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Abstract: Effective path planning (PP) is the basis of autonomous navigation for mobile robots.
Since the PP is an NP-hard problem, intelligent optimization algorithms have become a popular option
to solve this problem. As a classic evolutionary algorithm, the artificial bee colony (ABC) algorithm
has been applied to solve numerous realistic optimization problems. In this study, we propose an im-
proved artificial bee colony algorithm (IMO-ABC) to deal with the multi-objective PP problem for a
mobile robot. Path length and path safety were optimized as two objectives. Considering the com-
plexity of the multi-objective PP problem, a well-environment model and a path encoding method are
designed to make solutions feasible. In addition, a hybrid initialization strategy is applied to generate
efficient feasible solutions. Subsequently, path-shortening and path-crossing operators are developed
and embedded in the IMO-ABC algorithm. Meanwhile, a variable neighborhood local search strat-
egy and a global search strategy, which could enhance exploitation and exploration, respectively, are
proposed. Finally, representative maps including a real environment map are employed for simula-
tion tests. The effectiveness of the proposed strategies is verified through numerous comparisons and
statistical analyses. Simulation results show that the proposed IMO-ABC yields better solutions with
respect to hypervolume and set coverage metrics for the later decision-maker.

Keywords: path planning; multi-objective optimization; improved artificial bee colony algorithm;
hybrid initialization strategy; variable neighborhood local search

1. Introduction

Mobile robots have been gaining widespread attention as intelligent products. They are applied in
many fields, such as industrial manufacturing, agricultural production, medical services, smart home,
and automatic driving [1,2]. In our daily life, home service robot is a type of mobile robot that performs
a wide range of tasks, including patrolling, taking care of the elderly and children, delivering goods to
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the server, and so on [3–5]. Thus, path planning (PP) has become essential for home service robots to
complete service tasks. PP problem involves finding one or more feasible paths to the target location
from the starting position with a given configuration space. In the real application, robust PP methods
could minimize the robot’s operation time, while saving labor and material resources. Currently, PP
has been one of the most researched problems in robot technology [6, 7].

The classical methods for solving the PP problem include the probabilistic roadmap planner
(PRM) [8], rapidly exploring random tree (RRT) algorithm and its variants [9, 10], artificial potential
field methods [11], A* algorithm [12] and Dijkstra algorithm [13]. These algorithms have achieved
some typical applications in many different fields. However, most of them optimize only one objec-
tive, such as path length. Real scenarios bring many constraints, including dangerous obstacles in
the environment and structural constraints of the mobile robot itself. Hence, a solution that considers
only a single objective is not always accurate. In our opinion, path length and other objectives (e.g.,
path safety) should be simultaneously considered. The path length is related to the motion time of
the mobile robot, from the starting point to the target point. Path safety is related to the concept of a
collision-free path that represents a path’s safety degree. The solution of a single-objective PP problem
is uniquely determined, while a multi-objective PP problem yields a set of solutions with advantages
and disadvantages that cannot be directly compared. These solutions are called the Pareto optimal
solution set [14–16].

Swarm intelligence optimization algorithms [17–22] are currently attracting wide attention from
scholars, who have applied them to deal with PP problems. For example, Masehian et al. [23] com-
bined the PSO algorithm with PRM to propose a novel multi-objective PP framework that optimizes
path length and path smoothness objectives. Davoodi et al. [24] presented an improved NSGA-II to
solve path length and path clearance in discrete space. The improved NSGA-II used an innovative
family of path refiner operators, in addition to standard genetic operators. Duan et al. [25] proposed
a multi-objective PP optimization method was mainly implemented by an improved firefly algorithm
that optimized path length and path smoothness objectives. Pareto-dominance was employed to bal-
ance the performance of the optimized solutions. In addition, an elite record library was created to
reserve the non-dominance solutions. Guo et al. [26] investigated a multi-objective PP problem based
on a hybrid algorithm. They weighted path length and path safety objectives using the entropy method
to obtain a short and safe path. Gong et al. [27] proposed an improved global PP method using a multi-
objective particle swarm optimization algorithm that considered path length and path danger level. In
this algorithm, a self-adaptive mutation operation was mainly designed to improve the feasibility of a
new path. Similarly, Zhang et al. [28] investigated the PP problem based on the particle swarm opti-
mization algorithm in an uncertain environment. They selected path risk level and path length the two
objectives to be optimized and mostly introduced a membership function to evaluate the riskiness of
the path and several new operators to improve the algorithm performance. Mac et al. [29] introduced
a hierarchical global PP method that designs a three-level structure, which optimizes the path length
and the path smoothness, consequently realizing an optimal path. However, most of these studies used
schemes that combined multiple objectives into a weighted function, despite claiming that they solved
the multi-objective PP problem. These methods produced different optimal solutions according to the
weighted value distribution, which are difficult to precisely predict in real problems. In other words,
the optimal solution obtained by the weighted multi-objective optimization algorithm may be a better
one in a particular situation, but a worse one in another case.
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Many works dealt with the PP problem in a multi-objective simultaneous optimization manner,
producing multiple non-dominated solutions in a single run instead of balancing the weight coeffi-
cients of each objective. For instance, Hidalgo-Paniagua et al. [30] proposed the multi-objective firefly
algorithm to solve the multi-objective PP problem, in which path length, path safety, and path smooth-
ness related to the robot’s energy consumption are simultaneously optimized. Pareto dominance was
employed to evaluate the solution fitness. Similarly, Hidalgo-Paniagua et al. [31] also investigated
another algorithm, called the shuffled frog-leaping algorithm, to deal with the multi-objective PP prob-
lem. Although state-of-the-art algorithms have achieved considerable achievements, a gap remains in
the multi-objective PP problem. In our opinion, path length and path smoothness are linearly correlated
in the PP problem. They are usually regarded as two objectives that are not completely in conflict. In
our experimental verification, we found that the path with a shorter path length has better smoothness.
On the contrary, path length and path safety are two admitted conflicting objectives. In addition, ex-
isting evolutionary strategies used by the previous algorithms focused on the macro update of the path
segment, and lacked an effective local search strategy. What’s more, most of them lacked an effective
elimination and regeneration mechanism for stagnated solutions over a period of time.

