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Abstract: In this study, we propose a Caputo-based fractional compartmental model for the dynamics
of the novel COVID-19. The dynamical attitude and numerical simulations of the proposed fractional
model are observed. We find the basic reproduction number using the next-generation matrix. The
existence and uniqueness of the solutions of the model are investigated. Furthermore, we analyze
the stability of the model in the context of Ulam-Hyers stability criteria. The effective numerical
scheme called the fractional Euler method has been employed to analyze the approximate solution and
dynamical behavior of the model under consideration. Finally, numerical simulations show that we
obtain an effective combination of theoretical and numerical results. The numerical results indicate
that the infected curve predicted by this model is in good agreement with the real data of COVID-19
cases.
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1. Introduction

Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus. Most
people infected with the virus will experience mild to moderate respiratory illness and recover without
requiring special treatment. However, some will become seriously ill and require medical attention.
Coronaviruses belong to a large family. They are fatal and live in the throat cells. People carrying this
virus may not be symptomatic for several days. There are SARS-CoV (the cause of an outbreak of se-
vere acute respiratory syndrome in 2002), MERS-CoV (the cause of middle east respiratory syndrome
in 2012), and SARS-CoV-2, which is a novel beta coronavirus that is the cause of coronavirus disease
2019 (COVID-19). These three coronaviruses cause the most severe and fatal respiratory infections in
humans than other coronaviruses and are responsible for significant outbreaks of deadly pneumonia in
the 21st century. It is well known that COVID-19 is transmitted by means of either direct or indirect
contact, droplet spray such as sneezing in short-range transmission and airborne transmission such as
aerosol in long-range transmission [1]. It is important to practice respiratory etiquette, for example by
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coughing into a flexed elbow, and to stay home and self-isolate until you recover if you feel unwell.

On October 2, 2022 (BSS-Bangladesh Songbad Sangstha, National News Agency Of Bangladesh)
reported two COVID-19 deaths with 696 coronavirus-positive cases as 5801 samples were tested. Ac-
cording to WHO reports, Bangladesh reached 2,026,908 coronavirus cases, 29,371 deaths, 1,966,645
recovered, 30,892 infected/active cases, 696 daily cases, 29,371 total deaths, and 2 new deaths as of
October 3, 2022 [2].

Infectious outbreaks have a critical effect on health and finance. Therefore, it is important to study
the dynamics of transmission. According to the Institute of Epidemiology Disease Control and Re-
search (IEDCR), the first three coronavirus cases were detected among approximately 111 tests on
March 8, 2020, which included two men and one woman aged between 20 and 35 years. On March 18,
Bangladesh recorded its first death due to COVID-19. Authorities tried to implement protective mea-
sures to reduce the spread of the COVID-19 outbreak in the country. The measures included wearing
surgical masks, cleaning hands thoroughly, covering the nose and mouth when coughing and sneezing,
increasing consciousness, lockdowns in several areas, home quarantine, social distancing, and local or
international flight restrictions.

In Bangladesh, from January 3, 2020, to 6.04 pm CEST, September 1, 2022, there have been
2,011,946 confirmed cases of COVID-19 including 29,323 deaths, with 1198 new cases and 3 new
deaths and globally 600,555,262 confirmed cases including 6,472,914 deaths, were reported to WHO
[3]. To date, 176 countries, including Bangladesh, have reported 537,808 confirmed cases of COVID-
19, leading to 24,127 deaths worldwide as of March 27 [4]. The first COVID-19 case was identified in
Bangladesh on March 7, 2020. Since then, five deaths out of 48 confirmed cases have been reported
in Bangladesh as of March 27, 2020 [5]. In this stage, it is crucial to have a perfect prediction of new
cases due to COVID-19 for hospitals to be prepared and administration to ensure a proper strategy in
advance. Furthermore, an acute course of action is necessary for the country to handle the situation.
The government can control the outbreak if a movement control order (MCO) is issued.

The goal of the present paper is two folds, first, we want to establish both the mathematical and epi-
demiological well-posedness of the integer-order model and employ an approximate analytical tech-
nique to obtain long-term dynamics of the disease. Second, we modify and extend the existing epi-
demic model using a dimensionally consistent Caputo derivative operator which has been extensively
demonstrated in the literature to be one of the most useful and powerful derivative operators to describe
more efficiently memory effect dynamics that exist in real-world phenomena.

This study aims to investigate the fractional-order COVID-19 epidemic model using actual numer-
ical data from a case study in Bangladesh and explore the role of time using the Caputo fractional
derivative. All necessary graphical simulations were performed to determine the characteristics of the
acquired solutions in the Caputo fractional-order derivative method. We analyzed the role of time in
the coronavirus epidemic using graphical simulations for different fractional orders and actual values
of time.

This paper is structured as follows: Section 1, the introduction; Section 2, the preliminary defini-
tions and notations; Section 3, the model formulation, the qualitative properties of the solution, the
positivity and existence of unique solutions, the equilibria and basic reproduction number; Section 4,
the stability analysis; Sections 5, the sensitivity analysis; Section 6, the numerical simulations; Section
7, the discussion and conclusion.
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2. Preliminaries and notations

Fractional calculus has different well-known definitions and results that are relevant to the current
article. The most common are the Riemann-Liouville type and Caputo-type fractional derivatives,
which are more practical and essential for real applications and theory. For details and appropriate
studies, we refer to [6–8].

Definition 2.1. ( [9]) Suppose α > 0 and g ∈ L1([0, b],R) where [0, b] ⊂ R+. The fractional integral
of order α of function g in the sense of Riemann-Liouville is defined as follows:

Iα0+g(t) =
1

Γ(α)

t∫
0

(t − τ)α−1g(τ)dτ, t > 0,

where Γ(·) is the classical gamma function defined by

Γ(α) =

∞∫
0

τα−1e−τdτ.

Definition 2.2. ( [9]) Let n − 1 < ν < n, n ∈ N, and g ∈ Cn[0, b]. The Caputo fractional derivative of
order α for a function g is defined as

CDα
0+g(t) = In−αDng(t) =

1
Γ(n − α)

t∫
0

(t − τ)n−α−1g(n)(τ)dτ, t > 0.

where n − 1 < α < n, n ∈ N, and [α] represent the smallest integer that is less or equal to α.
Let η1, η2 be two positive numbers, then the Mittag-Leffler function is given by

Eη1η2(s) =

k=∞∑
k=o

sk

Γ(η1k + η2)
. (2.1)

Lemma 2.1. ( [9]) Let Re(α) > 0,n = [Re(α)] + 1, and g ∈ ACn(0, b). Then

(Jα0+
CDα

0+g)(t) = g(t) −
m∑

k=1

gk(0)
k!

tk.

In particular, if 0 < α ≤ 1, then (Jα0+
CDα

0+g)(t) = g(t) − g0.

