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Abstract: To address the fact that the classical motor imagination paradigm has no noticeable effect 

on the rehabilitation training of upper limbs in patients after stroke and the corresponding feature 

extraction algorithm is limited to a single domain, this paper describes the design of a unilateral upper-

limb fine motor imagination paradigm and the collection of data from 20 healthy people. It presents a 

feature extraction algorithm for multi-domain fusion and compares the common spatial pattern (CSP), 

improved multiscale permutation entropy (IMPE) and multi-domain fusion features of all participants 

through the use of decision tree, linear discriminant analysis, naive Bayes, a support vector machine, 

k-nearest neighbor and ensemble classification precision algorithms in the ensemble classifier. For the 

same subject, the average classification accuracy improvement of the same classifier for multi-domain 

feature extraction relative to CSP feature results went up by 1.52%. The average classification accuracy 

improvement of the same classifier went up by 32.87% relative to the IMPE feature classification 

results. This study’s unilateral fine motor imagery paradigm and multi-domain feature fusion algorithm 

provide new ideas for upper limb rehabilitation after stroke. 

Keywords: brain-computer interface; upper limb rehabilitation; unilateral fine motor imagery; multi-

domain fusion 
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1. Introduction  

Stroke is a brain deficit-causing condition caused by ischemic or hemorrhagic injury to the brain. 

According to the World Health Organization, stroke is the second leading cause of death worldwide [1]. 

Approximately one-third of patients have upper limb motor deficits after treatment [2]. Rehabilitation 

training for stroke patients includes forced exercise, transcranial direct current stimulation, robotic 

therapy, mirror therapy [3], stem cell therapy and drug therapy [4]. However, passive training and 

treatment cannot reshape the patient’s brain nerves [5], and the emergence of motor imagery brain-

computer interfaces (MI-BCIs) has dramatically improved current methods of upper limb 

rehabilitation training for post-stroke patients [6]. At present, most motor imagery-based brain-

computer interfaces (BCIs) are in the laboratory research stage, and the participants are primarily 

healthy individuals [7].  

The traditional stroke rehabilitation training paradigm design is minimal and was developed from 

left- and right-hand to limb rehabilitation training, but these rehabilitation training paradigms are 

ineffective. Khalaf et al. [8] designed a left- and right-hand rehabilitation training paradigm with left 

and right direction arrows appearing randomly on the screen for 10 s each time for 150 training sessions. 

Gaur et al. [9] designed a four-category motor imagery rehabilitation paradigm that included the left 

and right hands, lower limb and tongue. Each subject had two phases, training and testing at different 

times, and each training session included four sessions with 72 trials each. By training different joints 

of a single limb, more brain areas can be activated to work and improve the effectiveness of 

rehabilitation training. 

Brain activation of subjects during motor imagery training can be found by obtaining 

electroencephalography (EEG) signal features of the corresponding paradigm. In the past decades, 

feature extraction algorithms for motor imagery have made huge progress [10], and common spatial 

pattern (CSP) [11], filter bank CSP [12] and short-time Fourier transform [13] are widely used in the 

decoding research of motor imagery. The use of a wavelet transform and fast Fourier transform [14] 

constitute early methods used for motor imagery EEG (MI-EEG) time domain analysis to directly 

extract features such as average and peak values of EEG signals [7]. Methods such as mean frequency [15] 

and median frequency [16] were used to analyze the EEG rhythm of MI-EEG from the perspective of 

the frequency domain. Because of the nonlinear characteristics of EEG [17], entropy domain 

algorithms such as Shannon entropy [18] and sample entropy [19] have also been used to extract MI-

EEG features. When subjects imagine the movement of different limbs and joints, the rhythm of the 

sensorimotor area of the brain changes significantly so that the CSP algorithm can analyze the MI-

EEG features from the perspective of the spatial domain [20, 21]. 

Feature extraction methods from different perspectives have their individual advantages and, at 

the same time, their own limitations. Time and frequency domain methods are simple and effective, 

but they become less and less valuable when the complexity of the data increases [22]. Entropy-domain 

features can analyze EEG from a nonlinear perspective, but the processing time is too long. The spatial 

domain algorithm is sensitive to MI-EEG, but it does not work well when the number of channels is 

too small. For the collected ipsilateral limb motor imagery-paradigm EEG data, the classification 

accuracy of the above methods needs to be improved. 

Yu et al. [23] proposed an improved lightweight feature fusion network to achieve a classification 

effect with an average Kappa value of 0.881 for the dataset of the BCI competition IV 2a. Wang et al. [24] 

proposed a novel MI-EEG classification method by combining Shannon complex wavelet and 
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convolutional neural networks. The Kappa value of this method for the BCI competition IV 2a dataset 

was 0.704. 

