative samples on the total loss, and its smaller value represents the lower weight of 
negative samples. In this paper, 𝛼௧ ൌ 0.8, 𝛾 ൌ 2 can achieve the better results. 

2.3.4. Performance evaluation 

Scientific and general metrics are the basis for measuring the performance of different models. 
The prediction problem in this study can be thought of as a dichotomous classification problem in 
machine learning, and the confusion matrix is the commonly used evaluation metric for classification 
tasks in this field. In this paper, the four metrics in the confusion matrix are used to evaluate the 
performance of the classification model, and the specific metrics [35,36] are shown in Eq (5). 

 

⎩
⎪⎪
⎨

⎪⎪
⎧  𝑅𝑒, 𝑆𝑛 ൌ ்௉

்௉ାிே

  𝑆𝑝 ൌ ்ே

்ேାி௉

  𝐴𝑐𝑐 ൌ ்௉ା்ே

்௉ା்ேାி௉ାிே

  𝑀𝐶𝐶 ൌ ்௉ൈ்ேିி௉ൈிே

ඥሺ்௉ାி௉ሻൈሺ்௉ାிேሻൈሺ்ேାி௉ሻൈሺ்ேାிேሻ

 (5) 

where TP, TN, FP and FN are abbreviations of True positive, True negative, False positive, and False 
negative, respectively. TP and TN stand for the number of samples in positive and negative categories 
that were properly predicted, respectively, whereas FP and FN stand for the number of samples in 
positive and negative categories that were mistakenly predicted, respectively. Additionally, the receiver 
operating characteristic (ROC) curve [37]—which is also employed as one of the model evaluation 
metrics in this paper—is an excellent technique to directly illustrate the prediction outcomes. 

In this work, the 10-fold CV is used to evaluate model performance and make prediction findings 
more stable for comparison with other predictors. The 10-fold CV will be trained ten times, and each 
time the model is trained, the input data is divided into ten sets (D1, D2, ..., D10). The set D1 is used 
for model performance testing, and the other nine sets (D2–D10) are used for model training. The 
process repeats itself until each subset has served as a testing data set a single time. 
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3. Results and discussion 

In this section, comparison studies of the feature encoding methods and the functional modules 
used for the model (such as the focal loss function) are discussed. It is important to note that the models 
used in the experiments were all those described in Section 2.3 and that the functional module 
comparison experiments were carried out so that just one condition was altered while the others were 
left unchanged. Specifically, the model in Experiment 3.1 employed four dense blocks of the same 
structure and the focal loss function as the loss function. The number of dense block layers was 4 when 
the loss function comparison experiments were conducted, and the focal loss function was used when 
the comparison experiments with different numbers of dense block layers were undertaken. 

3.1. Ablation experiments of feature extraction methods 

We performed ablation experiments to determine which of the three feature encoding methods—
or which combination of the three—is best suited as input to this model. The experimental results are 
displayed in Table 2, with the best results denoted in bold. All results are based on 10-fold cross-
validation on the training set. The first three rows of Table 2 determine which feature encoding method 
is chosen for each experiment. If there is a mark “√” in the corresponding row of each encoding method, 
it indicates that the method is chosen for this experiment; if there is not, it indicates that method is not 
chosen. The remaining 7 columns in Table 2 except the first column represent 7 experiments (𝐶ଷ

ଵ ൅
𝐶ଷ

ଶ ൅ 𝐶ଷ
ଷ ൌ 7). The combination approach between the encoding techniques has been discussed in 

Section 2.2. 
Table 2 shows that when used as an input to a deep learning model, one hot encoding alone offers 

unparalleled advantages over other encoding methods, which can be easily seen from the fact that its 
evaluation metrics are higher than those of other individual or combined encoding methods when 
used alone. 

In this regard, we have reason to believe that simple but highly discriminative encoding is more 
suitable as input for deep learning models that are very powerful in automatically extracting deep 
features, such as the one hot encoding used in this experiment. This finding might offer suggestions 
for developing deep learning-based predictions in the future. The one hot encoding is easily accessible 
from a convenience standpoint, which makes it easier for researchers to focus mainly on the 
construction of the model. 

Table 2. Ablation experiments of the feature encoding methods. 

One hot √  √ √  √
EAAC  √  √ √ √
K-Spaced  √ √ √ √
Sn 0.89 0.84 0.82 0.65 0.66 0.68 0.65
Sp 0.62 0.58 0.43 0.65 0.62 0.51 0.65
ACC 0.65 0.61 0.47 0.65 0.63 0.54 0.65
MCC 0.33 0.27 0.16 0.22 0.21 0.14 0.22
AUC 0.80 0.75 0.62 0.72 0.71 0.64 0.72
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3.2. Comparison of focal loss function and cross-entropy loss function 

We employed two loss functions in this section to independently predict the glutarylation sites in 
order to verify if the focal loss function is effective for the imbalanced data. The results are shown in 
Figure 2. The experimental findings demonstrated that the focal loss function is more sensitive to 
minority class samples than the cross-entropy loss. After employing the focal loss function, both Sn 
and MCC improved, reaching 0.78 and 0.31, respectively. 

 

Figure 2. Comparison of focal loss function and cross-entropy loss function. 