3. Fractional order model

Fractional derivatives are generally believed to model disease epidemics more realistically because
of their capability to capture the memory effect often associated with the human body’s response to
diseases.
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3.1. The model formulation

Herein, we analyze a fractional SAHIAqIqR model consisting of seven compartments. The seven
compartments of that population are S for susceptible, A for exposed but not hospitalized, H for hos-
pitalized, I for infectious, Aq for isolated exposed, Iq for isolated infectious, and R for recovered. The
compartment of people who are not yet infected but can contract the disease are the susceptible individ-
uals (S). The compartment of people who get infected are the exposed but not hospitalized individuals
(A). The compartment of people who are hospitalized after infection are the hospitalized individuals
(H). The compartment of people who can transmit the disease to others are the infected individuals (I).
The compartment of people who are quarantined from the exposed but not hospitalized are the isolated
exposed individuals (Aq). The isolated infectious individuals (Iq) those who are tested positive for the
virus and are quarantined from the rest of the population. Those infected and isolated individuals who
are cured are recovered individuals (R). A flowchart of the spread of COVID-19 is shown in Figure 1.

Figure 1. The SAHIAqIqR model diagram for COVID-19 dynamics.

In this section, we present the fractional model

CDα
0+S (t) = Λα − µαS − βα1 AS − βα2 IS ,

CDα
0+ A(t) = βα1 AS + βα2 IS − (εα1 + εα2 + εα3 )A − δαA − µαA,

CDα
0+ H(t) = εα1 A + γα1 Aq − τ

αH − µαH,
CDα

0+ I(t) = εα3 A − gα1 I − δαI − µαI,
CDα

0+ Aq(t) = δαA − (γα1 + γα2 + γα3 )Aq − µ
αAq,

CDα
0+ Iq(t) = γα3 Aq + δαI − gα2 Iq − µ

αIq,
CDα

0+R(t) = ταH + γα2 Aq + gα1 I + gα2 Iq + εα2 A − µαR.

(3.1)

With initial conditions as follows:

S (0) = S 0 = n1, A(0) = A0 = n2,H(0) = H0 = n3, I(0) = I0 = n4,
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Aq(0) = Aq0 = n5, Iq(0) = Iq0 = n6,R(0) = R0 = n7.

where CDα
t denotes Caputo fractional derivative of order 0 < α ≤ 1 and the total human population

N(t) are divided into seven groups as follows:

N(t) = S (t) + A(t) + H(t) + I(t) + Aq(t) + Iq(t) + R(t).

The different parameters used in this fractional model, along with their values and references, are listed
in Table 1.

Table 1. Description of parametric values for Bangladesh.

Parameter Interpretation Values Reference
β1 transmission rate of A to S 3.13 Assumed
β2 transmission rate of I to S 2.55 Assumed
g1 recovered rate of I 0.23 [10]
g2 recovered rate of Iq 6.6 × 10−6 [Estimated]
ε1 confirmed rate of A 0.037 [10]
ε2 self-recovered rate of A 0.1 Assumed
ε3 clinical rate 0.0974 Assumed
τ rate of recovered hospitalized patients 0.1 Fitted
γ1 confirmed rate of Aq 0.2599 [Estimated]
γ2 self-recovered rate of Aq 0.1 Assumed
γ3 clinical rate 0.0974 Assumed
Λ birth rate 17.71 Fitted
µ death rate 5.54 Fitted
δ quarantine rate 0.6185 [Estimated]

3.2. Qualitative properties of solution

In this section, we examine the mathematical and biological well-posedness of the fractional order
model. In essence, we prove that solution of the fractional model is bounded and remains positive as
long as a positive initial condition is given. Furthermore, we prove the existence and uniqueness of the
solution to the proposed model. The theory of existence and uniqueness of solutions is one of the most
dominant fields in the theory of fractional-order differential equations. In this section, we discuss the
existence and uniqueness of solutions of the proposed model using fixed point theorems. We simplify
the proposed model (3.1) in the following setting:

CDα
0+S (t) = Θ1(t, S , A,H, I, Aq, Iq,R),

CDα
0+ A(t) = Θ2(t, S , A,H, I, Aq, Iq,R),

CDα
0+ H(t) = Θ3(t, S , A,H, I, Aq, Iq,R),

CDα
0+ I(t) = Θ4(t, S , A,H, I, Aq, Iq,R),

CDα
0+ Aq(t) = Θ5(t, S , A,H, I, Aq, Iq,R),

CDα
0+ Iq(t) = Θ6(t, S , A,H, I, Aq, Iq,R),

CDα
0+R(t) = Θ7(t, S , A,H, I, Aq, Iq,R).

(3.2)

Let φ(t) = (S , A,H, I, Aq, Iq,R)T and κ(t, φ(t)) = (Θi)T , i = 1......7 where
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Θ1(t, S , A,H, I, Aq, Iq,R) = Λα − µαS − βα1 AS − βα2 IS ,
Θ2(t, S , A,H, I, Aq, Iq,R) = βα1 AS + βα2 IS − (εα1 + εα2 + εα3 )A − δαA − µαA,
Θ3(t, S , A,H, I, Aq, Iq,R) = εα1 A + γα1 Aq − τ

αH − µαH,
Θ4(t, S , A,H, I, Aq, Iq,R) = εα3 A − gα1 I − δαI − µαI,
Θ5(t, S , A,H, I, Aq, Iq,R) = δαA − (γα1 + γα2 + γα3 )Aq − µ

αAq,

Θ6(t, S , A,H, I, Aq, Iq,R) = γα3 Aq + δαI − gα2 Iq − µ
αIq,

Θ7(t, S , A,H, I, Aq, Iq,R) = ταH + γα2 Aq + gα1 I + gα2 Iq + εα2 A − µαR.

(3.3)

Thus, the proposed model (3.1) takes the form{
CDα

0φ(t) = κ(t, φ(t)), t ∈ J = [0, b], 0 < α ≤ 1,
φ(0) = φ0 ≥ 0.

(3.4)

on condition that 
φ(t) = (S , A,H, I, Aq, Iq,R)T ,

φ(0) = (S 0, A0,H0, I0, Aq0 , Iq0 ,R0)T ,

κ(t, φ(t)) = (Θi(S , A,H, I, Aq, Iq,R))T , i = 1, .....7,
(3.5)

where (·)T represents the transpose operation.

Lemma 3.1. the integral representation of problem (3.4) is given by

φ(t) = φ0 + Jα0+κ(t, φ(t))

= φ0 +
1

Γ(α)

t∫
0

(t − τ)α−1κ(τ, φ(τ))dτ.
(3.6)

Next, we shall analyze model (3.1) through the integral representation above. For that purpose, let
E = C([0, b];R) denote the Banach space of all continuous functions from [0, b] to R endowed with the
norm defined by

||φ||E = sup
t∈J
|φ(t)|,

where

|φ(t)| = |S (t)| + |A(t)| + |H(t)| + |I(t)| + |Aq(t)| + |Iq(t)| + |R(t)|. (3.7)

Note that S , A,H, I, Aq, Iq,R ∈ C([0, b],R). Furthermore, we define the operator P : E→ E by

(Pφ)(t) = φ0 +
1

Γ(α)

t∫
0

(t − τ)α−1κ(τ, φ(τ))dτ. (3.8)

Note that operator P is well defined due to the obvious continuity of κ,
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3.2.1. Positivity and existence of unique solution

Here, we establish existence, uniqueness and uniform stability of solutions. The following prelimi-
nary result is in order.