Proposed by Karaboga in 2005, the artificial bee colony (ABC) algorithm is a swarm intelligence
optimization algorithm that aims to solve multivariate function optimization problems [32]. The
ABC algorithm imitates the bees’ behavior of finding the best honey source and has strong global
optimization-seeking ability, fast convergence speed, and fewer parameters. It has been applied to
many applications, including the flow shop scheduling problem [33–36] and neural network parameter
optimization [37–39], achieving excellent results. It has also been applied to solve the mobile robot
PP problem. Based on the ABC algorithm, Saffari and Mahjoob [40] proposed a novel method used
to optimize the path length objective in a real-time PP problem. They focused on designing a rule for
building an initial collision-free path and utilized a swarm algorithm for path optimization. Bhattachar-
jee et al. [41] presented an improved ABC algorithm to minimize the path length of multiple robots.
Using the ABC algorithm, a local trajectory planning scheme was developed to optimally obtain the
next position of all robots in the world map from their current positions, such that the local paths of
n robots become sufficiently small. The ultimate goal was to minimize the path length of all robots.
However, few scholars have used the ABC algorithm to deal with the multi-objective PP problem.

Considering the characteristic of the ABC algorithm and the problems mentioned above, we pro-
posed herein an improved ABC algorithm to solve the multi-objective PP problem of the home service
robot, which uses the Pareto dominance to evaluate the deeply evolved solution sets. The decision-
maker could select an appropriate scheme from these candidate solutions according to the current
specific application requirements. In this study, path length and path safety are considered as two
optimized objectives. The contributions of this study are as follows:
1) A new hybrid initialization strategy is proposed. This strategy uses the RRT algorithm and the
space segmentation method to jointly generate a high-quality initial population. The RRT explores the
configuration space through a tree structure from the starting point and incrementally extends the tree of
collision-free paths, which generates initial solutions randomly, so as to enhance the distribution of the
population. The space segmentation method utilizes the line between the starting and the target points
as the axis to conduct space segmentation, which ensures the feasibility of the solutions, meanwhile,
this method is conducive to finding these initial solutions with better objective characteristics.
2) A variable neighborhood local search strategy is developed. In each iteration, the proposed variable
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neighborhood local search strategy changes searching neighborhoods of path nodes according to the
closest distance between the current node and the obstacle. This operation can effectively ensure the
reachability of the line segments on both sides of the node, so as to avoid lots of time-consuming
collision detection.
3) A new global search strategy is presented. During the iteration, solutions with long-time evolu-
tionary stagnation are removed from the population. For new individuals, this global search strategy
mainly completes two aspects of work. Firstly, the individuals in the Pareto non-dominated solution set
are used to carry out crossover operation to form new ones, which inherits the excellent characteristics
of the current solutions. Secondly, new solutions are also randomly generated to ensure the global
search ability of the algorithm. Compared with the original ABC algorithm, this strategy significantly
accelerates the convergence speed of the algorithm.

The rest of this paper is organized as follows. Section 2 introduces the kinetic model of a home
service robot, environment modeling, path encoding, and mathematical model of the optimization
objective required for PP. Section 3 presents the algorithmic framework of the IMO-ABC algorithm
and the detailed evolutionary strategy. Section 4 describes the simulation environments, performance
metrics, effectiveness analysis of the algorithm, and comparative analysis with NSGA-II and MO-PSO.
Finally, Section 5 presents the concluding remarks.

2. Path planning

This section presents the kinetic model of a home service robot, environment modeling, path en-
coding, and the two objectives for optimization.

2.1. Kinetic model of a home service robot

Figure 1. Kinetic model of a home service robot.
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Figure 1 shows the kinetic model of a home service robot [42]. The two drive wheels are distributed
in the front. The two universal wheels are at the back. Taking P point as the motion reference point
and the linear and angular velocities of the robot as v and w, we obtain:
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(2.1)

Supposing the centroid of the robot C is similar to the geometric center of the box body, the distance
from the particle to point P is d. The centroid coordinates are as follows.