3.3. Comparison of the number of dense blocks 

 

Figure 3. Comparison of the number of dense blocks. 
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This study evaluates the model performance under various numbers of dense blocks since the 
number of dense blocks in DenseNet is also a significant factor impacting the model performance. In 
Figure 3, it is intuitively clear that when there are four dense blocks stacked together, the Sp, ACC, 
and MCC of the model are greater than those in the other scenarios. As a result, in this paper, four 
dense blocks are chosen to build DenseNet. 

3.4. Comparison with existing predictors 

Given the availability of existing predictors and the rigorousness of the comparison, we chose 
two predictors, PUL-GLU and GlutPred, which use the same dataset as this paper, for comparison. 
Table 3 shows the 10-fold cross-validation performance of DeepDN_iGlu and other predictors. It is 
worth noting that PUL-GLU screens the training samples (removing some of the negative samples), 
resulting in a lower imbalance ratio. Thus, our study focuses on a comparison with GlutPred to discuss 
the predictive performance of the model while maintaining the original ratio of positive and 
negative samples. 

According to Table 3, the Sn of DeepDN_iGlu is typically 9% higher than the other two predictors 
at the cost of both Sp and ACC falling. MCC is a measure of great importance to the imbalanced data. 
As can be observed, even though Sp and ACC reduced, MCC and AUC were essentially the same as 
GlutPred, proving that the predictor proposed in this research, as opposed to the other two predictors, 
concentrates more on the accurate distinction of samples of minority category (samples with 
glutarylation site). 

Table 3. 10-fold cross-validation performance of DeepDN_iGlu and other predictors. 

Predictor Sn (%) Sp (%) ACC (%) MCC AUC 

PUL-GLU 
GlutPred 

66.56 ± 0.73 
64.80 ± 0.99 

86.43 ± 0.28 
76.60 ± 0.28 

79.88 ± 0.29 
74.90 ± 0.32 

0.5384 ± 0.069 
0.3194 ± 0.087 

- 
78.06 ± 0.29 

DeepDN-iGlu 79.45 ± 8.29 63.74 ± 4.44 66.00 ± 3.61 0.3080 ± 0.068 77.25 ± 0.04 

The prediction performance of the three predictors on the same independent test set is shown in 
Table 4. With Sn at 89.29%, 27.5% higher than GlutPred, and MCC at 0.3309, both significantly higher 
than the other two predictors. AUC also outperformed GlutPred by roughly 3%. Figure 4 provides a 
direct-viewing comparison of the two predictors. This shows that the model put forward in this research 
has a stronger capacity for generalization and better corroborates the finding seen on the 10-fold CV. 

Table 4. Comparison with the other predictors on the independent test dataset. 

Predictor Sn (%) Sp (%) ACC (%) MCC AUC 

PUL-GLU 
GlutPred 

58.93 
51.79 

78.97 
78.50 

76.65 
75.41 

0.2785 
0.2238 

- 
0.7663 

DeepDN-iGlu 89.29 61.97 65.15 0.3309 0.8087 
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Figure 4. Comparison with GlutPred on the independent test dataset. 

3.5. An available web server for DeepDN_iGlu 

 

Figure 5. Screenshot of DeepDN_iGlu web server. 
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To facilitate the access to glutarylation site prediction data, DeepDN_iGlu has been implemented 
as an available web server (https://bioinfo.wugenqiang.top/~smw/DeepDN_iGlu/). A screenshot of the 
DeepDN_iGlu server’s interface is shown in Figure 5. The DeepDN_iGlu server is primarily composed 
of three sections: “Introduction”, “Enter query sequences” and “Job Submission”. “Introduction” 
provides a description of the composition of DeepDN_iGlu, functions and usage. To keep the main 
interface straightforward, users can click the “More info” button to acquire more detailed information 
on how to use it. In order to produce a prediction, the user can enter one or more protein sequences in 
FASTA format using “Enter query sequences” and then make a prediction by clicking the “submit” 
button. The user can view the specific requirements for the input sequence by selecting the “example” 
button. With “job submission”, users have an easy way to obtain a lot of prediction data; all they need 
to do is enter their email address, project name, and forecast file in the appropriate areas, press the 
“submit” button, and they will acquire the prediction results file in their email. 

4. Conclusions 

In this study, we developed a brand-new deep learning-based prediction model for glutarylation 
sites named DeepDN_iGlu adopting attention residual learning method and DenseNet. According to 
the experimental results and the various related evaluation data, DeepDN_iGlu has obtained a satisfactory 
prediction performance with Sn, Sp, ACC, MCC and AUC of 79.45%, 63.74%, 66.00%, 0.3080 and 0.77 
at 10-fold cross-validation, while 89.29%, 61.97%, 65.15%, 0.33 and 0.80 accordingly on the 
independent test set. Additionally, the MCC of 0.33 on the independent test set shows that 
DeepDN_iGlu has better generalization ability. Another key benefit of DeepDN_iGlu is the feature 
encoding, which is quite straightforward and only requires one-hot encoding. Finally, a user-friendly 
web server was designed to make it convenient for researchers to obtain data on lysine glutarylation 
sites prediction. 

To a certain extent, the benefits of deep learning for a big number of data cannot be sufficiently 
utilized due to the little amount of data in the present glutarylation sites. The training samples are 
further reduced in the 10-fold cross-validation process, so it causes the model to be slightly less 
effective for the 10-fold cross-validation than on the independent test set, which will be a problem we 
need to solve in the future. But as glutarylation research advances, the contradiction of sparse data will 
gradually disappear, opening up more possibilities for prediction models based on deep learning of 
glutarylation sites. 
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