Theorem 3.1. The closed set

Υ = {(S (t)+A(t)+H(t)+I+Aq(t)+Iq(t)+R(t)) ∈ R7
+ : 0 ≤ S (t)+A(t)+H(t)+I(t)+Aq(t)+Iq(t)+R(t) ≤ P1}

is a positive invariant set for the proposed fractional order system (3.1) To prove that the system of Eq
(3.1) has a non-negative solution, the system of Eq (3.1) implies

C
0 Dα

t S |S =0 = Λα > 0
C
0 Dα

t A|A=0 = βα2 IS ≥ 0,
C
0 Dα

t H|H=0 = εα1 A + γα1 Aq ≥ 0,
C
0 Dα

t I|I=0 = εα3 A ≥ 0,
C
0 Dα

t Aq|Aq=0 = δαA ≥ 0,
C
0 Dα

t Iq|Iq=0 = γα3 Aq + δαI ≥ 0.
C
0 Dα

t Iq|Iq=0 = ταH + γα2 Aq + gα1 I + gα2 Iq + εα2 A ≥ 0.

(3.9)

Thus, the fractional system (3.1) has non-negative solutions. In the end, from the seven equations
of the fractional system (3.1), we obtain

C
0 Dα

t (S (t)+ A(t)+ H(t)+ I(t)+ Aq(t)+ Iq(t)+R(t)) ≤ Λα−Ψ(S (t)+ A(t)+ H(t)+ I(t)+ Aq(t)+ Iq(t)+R(t))
(3.10)

where Ψ = min(Λα, µα). Solving the above inequality we obtain

(S (t) + A(t) + H(t) + I(t) + Aq(t) + Iq(t) + R(t)) ≤ (S (0) + A(0) + H(0) + I(0)

+Aq(0) + Iq(0) + R(0) −
Λα

Ψ
)Eα(−Ψtα) +

Λα

Ψ
.

(3.11)

So by the asymptotic behavior of Mittag-Leffler function [9], we obtain

S (t) + A(t) + H(t) + I(t) + Aq(t) + Iq(t) + R(t) ≤
Λα

Ψ
� P1

Hence, the closed set Υ is a positive invariant region for the proposed fractional-order model (3.1).

Lemma 3.2. Let φ̄ = (S̄ , Ā, H̄, Ī, Āq, Īq, R̄)T . The function κ = (Θi)T defined above satisfies

||κ(t, φ(t)) − κ(t, ¯φ(t))|| ≤ Lκ||φ − φ̄||ε,

for some Lκ > 0.

Proof. From the first component of κ, we observe that

|Θ1(t, φ(t)) − Θ1(t, φ̄(t))| = |βα1 (A(t)S (t) − Ā(t)S̄ (t)) − βα2 (I(t)S (t) − Ī(t)S̄ (t)) − µα(S (t) − S̄ (t))|
≤ βα1 |(A(t)S (t) − Ā(t)S̄ (t))| + βα2 |(I(t)S (t) − Ī(t)S̄ (t))| + µα|(S (t) − S̄ (t))|
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However,
|(A(t)S (t) − Ā(t)S̄ (t))| ≤ f1(t)|S (t) − S̄ (t)| + f2(t)|A(t) − Ā(t)|

|(I(t)S (t) − Ī(t)S̄ (t))| ≤ g1(t)|S (t) − S̄ (t))| + g2(t)|I(t) − Ī(t)|,

where

f1(t) = A + Ā + AS̄ − ĀS , f2(t) = S + S̄ + S Ā − S̄ A, g1(t) = I + Ī + IS̄ − ĪS , g2(t) = S + S̄ + S Ī − S̄ I.

Altogether, we have

|Θ1(t, φ(t)) − Θ1(t, φ̄(t)) ≤ (µα + βα1 f1(t) + βα2g1(t))|S (t) − S̄ (t)|
+βα1 f2(t)|A(t) − Ā(t)| + βα2g2(t)|I(t) − Ī(t)|,

L1(|S (t) − S̄ (t)| + |A(t) − Ā(t)| + |I(t) − Ī(t)|,

where
L1 = µα + maxt∈[0,b](β1 f1(t) + β2g1(t) + β1 f2(t) + β2g2(t)).

In a similar manner, one obtains

|Θ2(t, φ(t)) − Θ2(t, φ̄(t))| ≤ L2(|S (t) − S̄ (t)| + |A(t) − Ā(t)| + |I(t) − Ī(t)|),

where
L2 = εα1 + εα2 + εα3 + δα + µα + maxt∈[0,b]β

α
1 f1(t) + βα2g1(t) + βα1 f2(t) + βα2g2(t).

For the remaining components of κ, it holds

|Θ3(t, φ(t)) − Θ3(t, φ̄(t))| ≤ (L3(|A(t) − Ā(t)| + |H(t) − H̄(t)| + |Aq(t) − Āq(t)|),
|Θ4(t, φ(t)) − Θ4(t, φ̄(t))| ≤ L4(|A(t) − Ā(t)| + |I(t) − Ī(t)|),
|Θ5(t, φ(t)) − Θ5(t, φ̄(t))| ≤ L5(|A(t) − Ā(t)| + |Aq(t) − Āq(t)|),
|Θ6(t, φ(t)) − Θ6(t, φ̄(t))| ≤ L6(|I(t) − Ī(t)| + |Aq(t) − Āq(t)| + |Iq(t) − Īq(t)|),
|Θ7(t, φ(t)) − Θ7(t, φ̄(t))| ≤ L7(|A(t) − Ā(t)| + |H(t) − H̄(t)| + |I(t) − Ī(t)|

+ |Aq(t) − Āq(t)| + |Iq(t) − Īq(t)| + |R(t) − R̄(t)|).

with

L3 = εα1 + γα1 + τα + µα,

L4 = εα3 + gα1 + δα + µα,

L5 = δα + γα1 + γα2 + γα3 + µα,

L6 = γα3 + δα + gα2 + µα,

L7 = τα + γα2 + gα1 + gα2 + εα2 + µα.

Consequently,
||κ(t, φ(t)) − κ(t, ¯φ(t))|| ≤ ||φ(t) − φ̄(t)||ε,

= supt∈[0,b]

7∑
i=1

|Θi(t, φ(t)) − Θi(t, φ̄(t))|,

≤ Lκ(|φ(t) − φ̄(t)||ε,
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where
Lκ = L1 + L2 + L3 + L4 + L5 + L6 + L7.�

Theorem 3.2. Suppose that the function κ ∈ C([J,R]) and maps a bounded subset of J × R7 into
relatively compact subsets of R. In addition, there exists constant Lκ > 0 such that

(A1) |κ(t, φ1(t))− κ(t, φ2(t))| ≤ Lκ|φ1(t)−φ2(t)| for all t ∈ J and each φ1, φ2 ∈ C([J,R]). Then problem
(3.4) which is equivalent to the proposed model (3.1) has a unique solution provided that ΩLκ < 1,
where

Ω =
Λα

Γ(α + 1)
.