{
xC = xP − d cos θ
yC = yP − d sin θ

(2.2)

Taking the derivative of Eq (2.2) and combining Eq (2.1), the equation of the centroid motion of the
robot is obtained as 
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(2.3)

The robot is driven by two driving wheels. The direct control is that the speeds of the two driving
motor wheels are w1 and w2. Supposing the distance between the two driving wheels is l, the radius is
represented as R, and the following formula is obtained.


v

w

 =


1
2 (w1R + w2R)

1
2 (w1R − w2R)

 (2.4)

2.2. Environmental model

Building an environment model that is easy to understand and compute is important in the PP pro-
cess of mobile robots. In this work, a two-dimensional (2D) map was rasterized with grids containing
all the map information. Each grid has a fixed value that indicates the current environmental conditions
of the grid. We used occupancy to indicate the degree of the presence of grid obstacles. The occupancy
values of the current grid are represented by 0 and 1 if no obstacle is present in the grid and if a grid
is fully occupied by obstacles, respectively. However, if an obstacle partially occupies a grid, then its
occupancy in the current grid is represented by a value between 0 and 1. The mobile robot occupies a
certain physical space; hence, we appropriately extended the obstacles in the map to more reasonably
calculate the path safety through the grid. Figure 2(a) shows the rasterized map, where the black grids
represent the obstacles. Figure 2(b) presents the map after two obstacle layers had been extended, with
the lighter color indicating reduced danger. The obstacles were expanded by three layers, each with
0.7, 0.4, and 0.1 values.
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Figure 2. Environment model.

2.3. Path coding

The path coding is a path representation. This section represents the path by several 2D points and
sequential line segments connecting the points. The first point represents the start point of the path,
while the last point depicts its target point. The number of other points between is a variable. Two
consecutive points corresponded to a line segment of the path. Table 1 is a tabular description of the
path coding.

Table 1. Path encoding.

Points Start point . . . Middle point . . . Target point
Coordinate P(xs, ys) . . . P(xi, yi) . . . P(xt, yt)

2.4. Path length objective

Choosing the shortest path is the best option when a robot moves from a starting point to a target
point. The path length objective is to obtain the shortest possible path. Expressed mathematically, it
is the sum of the lengths of each line segment of a path. Therefore, the line segment formed by any
two points is calculated based on the Euclidean distance, where P = [P0, P1, . . . , Pi, Pi+1, . . . Pn,
Pn+1] represents the path P. Let S = P0 represent the start point and T = Pn+1 be the target point.
Equations (2.5) and (2.6) calculate path length objective.

d(Pi, Pi+1) =
√

(xi − xi+1)2 + (yi − yi+1)2 (2.5)

Length(P) =
n∑

i=0

d(Pi, Pi+1) (2.6)
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where Pi = (xi, yi) and Pi+1 = (xi+1, yi+1) are the two consecutive points in the path, d (Pi, Pi+1) is the
segment distance in the path; Length (P) denotes the total path length obtained by summing up all line
segments; and n denotes the number of points in the path.

2.5. Path safety objective

Path safety objective means that the robot should avoid touching or moving away from the obstacles
in the environment as it moves through space. It is calculated by adding the occupancy (Subsection
2.2) of the stepped cells of the grid by the robot along the path. In this work, the robot was considered
to have the same size as the grid representing the environment. Equation (2.7) calculates the path safety
objective as follows:

S a f ety(P) =
n−1∑
i=1

S Cellsi (2.7)

where S Cellsi is the sum of the grid occupancy that the robot travels through the ith segment of the
path, and n represents the number of points in the path.

3. IMO-ABC algorithm

This section presents the proposed IMO-ABC algorithm used to solve the multi-objective PP prob-
lem. First, the framework of the IMO-ABC algorithm is described. Then, the hybrid initialization
strategy and path optimization operators are presented. Subsequently, the variable neighborhood local
search strategy and the global search strategy are given, respectively.

3.1. The framework of IMO-ABC algorithm

Algorithm 1 presents the framework of IMO-ABC algorithm. Compared with the original ABC
algorithm, the detailed improvements are described as follows. In the population initialization stage,
the IMO-ABC algorithm employs a new hybrid initialization strategy (cf. Subsection 3.2) instead of
random initialization to generate the initialization population. To enhance the quality of the initial so-
lutions, the path-shortening operator (cf. Subsection 3.3) is implemented to remove excess polylines
from the feasible path. In the employed bee stage, individuals in the population are implemented by
the path-crossing operator (cf. Subsection 3.4) and the variable neighborhood local search strategy (cf.
Subsection 3.5) sequentially which aims to generate new individuals. Individuals with better objective
values are retained based on Pareto dominance and then are thrown to the next stage. It can be noted
that the variable neighborhood local search strategy proposed in this study changes the searching neigh-
borhoods of path nodes according to the surrounding environment, which can effectively enhance the
local search ability of the algorithm. In the onlooker bee stage, excellent individuals are implemented
by the variable neighborhood local search once again to improve the convergence speed of the algo-
rithm. In the scout bee stage, the original ABC algorithm directly removes individuals with long-time
evolutionary stagnation, and then generate random solutions to maintain the scale of the population.
Similar but different implementation in this study is that global search strategy (cf. Subsection 3.6)
provides an effective mechanism for generating new individuals. For the new individuals, one group
of individuals is generated by inheriting the excellent individuals in the current Pareto set, and another
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group of individuals is generated randomly. Compared with the original ABC algorithm, this mecha-
nism can not only enhance the global search ability of the algorithm, but also significantly accelerate
the convergence speed of the algorithm.