Most post-stroke patients with hemiplegia have dysfunction in only one limb, while most of the 

classical motor imagery paradigms used in MI-BCI rehabilitation involves bilateral motor training of 

the right and left hands [25], and limb training on the healthy side does not work for the rehabilitation 

of the affected limb. 

In order to meet the specific needs of post-stroke hemiplegic patients, we designed a fine motor 

imagery paradigm with unilateral focus on elbow and shoulder joints. The unilateral training of specific 

joints is more complex than bilateral limb training, as it can activate more brain areas and better meet 

the rehabilitation needs of hemiplegic patients. Then, based on the advantages of different extraction 

methods and the characteristics of fine motor imagination, a multi-feature fusion method combining 

the spatial domain CSP algorithm with the improved multiscale permutation entropy (IMPE) algorithm 

in the entropy domain is proposed. 

2. Materials 

2.1. Subjects 

Here, the study of single-limb fine motor imagery and its feature extraction was in the laboratory 

stage. Twenty healthy right-handed subjects (18 males and 2 females, aged 20–26 years) with normal 

or corrected normal vision and no previous history of stroke or genetic history were selected for the 

experiment. Before the experiment, the paradigm process was explained to all subjects in detail. At the 

end of the experiment, the subjects were asked about their feelings about the experiment to ensure that 

the motor imagery training was adequately performed. All experiments on human subjects were 

conducted in accordance with the Declaration of Helsinki, and all subjects were approved by the Ethics 

Committee of Changzhou University. 

2.2. Experimental paradigm 

The experimental paradigm was written in JavaScript. As shown in Figure 1, the subjects placed 

their hands naturally on their thighs, and their eyes were 1 m away from the screen. At the beginning 

of each training session (8 s), a white cross in the center of the display for 2 s cued the subject’s 

attention to an upcoming target. The target cue (“shoulder” or “elbow”) appeared on the screen for 4 s. 

During this process, the subject visualized the cued action (right shoulder abduction or 90° elbow 

flexion) in their mind. The experiment was divided into three sessions, with each subdivided into 40 

training trials (320 s), and two motor imagery tasks were performed in each experimental phase (the 

different movements were required to appear 20 times). 
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Figure 1. Unilateral fine motor imagery paradigm flow. 

2.3. Data acquisition 

The data acquisition device was a Neuracle NeuSen W series wireless EEG acquisition system 

(64 channels), which has the advantages of high portability, a stable signal and good shielding. The 

electrode positions of NeuSen W series were arranged according to the International 10–20 system, 

and the sampling rate of the device was 1000 Hz. Among them, the 59–64 leads were ECG, HEOR, 

HEOL, VEOU and VEOL. In subsequent data processing, the data of these five leads needed to be 

deleted, so the actual EEG data comprised 59 leads. 

3. Methods 

The process used in this study is shown in Figure 2, where the raw EEG of the unilateral fine-

motor imagery paradigm was first acquired with a Neuracle 64-channel EEG cap. The raw EEG data 

were then denoised with a band-pass filter (8–30 Hz), re-referenced, analyzed via independent 

components analysis (ICA) and segmented. Then, the CSP and IMPE features were extracted from the 

pre-processed EEG data. Second, the CSP feature matrix and IMPE feature matrix were fused with 

features and the fused matrix was filtered with features. Finally, the filtered features were put into the 

classical classifier for classification to obtain the optimal classification accuracy for unilateral fine 

motion imagery. Figure 2 explains the specific process of the experiment in this study, highlighting the 

fusion of two features after the feature extraction of fine motor imagery EEG so as to achieve better 

classification accuracy. 
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Figure 2. Unilateral fine motor imagery data preprocessing and feature extraction. 

3.1. Data preprocessing 

EEG data have noise interference such as electrooculography (EOG), eye movement, head 

movement and electrocardiography (ECG) signals, which affect the reliability of the extracted motor 

imagery features. Therefore, EEG data need to be preprocessed before feature extraction. The 

preprocessing of EEG data in this study involved the use of eeglab v2021.1, but the EEG data collected 

by the Neuracle device was in the bdf format; and, the “From Neuracle EEG data files” plugin needed 

to be updated in eeglab. First, unwanted 59–64 channels were removed from the original EEG data. 

Second, the data were filtered at 8–30 Hz. Then, ICA analysis was performed to remove noise, such 

as EOG, eye movement, head movement and ECG signals, from the EEG data. Finally, the data treated 

with ICA was segmented with a range of 0–4 s. 