Proof. Consider the operator P : E→ E defined by

(Pφ)(t) = φ0 +
1

Γ(α)

t∫
0

(t − τ)α−1κ(τ, φ(τ))dτ. (3.12)

Obviously, the opereator P is well defined and the unique solution of model (3.1) is just the fixed
point of P. Indeed, let us take supt∈J ||κ(t, 0)|| = M1. Thus, it is enough to show that PBκ ⊂ Bκ, where
the set Bκ = φ ∈ E : ||φ|| ≤ κ is closed and convex. Now, for any φ ∈ Bκ, it yields

(Pφ)(t) ≤ |φ0| +
1

Γ(α)

t∫
0

(t − τ)α−1|κ(τ, φ(τ))|dτ

≤ φ0 +
1

Γ(α)

t∫
0

(t − τ)α−1[|κ(τ, φ(τ)) − κ(τ, 0)| + |κ(τ, 0)|]dτ

≤ φ0 +
(Lκκ + M1)

Γ(α)

t∫
0

(t − τ)α−1dτ

≤ φ0 +
(Lκκ + M1)
Γ(α + 1)

bα

≤ φ0 + Ω(Lκκ + M1).

(3.13)

Hence, the results follow. Also, given any φ1, φ2 ∈ E, we get

|(Pφ1)(t) − (Pφ2)(t)| ≤
1

Γ(α)

t∫
0

(t − τ)α−1|κ(τ, φ1(τ)) − κ(τ, φ2(τ))|dτ

≤
Lκ

Γ(α)

t∫
0

(t − τ)α−1|φ1(τ) − φ2(τ)|dτ

≤ ΩLκ|φ1(t) − φ2(t)|,

(3.14)

which implies that ||(Pφ1) − (Pφ2)|| ≤ ΩLκ||φ1 − φ2||. Therefore, as a consequence of the Banach con-
traction principle, the proposed model (3.1) has a unique solution.
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Next, we prove the existence of solutions of problem (3.4) which is equivalent to the proposed model
(3.1) by employing the concept of Schauder fixed point theorem. Thus, the following assumption is
needed.

(A2) Suppose that there exist σ1, σ2 ∈ E such that

|κ(t, φ(t))| ≤ σ1(t) + σ2|φ(t)|

for any φ ∈ E, t ∈ J,
such that σ∗1 = supt∈J |σ1(t)|, σ∗2 = supt∈J |σ2(t)| < 1,

Lemma 3.3. The operator P defined in (3.12) is completely continuous.

Proof. Obviously, the continuity of the function κ gives the continuity of the operator P. Thus, for
any φ ∈ Bκ, where Bκ is defined above, we get

|(Pφ)(t)| = |φ0 +
1

Γ(α)

t∫
0

(t − τ)α−1|κ(τ, φ(τ))dτ|

≤ ||φ0|| +
1

Γ(α)

t∫
0

(t − τ)α−1|κ(τ, φ(τ))|dτ.

≤ ||φ0|| +
(σ∗1 + σ∗2||φ||)

Γ(α)

t∫
0

(t − τ)α−1dτ.

≤ ||φ0|| +
(σ∗1 + σ∗2||φ||)

Γ(α + 1)
bα

≤ ||φ0|| + Ω(σ∗1 + σ∗2||φ||) ≤ +∞.

(3.15)

So, the operator P is uniformly bounded. Next, we prove the equicontinuity of P. To do so, we let
sup(t,φ)∈J×Bκ |κ(t, φ(t))| = κ∗. Then, for any t1, t2 ∈ J such that t2 ≥ t1, it gives

|(Pφ)(t2) − (Pφ)(t1)| =
1

Γ(α)
|

t1∫
0

[(t2 − τ)α−1 − (t1 − τ)α−1]κ(τ, φ(τ))dτ

+

t2∫
t1

(t2 − τ)α−1κ(τ, φ(τ))dτ|

≤
κ∗

Γ(α)
[2(t2 − t1)α + (tα2 − tα1 )]→ 0, as t2 → t1.

(3.16)

Hence, the operator P is equicontinuous and so is relatively compact on Bκ. Therefore, as a conse-
quence of Arzelá-Ascoli theorem, P is completely continuous.

Theorem 3.3. Suppose that the function κ : J × R5 → R is continuous and satisfies assumption (A2).
Then problem (3.4) which is equivalent with the proposed model (3.1) has at least one solution.
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Proof. We define a set U = φ ∈ E : φ = o(Pφ)(t), 0 < o < 1. Clearly, in view of Lemma 2, the
operator P : U→ E as defined in (3.12) is completely continuous. Now, for any φ ∈ U and assumption
(A2), it yields

|(φ)(t)| = |o(Pφ)(t)|

≤ |φ0| +
1

Γ(α)

t∫
0

(t − τ)α−1|κ(τ, φ(τ))|dτ.

≤ ||φ0|| +
(σ∗1 + σ∗2||φ||)

Γ(α + 1)
bα

≤ ||φ0|| + Ω(σ∗1 + σ∗2||φ||)
≤ +∞.

(3.17)

Thus, the set U is bounded. So the operator P has at least one fixed point which is just the solution
of the proposed model (3.1). Hence the desired result.

3.3. Equilibria and basic reproduction number

The coordinates of the equilibrium (S , A,H, I, Aq, Iq,R) of system (3.1) satisfy the following equa-
tions: 

Λα − µαS − βα1 AS − βα2 IS = 0
βα1 AS + βα2 IS − (εα1 + εα2 + εα3 )A − δαA − µαA = 0

εα1 A + γα1 Aq − τ
αH − µαH = 0

εα3 A − gα1 I − δαI − µαI = 0
δαA − (γα1 + γα2 + γα3 )Aq − µ

αAq = 0
γα3 Aq + δαI − gα2 Iq − µ

αIq = 0
ταH + γα2 Aq + gα1 I + gα2 Iq + εα2 A − µαR = 0.

(3.18)

The disease-free equilibrium E0 of Eq (14) are S 0 = N, A0 = 0, H0 = 0, I0 = 0, Aq0 = 0, Iq0 = 0,
R0 = 0.