Algorithm 1 IMO-ABC
1: Generate an initial population of size Ps by the hybrid initialization strategy (cf. Subsection 3.2)
2: Perform the path-shortening operator for each initial solution to delete redundant points (cf. Sub-

section 3.3)
3: Employed bee stage
4: for each solution i do
5: Perform the path-crossing operator (cf. Subsection 3.4)
6: Generate a neighborhood solution j of i by using the variable neighborhood local search strategy

(cf. Subsection 3.5)
7: if j dominates i then
8: Replace the current solution with j
9: else

10: Update the number of non-updating iterations about i
11: end if
12: end for
13: Onlooker bee stage
14: for each solution i do
15: Randomly select a non-repeating solution k from population
16: Select the better solution between i and k as the current solution i
17: Perform steps 6–12 lists in the employed bee stage
18: end for
19: Scout bee stage
20: for each solution i do
21: if the number of non-updating iterations of i reaches Lm then
22: Perform the global search strategy (cf. Subsection 3.6)
23: end if
24: end for

3.2. Hybrid initialization strategy

In general, initial individuals with good characteristics are beneficial to accelerate the convergence
speed of the algorithm. In this study, we present a hybrid initialization strategy to generate the initial
population, which implements based on the RRT algorithm and the space segmentation method of
Reference [28]. Feasible paths generated by the RRT algorithm have a wide range of randomness.
The RRT algorithm explores the configuration space through a tree structure from the start point and
incrementally extends the nodes to find a collision-free path until the branches of the tree close to
the target point. The steps of the RRT algorithm are described as follows. First, generate a random
point in space, traverse the tree nodes from the tree containing the start point, and find the nearest tree
node to the random point. Next, a new node is formed by extending a fixed step from the nearest tree
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node toward the random point; a random point is regenerated if an obstacle exists between the new
and nearest nodes, otherwise, a new node is added to the tree. Finally, the abovementioned expansion
process is repeated until the distance between the new generated node and the target point is less than
the step length. A path connecting the start point to the target point is found.

Figure 3 shows the space segmentation method used to generate initial paths. The black entities
are obstacles in the configuration space. S and T represent the start and target points of the robot,
respectively. Connect S and T and divide a number of equal-length vertical lines l1, l2, . . . , ln. Ran-
domly choose points P1, P2, . . . , Pn on each vertical line and sequentially connect these points to form
a new path. This method has a certain directionality from the start to the target point. Hence, it is
advantageous for finding these initial solutions with better objectives.

Figure 3. The space segmentation method used to generate initial paths.

The hybrid initialization strategy is implemented as follows:
Step 1: the RRT algorithm and the space segmentation method are used to generate two solutions.
Step 2: the fitness of the initial solutions generated by these two algorithms is evaluated. The

solutions are sorted according to the fitness and deposited in the set Hc = {h1, h2} where hi = {1,
2} denotes the ith initialization method. The fitness of each solution is deposited in Fc = { f1, f2}.
Equation (3.1) shows the fitness calculation method:

f =
√

(OCL − OIL)2 + (OCS − OIS )2 (3.1)

where OCL and OCS represent path length and safety objective values, respectively, after the normal-
ization of the two solutions generated in Step 1, and OIL and OIS are those, respectively, after the
normalization of the ideal reference point. The ideal reference point is optimal in each dimension. The
ideal value of path length should be the Euclidean distance from the start point to the target point. Path
safety is expressed herein by the degree of obstacle possession in the grid. Therefore, the absence of
obstacles in the grid indicates a safer path. With this, the ideal safest path value is 0.

Step 3: define a variable ATi that indicates the number of times each initialization method hi is used
in population initialization. Equation (3.2) is the ATi calculation method, where Ps is the number of
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initial solutions desired to be generated.

ATi = Ps ×
fi∑2

j=1 f j
(3.2)

Step 4: ATi solutions are generated with hi until the population size reaches Ps.

3.3. Path-shortening operator

The number of points of each solution in the population is variable; thus, the purpose of execut-
ing the path-shortening operator is to reduce redundant points and facilitate solution evolution. The
shortening operator is implemented as follows. Sequentially traverse each path in the population and
randomly select two nonadjacent points from the path. These two points are directly connected if they
satisfy collision detection. The intermediate points and the line segments between these two points
are deleted. The new path is saved. If collision detection is not satisfied, the path is saved, and the
next path is continuously traversed until the end of the traversal. Figure 4 illustrates the process of the
path-shortening operator.

Figure 4. Path-shortening operator.

3.4. Path-crossing operator

Select the two closest points, except for the starting and target points, in the two paths to imple-
ment the path-crossing operator and reduce the collision detection risk. The path-crossing operator
procedure is performed as follows. Two adjacent paths are sequentially selected from the population.
A point is randomly selected from the first path. Then, points on the second path are sequentially
traversed to find the closest point to the point selected by the first path for a crossover to form new
solutions. If collision detection is not satisfied between the two points, the next closest point from
the second path is selected until it is satisfied. If all points on the second path do not satisfy collision
detection with the point selected on the first path, another point is randomly selected from the first
path, and the abovementioned operations continue. Figure 5 illustrates the process of the path-crossing
operator.
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Figure 5. Path-crossing operator.