3.2. Common spatial pattern feature extraction 

CSP is a spatial filtering feature extraction algorithm for two classification tasks, extracting the 

spatial distribution components of each category from multi-channel EEG data [26]. The CSP 

algorithm aims to design a spatial filter to maximize the difference between the variance values of the 

two groups of EEG spatiotemporal signal matrices after filtering to obtain a feature vector with high 

discrimination. For the next step, the feature vectors are sent to the classifier for classification [27]. 

Given that two different fine motor imagery EEG data segments were set as X1 and X2, the 

normalized covariance matrix of X1 and X2 is 

 𝑅1,𝑖 =
𝑋1,𝑖𝑋1,𝑖

𝑇

𝑡𝑟𝑎𝑐𝑒(𝑋1,𝑖𝑋1,𝑖
𝑇 )

        (3.1) 

 𝑅2,𝑖 =
𝑋2,𝑖𝑋2,𝑖

𝑇

𝑡𝑟𝑎𝑐𝑒(𝑋2,𝑖𝑋2,𝑖
𝑇 )

 (3.2) 
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where 𝑡𝑟𝑎𝑐𝑒(•) is the sum of elements on the diagonal of the matrix, i is the number of trails in the 

EEG data, the data dimension of X1 and X2 is 𝑁 × 𝑆, N is the number of EEG channels and S is the 

number of data points of each trial. 

Perform w-space filtering on the input data 𝑋𝑁×𝑆: 

 𝑍2𝑚×𝑠 = 𝑤2𝑚×𝑠𝑋𝑁×𝑆 (3.3) 

where 2m is the number of eigenvalues taken by the eigenmatrix. 

The fine motor imagery features are calculated as shown in Eq (3.4): 

 𝑓𝑝
𝑖 = 𝑙𝑜𝑔 (

𝑣𝑎𝑟𝑝
𝑖

∑ 𝑣𝑎𝑟𝑝
𝑖2𝑚

𝑝=1
)       (3.4) 

𝑣𝑎𝑟𝑝
𝑖 is the variance of line p in 𝑍2𝑚×𝑠, and integrating every 𝑓𝑝

𝑖 into 𝑓𝑖 yields the motor imagery feature 

of each trial. 

3.3. IMPE feature extraction 

Multiscale permutation entropy (MPE) involves the addition of coarse-grained based on 

permutation entropy, and the entropy value can be obtained as a function of the time scale [28]; Azami 

et al. [29] introduced the IMPE to overcome the asymmetry of coarse-grained time series and the 

defects of the large time scale of MPE. 

3.3.1. Permutation entropy 

The collected unilateral fine motor imagery EEG data were divided into the time series {𝑥𝑖}𝑖=1,…𝑁, 

where N is the number of time points, and a vector containing d points was constructed, as shown in 

Eq (3.5): 

 𝑥𝑡
𝑑,𝑙 = {𝑥𝑡, 𝑥𝑡+𝑙 , … , 𝑥𝑡+(𝑑−2)𝑙 , 𝑥𝑡+(𝑑−1)𝑙} (3.5) 

where d is the embedding dimension and l is the time delay. 

The permutation entropy is calculated as follows: 

 𝑃𝐸𝑥
𝑑,𝑙 = −∑ 𝑝(𝜋𝑖)𝑙𝑛(𝑝(𝜋𝑖))

𝑑!
𝑖=1  (3.6) 

where 𝑝(𝜋𝑡) is the relative frequency. 

The d value is positively correlated with the sorted data, which increases the computation time 

while obtaining accurate results. Therefore, to compensate for the sorting amount and computation 

time, the value of d is usually set to 3, and the time delay l is usually set to 1 [30]. 

3.3.2. MPE 

By introducing “coarse-grained” into the time series, the scaling factor can be obtained by 

averaging the time data points within a non-overlapping window with the length 𝜏 increasing. 

Each element 𝑗(𝜏) of the coarse-grained time series y is defined as [28] 

 𝑦𝑗
(𝜏)

=
1

𝜏
∑ 𝑥𝑖
𝑗𝜏
𝑖=(𝑗−1)𝜏+1 , 1 ≤ 𝑗 ≤ ⌊

𝑁

𝜏
⌋    (3.7) 
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Each coarse-grained time series has the length ⌊
𝑁

𝜏
⌋. The second step is to compute the permutation 

entropy for each coarse-grained time series. 

3.3.3. IMPE 

MPE is asymmetric, and the results of MPE calculation have variability in long time scales, so 

the MPE needs to be improved. The IMPE is calculated as follows: 

𝑧𝑖
(𝜏)

= {𝑦𝑖,1
(𝜏), 𝑦𝑖,2

(𝜏), … , 𝑦𝑖,𝑛
(𝜏)} generates the position 𝑦𝑖,𝑗

(𝜏) =
∑ 𝑥𝑓+𝑖+𝜏(𝑗−1)
𝜏−1
𝑓=0

𝜏
, and for each 𝜏, we get 𝜏 

different time series: 𝑧𝑖
(𝜏)|(𝑖 = 1,… , 𝜏). 