We calculate the reproduction number of the fractional model (3.1) using the next-generation
matrix method and the basic reproduction number presented in [11, 12]. We define a vector X =

[A,H, I, Aq, Iq,R]T .

f =



(βα1 AS + βα2 IS )
0
0
0
0
0


, v =



(εα1 + εα2 + εα3 )A + δαA + µαA
−εα1 A − γα1 Aq + ταH + µαH
−εα3 A + gα1 I + δαI + µαI

−δαA + (γα1 + γα2 + γα3 )Aq + µαAq

−γα3 Aq − δ
αI + gα2 Iq + µαIq

(−ταH − γα2 Aq − gα1 I − gα2 Iq − ε
α
2 A + µαR)


, (3.19)
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The Jacobian matrix at the disease-free equilibrium point (DFE) is

F =



βα1S 0 0 βα2S 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, V =



a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66


, (3.20)

where a11 = (εα1 + εα2 + εα3 + δα + µα), a12 = 0, a13 = 0, a14 = 0, a15 = 0, a16 = 0, a21 = −εα1 ,
a22 = (µα + τα), a23 = 0, a24 = −γα1 , a25 = 0, a26 = 0, a31 = −εα3 , a32 = 0, a33 = (µα + δα + gα1 ), a34 = 0,
a35 = 0, a36 = 0, a41 = −δα, a42 = 0, a43 = 0, a44 = (γα1 + γα2 + γα3 + µα), a45 = 0, a46 = 0, a51 = 0,
a52 = 0, a53 = −δα, a54 = −γα3 , a55 = (µα + gα2 ), a56 = 0, a61 = −εα2 , a62 = −τα, a63 = −gα1 , a64 = −γα2 ,
a65 = −gα2 , a66 = µα.

Thus, the basic reproduction number of model (3.1) is

R0 = ρ(FV−1) =
βα1 (µα + δα + gα1 ) + βα2ε

α
3

(εα1 + εα2 + εα3 + δα + µα)(µα + δα + gα1 )
Λα

µα
.

4. Stability analysis of equilibrium

4.1. Analysis of DFE

By simplifying the stability of the disease-free equilibrium, we assume that the DFE is E0=

(S 0, A0,H0, I0, Aq0, Iq0,R0) = (Λα

µα
, 0, 0, 0, 0, 0, 0) . The Jacobian matrix of system (3.1) can be writ-

ten as

J =



b11 b12 b13 b14 b15 b16 b17

b21 b22 b23 b24 b25 b26 b27

b31 b32 b33 b34 b35 b36 b37

b41 b42 b43 b44 b45 b46 b47

b51 b52 b53 b54 b55 b56 b57

b61 b62 b63 b64 b65 b66 b67

b71 b72 b73 b74 b75 b76 b77


, (4.1)

where b11 = −(µα + βα1 A + βα2 I), b12 = −βα1S 0, b13 = 0, b14 = −βα2S 0, b15 = 0, b16 = 0, b17 = 0,
b21 = (βα1 A0 + βα2 I0), b22 = βα1S 0 − (εα1 + εα2 + εα3 + δα + µα), b23 = 0, b24 = βα2S 0, b25 = 0, b26 = 0,
b27 = 0, b31 = 0, b32 = εα1 , b33 = −(µα + τα), b34 = 0, b35 = γα1 , b36 = 0, b37 = 0, b41 = 0, b42 = εα3 ,
b43 = 0, b44 = −(µα + δα + gα1 ), b45 = 0, b46 = 0, b47 = 0, b51 = 0, b52 = δα, b53 = 0, b54 = 0,
b55 = −(γα1 + γα2 + γα3 + µα), b56 = 0, b57 = 0, b61 = 0,b62 = 0, b63 = 0, b64 = δα, b65 = γα3 ,
b66 = −(µα + gα2 ), b67 = 0, b71 = 0, b72 = εα2 , b73 = τα, b74 = gα1 , b75 = γα2 , b76 = gα2 ,
b77 = −µα.

By calculating the Jacobian matrix J at E0 and solving for det(J − λI), we obtain

P j(x) = (λ + µα)2(λ + µα + τα)(λ + µα + gα2 )(λ + γα1 + γα2 + γα3 + µα)(λ2 + Aλ + B),

where A = (εα1 + εα2 + εα3 + δα +µα) + (µα + δα + gα1 )− βα1S 0, and B = (εα1 + εα2 + εα3 + δα +µα − βα1S 0)(µα +

δα + gα1 ) − βα2S 0ε
α
3 .
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It is easy to prove that, if R0 < 1, then A > 0 and B > 0. This polynomial λ2 + Aλ+ B has two roots
with negative real parts. Therefore, E0 is locally stable because the real parts of the seven eigenvalues
of the matrix J(E0) are all negative. Therefore, we can conclude that the DFE is stable when B > 0 and
DFE is unstable when B < 0.

4.2. Analysis of the endemic equilibria

The endemic equilibria of the proposed fractional model (3.1) are denoted by

E∗ = (S ∗, A∗,H∗, I∗, A∗q, I
∗
q,R

∗) = (
Λα

(µα + βα1 A∗ + βα2 I∗)
,

(gα1 + δα + µα)I∗

εα3
,

(εα1 A∗ + γα1 A∗q)

(µα + τα)
,

εα3 A∗

(µα + δα + gα1 )
,

δαA∗

(γα1 + γα2 + γα3 + µα)
,

(γα3 A∗q + δαI∗)

(µα + gα2 )
,

(ταH∗ + εα2 A∗ + γα2 A∗q + gα1 I∗ + gα2 I∗q)

µα
).

Now, we consider the following algebraic system.

Λα − µαS ∗ − βα1 A∗S ∗ − βα2 I∗S ∗ = 0
βα1 A∗S ∗ + βα2 I∗S ∗ − (εα1 + εα2 + εα3 )A∗ − δαA∗ − µαA∗ = 0

εα1 A∗ + γα1 A∗q − τ
αH∗ − µαH∗ = 0

εα3 A∗ − gα1 I∗ − δαI∗ − µαI∗ = 0
δαA∗ − (γα1 + γα2 + γα3 )A∗q − µ

αA∗q = 0
γα3 A∗q + δαI∗ − gα2 I∗q − µ

αI∗q = 0
ταH∗ + γα2 A∗q + gα1 I∗ + gα2 I∗q + εα2 A∗ − µαR∗ = 0

(4.2)

From the above equations, we can write

Λα − µαS ∗ − βα1 A∗S ∗ − βα2 I∗S ∗ = 0
βα1 A∗S ∗ + βα2 I∗S ∗ − (εα1 + εα2 + εα3 + δα + µα)A∗ = 0

εα1 A∗ + γα1 A∗q − (τα + µα)H∗ = 0
εα3 A∗ − (gα1 + δα + µα)I∗ = 0

δαA∗ − (γα1 + γα2 + γα3 + µα)A∗q = 0
γα3 A∗q + δαI∗ − (gα2 + µα)I∗q = 0

ταH∗ + γα2 A∗q + gα1 I∗ + gα2 I∗q + εα2 A∗ − µαR∗ = 0.

(4.3)

Let, (εα1 + εα2 + εα3 + δα + µα) = m1, (τα + µα) = m2, (gα1 + δα + µα) = m3, and
(γα1 + γα2 + γα3 + µα) = m4, (gα2 + µα) = m5.

We obtain the following solutions using some algebraic manipulations of system (4.3).