3.5. Variable neighborhood local search strategy

The employed bee and onlooker bee stages used a new variable neighborhood local search strategy
for the path points to enhance the algorithm’s exploitation capability. The variable neighborhood local
search strategy is implemented as follows:

Step 1: determine the proportion of points on the path that participating in the variable neighborhood
local search. In this study, this proportion KL is a variable, which is calculated based on the number of
iterations and numerical interval. Equation (3.3) calculates KL as follows:

KL = Kmin + (Kmax − Kmin) ∗
Ic

Imax
(3.3)

where Kmin and Kmax are the upper and lower bounds of the numerical interval that directly affects the
variable neighborhood local search probability KL. At least Kmin of the points in a path are selected for
local search. At most, Kmax are selected. Ic is the current number of iterations. Imax is the maximum
number of iterations.

Step 2: the path points that require local search are selected with probability KL. The nearest
distance dx to the obstacle is calculated for each point. The dx is used as the radius of the neighborhood
of this point. New points are generated in this neighbor range.

Step 3: if the new point satisfies collision detection with the adjacent points of the original point,
it is connected with the adjacent points of the original point to form a new path; otherwise, it will be
regenerated in the neighbor range.

Step 4: each new solution performs the path-shortening operator with a certain probability. Note
that the probability size has no effect on the population evolution. The number of points in each path
is not fixed; thus, redundant points must be deleted.

Figure 6 shows the evolution process by using the variable neighborhood local search strategy.
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Figure 6. Variable neighborhood local search strategy.

3.6. Global search strategy

In the traditional ABC algorithm, the scout bee will be allowed to randomly generate the solution if
a certain individual that has not improved after reaching Lm exists. However, useful information about
the current solution will be lost. We developed a new global search strategy embedded in the scout bee
stage, which can effectively utilize the information collected in the previous iterations. The strategy
is presented in detail in the following steps. All solutions that are not updated after the Lm iterations
are eliminated. Accordingly, there is 50% probability of generating a new solution using the hybrid
initialization strategy and 50% probability of generating a new solution using Eq (3.4).

ηIc
new = pIc

l max ⊗ pIc
s max (3.4)

where operator ⊗ is the path-crossing operator in Subsection 3.4; pIc
l max is the solution with the largest

path length objective value in the Pareto solution set at the current iteration of Ic; pIc
s max is the solution

with the largest path safety objective value in the Pareto solution set at the current iteration of Ic; and
ηIc

new is the new solution. A better solution is selected based on the Pareto dominance relationship.
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4. Simulation results and discussion

4.1. Experimental configuration

Four characteristic maps shown in Figure 7 were used for the simulation test. Map1 shows a struc-
tured environment with low-density obstacles. Map2 depicts a scenario with trapped obstacles. Map3
scenario is symmetrical and contains many obstacles. Lastly, Map4 gives a real environment map that
cites from Reference [31]. Table 2 shows the coordinate distributions of the starting and target points
in the tested maps.

Figure 7. Four maps used for simulation test.
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Table 2. Initialization of the tested maps.

Maps Start point Target point
Map1 (20, 250) (480, 250)
Map2 (250, 400) (250, 250)
Map3 (480, 20) (20, 480)
Map4 (430,80) (125,340)

4.2. Performance metrics

The obtained Pareto solution set was analyzed using the performance metrics hypervolume (Hv) and
set coverage (S C) to verify the performance of the proposed algorithm. The Hv metric represents the
volume covered by the solutions of the Pareto solution set in the objective function space. The concept
related to the Hv metric is as follows: in a d-dimensional solution space, A = {a1, a2, a3, . . . , an} is the
set of non-dominated solutions and r = {r1, r2, r3, . . . , rd} denotes the reference points. The hypercube
for each element ai in set A is calculated as h(ai) = [ai1, r1] × [ai2, r2] × ... × [aid, rd]. The hypervolume
of A can be obtained using the union of |A| hypercubes, the repeatedly covered hypercubes are counted
once. Equation (4.1) calculates the hypervolume. Equation (4.2) computes the S C metric.

Hv(A, r) = Leb(
|A|⋃
i=1

h(ai)|ai ∈ A) (4.1)

S C(A, B) =
|{b ∈ B;∃a ∈ A : a ≺ b}|

|B|
(4.2)

where B is a set of non-dominated solutions {bi} covered by the non-dominated solutions {ai} in A.
S C(A, B) = 0 means that none of the solutions in B is dominated by the solutions in A. By contrast,
S C(A, B) = 1 shows that all solutions in A dominate the solutions in B. The dominance relationship
between solution sets A and B is asymmetric; hence, S C(A, B) and S C(B, A) are simultaneously
computed.

Finally, the algorithm metrics are analyzed by calculating the reference points in each map. An
ideal reference point and a reference point at the nadir are chosen. The nadir point represents the worst
in each dimension. Table 3 lists the reference points in each map.

Table 3. Test maps reference points (path length, path safety).

Maps Ideal point Nadir point
Map1 (460.00, 0) (1038.43, 42.8)
Map2 (150.00, 0) (982.49, 126.3)
Map3 (650.54, 0) (2271.54, 64.3)
Map4 (400.78, 0) (1308.09, 41.8)

4.3. Experimental parameter analysis

In general, parameters significantly affect the algorithm performance. The experimental parameters
include the population size Ps [23–25, 29, 43], maximum number of non-updating iterations Lm [44],
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and variable neighborhood local search variables, Kmin and Kmax. The population size Ps and the maxi-
mum number of non-updating iterations Lm should be appropriately adjusted. Excessively large Ps and
Lm could occupy too much computational space and affect the running speed, while excessively small
Ps and Lm could result in low-quality solutions beyond our expectations. Kmin and Kmax are closely
related; thus, they were set as an interval variable [Kmin, Kmax]. Fewer intermediate points exist in
each path at the late stage of the experimental evolution. To more precisely perform a local search
for the solution, the existence of one point of each path is basically guaranteed to execute the variable
neighborhood local search strategy. Therefore, the [Kmin, Kmax] value should be set moderately. We
refer to the parameter settings of other multi-objective PP problems and set an appropriate level clas-
sification for each parameter. Table 4 shows the suitable parameter levels, the [1.0, 1.0] indicates that
100% of all intermediate points in the path executes the variable neighborhood local search strategy,
while [0.1, 0.5] indicates that as the number of iterations increases, a minimum of 10% to a maximum
of 50% of the intermediate points in the path are selected to execute the variable neighborhood local
search strategy. We used the Taguchi method [45] to find the best parameter combination and achieve
optimal algorithm performance. Table 5 lists the orthogonal array L16(43) to determine the parameter
combination. Each combination is run 30 times independently using the IMO-ABC algorithm to obtain
statistical results. Figure 8 shows the factor-level trends of these two parameters. Based on the result
analysis, we set the appropriate parameter values as Ps = 100, Lm = 15, and [Kmin, Kmax] = [0.1, 0.5].

Table 4. Parameter levels and tested values.

Parameters Parameter levels
1 2 3 4

Ps 50 100 150 200
Lm 5 10 15 20
[Kmin,Kmax] [1.0, 1.0] [0.1, 0.9] [0.6, 0.9] [0.1, 0.5]

Figure 8. Factor-level trend.
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Table 5. Orthogonal array and the average Hv metric values.

Experiment number
Parameters

Average Hv values
Ps Lm [Kmin,Kmax]

1 1 1 1 0.8741
2 1 2 2 0.8749
3 1 3 3 0.8752
4 1 4 4 0.8764
5 2 1 2 0.8836
6 2 2 1 0.8940
7 2 3 4 0.9027
8 2 4 3 0.8909
9 3 1 3 0.8787
10 3 2 4 0.8821
11 3 3 1 0.8805
12 3 4 2 0.8849
13 4 1 4 0.8764
14 4 2 3 0.8836
15 4 3 2 0.8877
16 4 4 1 0.8856

4.4. Performance of each part of the proposed algorithm

4.4.1. Effectiveness of the hybrid initialization strategy

We analyze the performance of the hybrid initialization strategy by implementing two different
types of IMO-ABC algorithm: one that includes all the components discussed in Section 3 (IMO-
ABC algorithm) and another that embeds all components, except for the hybrid initialization strategy
(IMO-ABC-NH). We apply the relative percentage increase (RPI) as a performance measure [46]. The
results obtained by the two comparison algorithms are collected in 30 independent runs. Equation (4.3)
calculates the RPI as follows:

RPI(Hv) =
Hvb − Hvc

Hvb
× 100 (4.3)

where Hvb denotes the best Hv value obtained by all comparison algorithms and Hvc is the best Hv
value obtained by the specified algorithm. Table 6 presents the experimental results of both algorithms.
The first column shows the different map scenarios. The second column gives the best average Hv
values for the two algorithms run independently for 30 times. The last two columns calculate the RPI
values of both algorithms.

We performed a multifactor analysis of variance (ANOVA) [47] to evaluate whether or not the
differences between the two algorithms were significant. Figure 9 shows the ANOVA results of the two
algorithms, showing that the hybrid initialization strategy improved the performance of the IMO-ABC
algorithm. The hybrid initialization strategy produced an initial population with a better distribution,
while the high-quality solution facilitated a rapid population evolution.
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Table 6. Comparison results of the optimal solution sets for IMO-ABC and IMO-ABC-NH.

Maps Best Hv value
Algorithms RPI

IMO-ABC IMO-ABC-NH IMO-ABC IMO-ABC-NH
Map1 0.9045 0.9045 0.9014 0.00 0.34
Map2 0.9027 0.9027 0.8978 0.00 0.49
Map3 0.9124 0.9119 0.9124 0.05 0.00
Map4 0.9029 0.9029 0.8988 0.00 0.45
Mean 0.9056 0.9055 0.9026 0.01 0.32

Figure 9. ANOVA of the proposed hybrid initialization strategy.