A∗ =
m3I∗

εα3
, A∗q =

δαm3I∗

εα3 m4
,H∗ =

(m3m4ε
α
1 − γ

α
3δ

αm3)I∗

m2m4ε
α
3

,
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I∗q =
(γα3δ

αm3 + δαm4ε
α
3 )I∗

m4m5ε
α
3

, S ∗ =
εα3 Λα

βα1m3I∗ + βα2ε
α
3 I∗ + µαεα3

,

R∗ =
(ταm5m3(m4ε

α
1 − γ

α
3δ

α) + [γα2 m3m5δ
α + gα1m4m5ε

α
3 + gα2 (γα3δ

αm3 + δαm4ε
α
3 ) + εα2 m3m4m5]m2)I∗

m2m4m5µαε
α
3

.

Now, βα1 A∗S ∗ + βα2 I∗S ∗ − (εα1 + εα2 + εα3 + δα + µα)A∗ = 0.
By substituting the values of S ∗, A∗ in the above equation, we obtain

I∗[
Λαβα1ε

α
3 m3

εα3 (βα1m3I∗ + βα2ε
α
3 I∗ + µαεα3 )

] + I∗[
Λαβα2ε

α
3

βα1m3I∗ + βα2ε
α
3 I∗ + µαεα3

] − I∗[
m1m3

εα3
] = 0.

So, I∗ =
εα3 (βα1 Λαm3+βα2 Λαεα3 −µ

αm1m3)
m1m3(βα1 m3+βα2 ε

α
3 ) , for I∗ > 0 implies, R0 > 1.

Therefore, there is a unique value for I∗ and a unique endemic equilibrium E∗ =

(S ∗, A∗,H∗, I∗, A∗q, I
∗
q,R

∗) when R0 > 1.

4.3. Global stability analysis

We establish the global stability of the fractional model (3.1) in the sense of Ulam-Hyers [13]. Re-
cently the authors in [14] established Ulam-Hyers stability of a nonlinear fractional model of COVID-
19 pandemic.

For clarity of the discussion that follows, let us introduce the inequality given by

|CDα
t φ(t) − κ(t, φ(t))| ≤ ε, t ∈ [0, b]. (4.4)

We say a function φ̄ ∈ E is a solution of (4.4) if and only if there exists h ∈ E satisfying
i. |h(t)| ≤ ε.
ii. CDα

t φ̄(t) = κ(t, φ̄(t)) + h(t), t ∈ [0, b].
It is important to observe that by invoking (3.6) and property ii. above, simple simplification yields

the fact that any function φ̄ ∈ E satisfying (4.4) also satisfies the integral inequality

|φ̄(t) − φ̄(0) −
1

Γ(α)

t∫
0

(t − τ)α−1κ(τ, φ̄(τ))| ≤ Ωε . (4.5)

Definition 4.1. The fractional order model (3.4) (and equivalently (3.1)) is Ulam-Hyers stable if there
exists Cκ > 0 such that for every ε > 0, and for each solution φ̄ ∈ E satisfying (4.4), there exists a
solution φ ∈ E of (3.4) with ||φ̄(t) − φ(t)||ε ≤ Cκε, t ∈ [0, b]

Definition 4.2. The fractional order model (3.4) (and equivalently (3.1)) is said to be generalized
Ulam-Hyers stable if there exists a continuous function Θκ : R+ → R+ with Θκ(0) = 0, such that, for
each solution φ̄ ∈ E of (4.4), there exists a solution φ ∈ E of (3.4) such that

||φ̄(t) − φ(t)||ε ≤ Θκε, t ∈ [0, b].

We now present our result on the stability of the fractional order model.
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Theorem 4.1. Let the hypothesis and result of Lemma 3.2 hold, Ω = Λα

Γ(α+1) and 1−ΩLκ > 0. Then, the
fractional order model (3.4) (and equivalently (3.1)) is Ulam-Hyers stable and consequently general-
ized Ulam-Hyers stable.

Proof. Let φ be a unique solution of (3.4) guranted by theorem 3.2; φ̄ satisfies (4.4). Then recalling
the expressions (3.6),(4.5), we have for ε > 0, t ∈ [0, b] that

||φ̄ − φ||ε = supt∈[0,b]|φ̄(t) − φ(t)|

= supt∈[0,b]|φ̄(t) − φ0 −
1

Γ(α)

t∫
0

(t − τ)α−1κ(τ, φ(τ))dτ|,

≤ supt∈[0,b]|φ̄(t) − φ̄0 −
1

Γ(α)

t∫
0

(t − τ)α−1κ(τ, φ̄(τ))dτ|

+supt∈[0,b]
1

Γ(α)

t∫
0

(t − τ)α−1|κ(τ, φ̄(τ)) − κ(τ, φ(τ))|dτ,

≤ Ωε +
Lκ

Γ(α)
supt∈[0,b]

t∫
0

(t − τ)α−1|φ̄(τ) − φ(τ)|dτ,

≤ Ωε + ΩLκ||φ̄ − φ||ε,

from which we obtain ||φ̄ − φ||ε ≤ Cκε where Cκ = Ω
1−ΩLκ

.

5. Sensitivity analysis

Sensitivity analysis is beneficial and can help identify parameters that require control strategies.
It provides an effective technique for preventing and restraining the dis ease. The disease can be
controlled and mitigated if the parameter values change. A systematic description of the sensitivity
analysis of the different parameters in R0 for the model is as follows:

Υ
R0
φ =

dR0

dφ
φ

R0
.

Therefore, the basic reproduction number is

R0 = ρ(FV−1) =
βα1 (µα + δα + gα1 ) + βα2ε

α
3

(εα1 + εα2 + εα3 + δα + µα)(µα + δα + gα1 )
Λα

µα
.

It is easy to verify that

A =
dR0

dβ1

β1

R0
=

aη
bh + aη

> 0,

B =
dR0

dβ2

β2

R0
=

bh
bh + aη

> 0,

C =
dR0

dµ
µ

R0
= −

c2η(i(bh + aη))
cηη2

1

+
i(bh + aη)

cη2η1
+

i(bh + aη)
c2ηη1

−
ai

cηi(bh + aη)
< 0,
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D =
dR0

dδ
δ

R0
= −

bcη(i(bh + aη))
cηη2

1

+
i(bh + aη)

cη2η1
−

a
cη(bh + aη)

< 0,

E =
dR0

dg1

g1

R0
= −

e(i(bh + aη))
η2η1

−
a

c(bh + aη)
< 0,

F =
dR0

dε1

ε1

R0
= −

f
η1

< 0,G =
dR0

dε2

ε2

R0
= −

g
η1

< 0,

H =
dR0

dε3

ε3

R0
= −

ch(i(bh + aη))
cηη2

1

−
b

c(bh + aη)
< 0, I =

dR0

dΛ

Λ

R0
= 1 > 0.

where βα1 = a, βα2 = b, µα = c, δα = d, gα1 = e, εα1 = f , εα2 = g, εα3 = h, Λα = i, (c + d + e) = η,

(c + d + f + g + h) = η1.