4.4.2. Effectiveness of the variable neighborhood local search strategy

We analyze the performance of the variable neighborhood local search strategy by implementing
two different types of IMO-ABC algorithms. We implement two different types of IMO-ABC al-
gorithms: one that includes all the components discussed in Section 3 (referred to as the IMO-ABC
algorithm) and one that embeds all the components except the variable neighborhood local search strat-
egy (referred to as IMO-ABC-NV). Table 7 presents the experimental results of both algorithms, and
Figure 10 shows their ANOVA results. The proposed variable neighborhood local search strategy can
improve the local search capability of the algorithm. The algorithm can adaptively change the search
intensity in the evolution using the dynamic probability KL and the variable search neighborhood, al-
lowing for a detailed exploitation process in the early stages of evolution or an extensive exploration
in the later stages.
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Table 7. Comparison results of the optimal solution sets for IMO-ABC and IMO-ABC-NV.

Maps Best Hv value
Algorithms RPI

IMO-ABC IMO-ABC-NV IMO-ABC IMO-ABC-NV
Map1 0.9037 0.9037 0.8901 0.00 1.50
Map2 0.9032 0.9032 0.8848 0.00 2.04
Map3 0.9116 0.9116 0.8917 0.00 2.18
Map4 0.9032 0.9032 0.8826 0.00 2.28
Mean 0.9054 0.9054 0.8873 0.00 2.00

Figure 10. ANOVA of the proposed variable neighborhood local search strategy.

4.4.3. Effectiveness of the global search strategy

We analyze the performance of the new global search strategy by implementing two different types
of IMO-ABC algorithms: the IMO-ABC and IMO-ABC-NG algorithms. In the IMO-ABC-NG al-
gorithm, the scout bee randomly generates solutions as a global search process. Table 8 presents the
experimental results of both algorithms, while Figure 11 shows their ANOVA results. The proposed
new global search strategy obtains better results than the random method, utilizing the useful informa-
tion of solutions in the current Pareto solution set to generate a new solution. In summary, the new
global search strategy can improve exploration ability.
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Table 8. Comparison results of the optimal solution sets for IMO-ABC and IMO-ABC-NG.

Maps Best Hv value
Algorithms RPI

IMO-ABC IMO-ABC-NG IMO-ABC IMO-ABC-NG
Map1 0.9035 0.9035 0.8865 0.00 1.88
Map2 0.9028 0.9028 0.8960 0.00 0.75
Map3 0.9097 0.9097 0.8874 0.00 2.45
Map4 0.9041 0.9041 0.8947 0.00 1.04
Mean 0.9050 0.9050 0.8912 0.00 1.53

Figure 11. ANOVA of the proposed global search strategy.

4.5. Algorithm comparison results

We validate the performance of the proposed algorithm by comparing it with those of several other
well-known algorithms. All results are the average values of 30 independent runs of the three algo-
rithms, with 100 iterations each. Table 9 presents the mean and standard deviation values of the knee
point (solution) of NSGA-II [24], MO-PSO [28] and IMO-ABC in different maps. The knee point
refers to the solution with the smallest distance normalized to the ideal point in the obtained set of
non-dominated solutions. All algorithms are characterized by randomness in PP. The data in front of
“±” denote the average objective value. The data after “±” show the standard deviation. The data in
bold emphases are optimum. The running time is the result of each algorithm after 100 iterations. The
IMO-ABC algorithm outperforms the two multi-objective optimization algorithms (i.e., NSGA-II and
MO-PSO) in terms of path length, path safety, and running time. The standard deviation values of all
objectives in the four maps are the smallest, directly reflecting the better robustness of the proposed
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algorithm.

Table 9. Mean and standard deviation values of the knee point of different algorithms.

Maps Algorithm Path length Path safety Running time(s)
NSGA-II 487.75 ± 5.78 10.34 ± 3.47 134.14 ± 5.86

Map1 IMO-ABC 484.78 ± 1.45 13.35 ± 1.78 91.72 ± 1.24
MO-PSO 486.24 ± 3.59 13.29 ± 4.25 116.85 ± 2.49
NSGA-II 570.23 ± 3.46 28.96 ± 5.37 108.62 ± 3.34

Map2 IMO-ABC 568.34 ± 0.12 26.88 ± 2.53 83.75 ± 2.23
MO-PSO 572.85 ± 2.16 25.69 ± 7.93 138.71 ± 3.97
NSGA-II 663.71 ± 1.05 5.09 ± 2.63 93.76 ± 2.46

Map3 IMO-ABC 659.28 ± 0.12 5.23 ± 2.12 78.38 ± 2.25
MO-PSO 660.85 ± 0.32 5.86 ± 3.25 102.27 ± 4.61
NSGA-II 513.76 ± 1.07 2.56 ± 1.53 83.54 ± 2.78

Map4 IMO-ABC 510.27 ± 0.13 5.34 ± 0.91 67.15 ± 1.98
MO-PSO 520.17 ± 2.52 1.89 ± 1.24 97.02 ± 2.53

We also compare the Hv and S C parameter metrics of the three algorithms. Figure 12 shows the
Hv values of the three algorithms in the four maps. The average Hv values of the proposed algorithm
are better than the other two algorithms, indicating that the Pareto optimal solution set obtained by
IMO-ABC covers a greater area of the solution space. The proposed algorithm converges well and
reflects its good robustness from the side. In conclusion, the proposed IMO-ABC is always better than
NSGA-II and MO-PSO in solving the PP problem. Table 10 shows the average S C results achieved
by the compared algorithms, which indicate that the proposed IMO-ABC covers a higher number of
NSGA-II and MO-PSO solutions. Similarly, the proposed algorithm is a better choice than NSGA-II
and MO-PSO in solving the PP problem.