From the above simplification, we assumed that the sensitivity indices are sign-related. This means
that R0 is more sensitive to the parameters (β1, β2, Λ) in increasing order and is positively impacted by
them, and thus reducing the value of these parameters will reduce R0. The following parameters (µ,
δ, g1, ε1, ε2, ε3) have a negative impact on R0, and an increase in these parameters reduces R0. After
obtaining the above analytical results, we now perform a sensitivity analysis to find perfect ways to
choose the various parameters in R0. The following can be inferred from the sensitivity analysis.

1) If we can reduce the value of the transmission rates β1, β2 could be an effective control measure
to stop the spread of the coronavirus.

2) If we can increase the quarantine rate δ or put infected people in isolation, they will not affect
other susceptible individuals.

6. Numerical simulations

This section provides some illustrative numerical simulations to explain the dynamical behavior of
the Caputo fractional order of COVID-19 mathematical model. Herein Caputo fractional operator is
numerically simulated via first-order convergent numerical techniques. These numerical techniques
of a mathematical model are accurate, conditionaly stable, and convergent for solving fractional-order
both linear and nonlinear systems of ordinary differential equations. Consider a general Cauchy prob-
lem of fractional order having autonomous nature

∗Dα
0+y(t)) = g(y(t)), α ∈ (0, 1], t ∈ [0,T ], y(0) = y0, (6.1)

where y = (a, b, c, d, e, f , g) ∈ R7
+ is a real-valued continuous vector function which satisfies the Lips-

chitz criterion given as
||g(y1(t)) − g(y2(t))|| ≤ M||y1(t) − y2(t)||, (6.2)

where M is a positive real Lipschitz constant. Using the fractional-order integral operators, one obtains

y(t) = y0 + Jα0,tg(y(t)), t ∈ [0,T ], (6.3)

where Jα0,t is the fractional-order integral operator . Consider an equi-spaced integration intervals over
[0,T] with the fixed step size h(= 10−2 for simulation ) = T

n , n ∈ N. Suppose that yq is the approximation
of y(t) at t = tq for q = 0, 1, ...., n. The numerical technique for the governing model under Caputo
fractional derivative operator takes the form
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cS p+1 = a0 +
hα

Γα + 1
× Σ

p
k=0((p − k + 1)α − (p − k)α)

(Λ − µS − β1AS − β2IS ),

cAp+1 = b0 +
hα

Γα + 1
× Σ

p
k=0((p − k + 1)α − (p − k)α)

(β1AS + β2IS − (ε1 + ε2 + ε3)A − δA − µA),

cHp+1 = c0 +
hα

Γα + 1
× Σ

p
k=0((p − k + 1)α − (p − k)α)

(ε1A + γ1Aq − τH − µH),

cIp+1 = d0 +
hα

Γα + 1
× Σ

p
k=0((p − k + 1)α − (p − k)α)

(ε3A − g1I − δI − µI),

cAqp+1 = e0 +
hα

Γα + 1
× Σ

p
k=0((p − k + 1)α − (p − k)α)

(δA − (γ1 + γ2 + γ3)Aq − µAq),

cIqp+1 = f0 +
hα

Γα + 1
× Σ

p
k=0((p − k + 1)α − (p − k)α)

(γ3Aq + δI − g2Iq − µIq),

cRp+1 = g0 +
hα

Γα + 1
× Σ

p
k=0((p − k + 1)α − (p − k)α)

(τH + γ2Aq + g1I + g2Iq + ε2A − µR).

(6.4)

Now we discuss the obtained numerical outcomes of the governing model in respect of the approx-
imate solutions. To this aim, we employed the effective Euler method under the Caputo fractional
operator to do the job. Observing the numerical simulations of the proposed model (3.1) is vital. We
use different parametric values for the numerical simulations based on a case study of Bangladesh cited
from the literature; some are fitted, some are estimated, and some are referred. We use the total popu-
lation of Bangladesh, N = 164,689,383 [15]. We have N = S (0) + A(0) + H(0) + I(0) + Aq(0) + Iq(0)
+ R(0), The initial conditions are assumed as S (0) = n1 = 1000, A(0) = n2 = 500, H(0) = n3 = 300,
I(0) = n4 = 100, Aq(0) = n5 = 0, Iq(0) = n6 = 0, R(0) = n7 = 0 and the parameter values are taken as
in Table 1. Considering the values in the table, we depicted the profiles of each variable under Caputo
fractional derivative in Figure 2 with the fractional-order value α while Figures 2–7 are the illustration
and dynamical outlook of each variable with different fractional-order values. From Figure 2(a), one
can see that the susceptible class S(t) shows increasing behavior with the values of α and actual data,
the rate of decreasing starts to disappear and the rate of increasing starts becoming higher. With the
same values as can be seen in Figure 2(b), the exposed class A(t) has also increasing-decreasing be-
havior with the values of α and actual data. The decreasing rate also starts to disappear and the rate
of increasing starts becoming higher. In Figure 3(a), the hospitalized class H(t) is virtually having the
increasing-decreasing nature with fractional-order values, the class totally becomes stable. In Figure
3(b), the infected class I(t) is virtually retaining the increasing-decreasing nature, whereas the class
is likely to be at stake. An interesting behavior can be noticed, one can see that there is a strongly
increasing nature, in this case, and this could be due to the dangers associated with the class. In Figure
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4(a), the isolated exposed class Aq(t) shows from decreasing to increasing nature with fractional-order
values and actual data. In Figure 4(b), the isolated infectious class Iq(t) starts to disappear and the rate
of increasing starts becoming higher. In Figure 5(a), the recovered class R(t) also starts to disappear
and the rate of increasing starts becoming higher. In Figure 5(b), the daily recoveries class starts to
higher and the rate of increasing starts becoming lower with different fractional order values. In Figure
6(a), the death class starts to disappear and the rate of increasing starts becoming higher. In Figure
6(b), the new case class starts to higher and the rate of increasing starts becoming lower with different
fractional order values. In Figure 7(a), the new death class starts to higher and the rate of increasing
starts becoming lower with different fractional order values. In Figure 7(b), the total tested class starts
to higher and the rate of increasing starts becoming stable with different fractional order values.
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Figure 2. Numerical simulation of (a) Suspected individual S(t) (b) Exposed but not hospi-
talized individual E(t) for different values of α and actual values with time (weeks).
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Figure 3. Numerical simulation of (a) Hospitalized H(t) (b) Infectious I(t) for different values
of α and actual values with time (weeks).
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We used some reference values given in [10] and estimated the parameters. Furthermore, the
basic reproduction number of the disease-free equilibrium point= (Λα

µα
, 0, 0, 0, 0, 0, 0)= (1.787946,

0, 0, 0, 0, 0, 0) for α = 0.5 was computed as R0 = 0.7 < 1, showing the fulfillment of the neces-
sary and sufficient conditions for local asymptotic stability of the disease-free equilibrium. We also
found out that for integer and fractional orders considered namely α ∈ (1, 0.9) and the correspond-
ing computed R0 = (1.58458799, 0.90) showing that the COVID-19 pandemic is controllable and will
effectively die out as long as there is compliance with social distancing/lockdown regulations, and if
infectious and infected individuals are appropriately quarantined, thereby preventing contamination of
the environment through virus shedding.

Susceptible (S), exposed but not hospitalized (A), hospitalized (H), infectious (I), isolated exposed
(Aq), isolated infectious (Iq), and recovered (R) are shown in Figures 2–7.
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Figure 4. Numerical simulation of (a) Isolated Exposed Aq(t) (b) Isolated Infectious Iq(t) for
different values of α and actual values with time (weeks).
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Figure 5. Numerical simulation of (a) Recovered R(t) (b) Daily Recoveries for different
values of α and actual values with time (weeks).
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Figure 6. Numerical simulation of (a) Death (b) New Case for different values of α and
actual values with time (weeks).
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Figure 7. Numerical simulation of (a) New Death (b) Total Tested for different values of α
and actual values with time (weeks).

7. Discussion and conclusions

Fractional epidemic modeling is an effective process for trying to mitigate the global pandemic
COVID-19 situation if different parameters can be estimated and fitted accurately. This paper ana-
lyzed a fractional COVID-19 compartmental model via Caputo FDs. The fixed point theorems of
Schauder and Banach respectively are employed to prove the existence and uniqueness of solutions of
the proposed model. We studied the existence and uniqueness of the solution and the local and global
stability of the model. Stability analysis in the frame of Ulam-Hyers and generalized Ulam-Hyers was
established. The fractional variant of the model under consideration via Caputo fractional operator
has numerically been simulated via a first-order convergent numerical technique called the fractional
Euler method. The illustration and dynamical outlook of each variable with different fractional-order
values were examined. Thus, these results show the actual model was fitted using accurate COVID-19
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data from Bangladesh. These fractional-order derivatives require new and perfect parameters to con-
trol the outbreak. All graphical simulations were performed as per the specified nature of the achieved
solutions in the Caputo non-integer order derivative sense. Different compartments are plotted simul-
taneously using graphical simulations for other fractional orders of α and actual data from Bangladesh.
The data of infected and death cases due to COVID-19 were collected from [3] to perform the numer-
ical simulations. Table 2 represents the weekly data from March 2, 2020, to November 30, 2020.

Table 2. COVID-19 weekly data of Bangladesh.

week 1 2 3 4 5 6
cases 3 4 17 24 40 533
week 7 8 9 10 11 12
cases 1835 2960 4039 5202 7611 11,342
week 13 14 15 16 17 18
cases 13,543 18,616 21,751 24,786 25,481 24,630
week 19 20 21 22 23 24
cases 21,378 20,730 18,928 17,293 16,854 18,949
week 25 26 27 28 29 30
cases 18,049 16,224 14,335 12,363 11,396 10,232
week 31 32 33 34 35 36
cases 9542 9576 10,303 10,246 10,437 10,986
week 37 38 39 40
cases 12,095 15,008 15,066 15,138

Acknowledgments

This work was supported by the key research and development projects in Shanxi Province under
grant no. (202003D31011/GZ), the National Natural Science Foundation of China (general project)
under grant no. (61873154), the Shanxi Science and Technology innovation team under grant no.
(201805D131012-1), and the key projects of the Health Commission of Shanxi Province (2020XM18).
The authors would like to thank Dr. Juan Zhang and others for their guidance on model building and
programming. The authors thank the Chinese Government and the Complex Systems Research Centre,
Shanxi University, for their support.

Conflict of interest

The authors declare that they have no competing interests.

References

1. M. Moriyama, W. J. Hugentobler, A. Iwasaki, Seasonality of respiratory viral infections, Ann. Rev.
Virol., 7 (2020), 83–101. https://doi.org/10.1146/annurev-virology-012420-022445

Mathematical Biosciences and Engineering Volume 20, Issue 2, 2544–2565.



2565

2. WHO COVID-19 Situation Update [online], Avaliable from:
https://www.worldometers.info/coronavirus/country/bangladesh/.

3. World Health Organization (WHO), Avaliable from: https://covid19.who.int/region/searo/country/bd.

4. Dashboard of John Hopkins University, 2020. Available from:
https://coronavirus.jhu.edu/map.html.

5. Institute of Epidemiology, Disease Control and Research (IEDCR), COVID-19 Status Bangladesh,
Available from: https://www.iedcr.gov.bd/.

6. H. N. Hasan, M. A. EI-Tawil, A new technique of using homotopy analysis method for solv-
ing high-order non-linear differential equations, Math. Methods Appl. Sci., 34 (2011), 728–742.
https://doi.org/10.1002/mma.1400

7. S. J. Liao, A kind of approximate solution technique which does not depend upon
small parameters: A special example, Int. J. Non-Linear Mech., 30 (1995), 371–380.
https://doi.org/10.1016/S0020-7462(96)00101-1

8. A. A. Marfin, D. J. Gubler, West Nile encephalitis: An emerging disease in the United States, Clin.
Infect. Dis., 33 (2001), 1713–1719. https://doi.org/10.1086/322700

9. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Dif-
ferential Equations, North-Holland Mathematics Studies, 2006. https://doi.org/10.1016/S0304-
0208(06)80001-0

10. A. Hossain, J. Rana, S. Benzadid, G. U. Ahsan, COVID-19 and Bangladesh 2020, 2020. Avaliable
from: http://www.northsouth.edu/newassets/images/IT/Covid%20and%20Bangladesh.pdf.

11. P. V. Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilib-
ria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48.
http://linkinghub.elsevier.com/retrieve/pii/S0025556402001086

12. M. T. Li, G. Sun, Y. Wu, J. Zhang, Z. Jin, Transmission dynamics of a multi-group brucellosis
model with mixed cross infection in public farm, Appl. Math. Comput., 237 (2014), 582–594.
https://doi.org/10.1016/j.amc.2014.03.094

13. S. M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis,
Springer, New York, 48 (2011). https://doi.org/10.1007/978-1-4419-9637-4

14. I. A. Baba, D. Baleanu, Awareness as the most effective measure to mitigate the
spread of COVID-19 in nigeria, Comput. Mater. Continua, 65 (2020), 1945–1957.
https://doi.org/10.32604/cmc.2020.011508

15. Ministry of Home Affairs, Government of Bangladesh, Bangladesh: Total Population from 2017
to 2027, 2022. Available from: https://www.statista.com/statistics/438167/total-population-of-
bangladesh/.

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 20, Issue 2, 2544–2565.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries and notations
	Fractional order model
	The model formulation
	Qualitative properties of solution
	Positivity and existence of unique solution

	 Equilibria and basic reproduction number 

	 Stability analysis of equilibrium
	 Analysis of DFE
	Analysis of the endemic equilibria
	Global stability analysis

	 Sensitivity analysis 
	 Numerical simulations 
	Discussion and conclusions