Figure 13 shows the approximate Pareto solution sets obtained by the IMO-ABC, NSGA-II and
MO-PSO algorithms in different maps. The red points depict the approximate Pareto solution sets
obtained by the present algorithm. The green and black points are the approximate Pareto solution sets
of NSGA-II and MO-PSO, respectively. The red points have better distribution and are closer to the
ideal reference point than the other points. The yellow ideal reference points are not exact because
the coordinate range is limited. Table 3 presents detailed data. The figures relatively intuitively show
that the proposed IMO-ABC algorithm has advantages over the other two algorithms in solving the PP
problem. Figure 14 illustrates the knee point (solution) of the proposed algorithm. The knee point is
a solution with a minimum distance from the ideal point. Equation (3.1) gives the distance calculation
method. The pink square represents the start point. The red pentagram represents the target point.

We conducted a detailed comparison of the IMO-ABC, NSGA-II, and MO-PSO algorithms to
demonstrate the convergence performance of the present algorithm. Figure 15 depicts the conver-
gence curves in the Hv metric for the four scenarios. The red line denotes the convergence curve of
the proposed algorithm. The blue line is the convergence curve of the NSGA-II algorithm. Lastly,
the green line represents the convergence curve of the MO-PSO algorithm. The IMO-ABC algorithm
provides the best initial results for the Hv values compared to the other two algorithms, indicating the
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effectiveness of the hybrid initialization strategy used in the population initialization stage to gener-
ate a high-quality initial population. In addition, it can converge to the optimal value faster, proving
that the variable neighborhood local search strategy can find better solutions faster, and that the global
search strategy can uncover more valuable solutions and avoid the population from falling into a local
optimum. Based on this analysis, the IMO-ABC algorithm is proven to better balance the global search
and the local exploitation of the population.

Table 10. Average S C results achieved by different algorithms.

Maps
S C

[IMO-ABC, NSGAII] [NSGAII, IMO-ABC] [IMO-ABC, MO-PSO] [MO-PSO, IMO-ABC]
Map1 0.8182 0.0015 0.6012 0.0023
Map2 0.6667 0.0421 0.8571 0.0754
Map3 0.4424 0.0337 0.7500 0.0264
Map4 0.3333 0.0833 0.9064 0.0561
Average 0.5652 0.0402 0.7787 0.0401

Figure 12. Distribution of Hv values of the three algorithms in four tested maps.
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Figure 13. Approximate Pareto fronts obtained from four tested maps.
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Figure 14. Graphical solution achieved in four tested maps.
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Figure 15. Comparison of convergence curves in Hv metric obtained by the proposed IMO-
ABC, NSGA-II and MO-PSO algorithms.

5. Concluding remarks

In this work, we proposed an improved ABC algorithm to solve the multi-objective PP problem of
mobile robots. Two objectives, i.e., path length and path safety, are optimized simultaneously. First, a
hybrid initialization strategy employs the RRT algorithm and the space segmentation method to gen-
erate the initial population. The RRT algorithm was stochastic, and the solutions it produced basically
covered the entire initial population, while the space segmentation method facilitated finding the ini-
tial solution with better objective characteristics. The proposed hybrid initialization strategy ensures
the diversity of the initial population and the quality of individuals. Then, we adopted the variable
neighborhood local search and global search strategies to improve the algorithm exploitation and ex-
ploration during the population evolution. The variable neighborhood local search strategy changed
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searching neighborhoods of path nodes according to the closest distance between the current node and
the obstacle in each iteration. The global search strategy utilizes the information of edge solutions in
the current Pareto front to generate new solutions to replace the solutions with long-time evolutionary
stagnation. Thus, this strategy benefited the population to get rid of the local optimum. In the simula-
tion, we used four representative maps, including a real environment to verify the effectiveness of the
proposed algorithm. Taguchi method was employed for parametric analysis to find suitable parameter
combinations of the IMO-ABC algorithm. In addition, the effectiveness of each proposed strategy was
examined one by one. Compared with the well-known NSGA-II and MO-PSO algorithms, the solution
obtained by the proposed algorithm has outstanding advantages in the Hv and S C metrics. Results also
indicated that the proposed IMO-ABC algorithm has faster convergence and better robustness than the
other two algorithms. Therefore, the proposed algorithm could be an alternative method to solve the
multi-objective PP problem for later decision-makers.

This study focused on finding as many feasible paths as possible to provide multiple options for a
mobile robot or a decision-maker. The robot or the decision-maker could choose the best path that is
more conducive to completing the service task according to the current application scenario. Once a
feasible path is selected, the path smoothing module can further smooth the discounted path segments
formed by the point set to facilitate path tracking for the service robot. Besides, the static environ-
ment was considered in this work, indeed, the PP problem in dynamic environments has been a hot
topic in recent years. Therefore, in subsequent studies, the future work mainly focuses on two as-
pects: 1) design a path smoothing module to produce a path that is easy for the robot to follow; 2)
apply the multi-objective optimization methods to solve the considered PP problems under dynamic
environments.
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