The permutation entropy is calculated separately for each 𝑧𝑖
(𝜏)|(𝑖 = 1,… , 𝜏), and then the value of 

the IMPE is the average value of all permutation entropy (PE) values: 

 𝐼𝑀𝑃𝐸(𝑥, 𝜏, 𝑑) =
1

𝜏
∑ 𝑃𝐸 (𝑧𝑖

(𝜏)
)𝜏

𝑖=1   (3.8) 

3.4. Multi-domain feature fusion algorithm 

After pretreatment of the original EEG data, EEG features need to be extracted to explore the 

training effect of the unilateral fine motor imagery paradigm on the affected limb of patients after a 

stroke. Most current feature extraction algorithms are single-domain feature extraction algorithms, 

such as the time domain-, frequency domain-, space domain- and entropy domain-based algorithms. 

Although the time and frequency domains can significantly improve the speed of feature extraction, 

the complexity of EEG data induced by unilateral fine motor imagery is higher than that of classical 

left-handed motor imagery. Considering only the time and frequency domains, the extracted features’ 

reliability is not high. CSP algorithms in the spatial domain are widely used in the field of motor 

imagery. CSPs can distinguish different movements by maximizing the variance of EEG signals under 

different labels. However, as the number of EEG channels decreases, the effect of CSP algorithms will 

drop. The entropy domain algorithm can find the subtle changes in EEG signals, and it has been widely 

used in EEG signal feature extraction. Among them, the IMPE algorithm improves the reliability of 

entropy. However, it takes too long for the entropy domain algorithm to operate, making the feature 

extraction time cost too high. Moreover, the classification accuracy is generally low when the entropy 

domain algorithm is used alone. 

In this study, the features of unilateral fine motor imagery EEG data were extracted from the 

perspective of different domains, and the advantages of the algorithms in each domain were absorbed 

to make up for the defects of the algorithms in other domains. Because the EEG data used in this study 

consisted of 59 channels and each channel had 120 trails, the data complexity was very high, so the 

time domain and frequency domain algorithms cannot achieve a noticeable classification effect. This 

study involved combining the CSP algorithm in the spatial domain and the IMPE algorithm in the 

entropy domain. The high sensitivity of the CSP to motor imagery feature extraction made up for the 

low sensitivity and high time cost when IMPE was used alone, and the reliability of IMPE made up 

for the inadaptability of the CSP when the number of channels was negligible. The multi-domain 
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feature extraction algorithm proposed in this paper integrated the CSP and IMPE to complement their 

advantages. It has achieved good results on self-developed EEG signals of the unilateral fine motor 

imagery paradigm. 

3.5. Feature outlier detection 

After extracting the EEG features of unilateral fine motor imagery, the feature matrix has features 

with significant errors or redundancy, so it is necessary to detect the outliers in extracted features so as 

to remove those affecting the classification accuracy. 

The k-nearest neighbor (KNN) algorithm prejudges unknown category samples by searching for 

the nearest k known category samples. The detection of outliers in KNN involves calculating the 

average distance between each sample point and its nearest k samples, and then comparing the 

calculated distance with the threshold. If it exceeds the threshold, it is considered as an outlier. The 

quantile calculation method was used to calculate the threshold value. 

4. Results 

4.1. CSP feature extraction and classification results 

According to the CSP algorithm, the self-collected unilateral fine motor imagery EEG data 

used in this study had 59 channels and 120 trials, so m in the CSP algorithm was set to 11, that is, 

the first 11 lines and the last 11 lines of the spatial filter. Therefore, the dimensions of the CSP feature 

matrix were 120 × 22. In order to reduce the data dimension and improve the classification rate, it is 

necessary to delete some feature outliers; thus, the screened feature matrix was put into six classifiers 

for training and classification, namely, decision tree (Tree), linear discriminant analysis (LDA), naive 

Bayes, support vector machine (SVM), KNN and ensemble classifiers. Ten-fold cross-validation was 

used for classification. Table 1 shows the CSP feature classification results for the unilateral fine motor 

imagery EEG data of 20 healthy subjects. The bold part of the table shows the highest classification 

accuracy of different participants for different classifiers. 

Table 1. Classification accuracy of CSP features for various classifiers (unit: %). 

Participants Tree LDA Naive Bayes SVM KNN Ensemble 

Sub01 69.2 91.7 82.5 94.2 89.2 94.2 

Sub02 70 77.5 69.2 88.3 80 80.8 

Sub03 67.5 74.2 65.8 80.8 69.2 69.2 

Sub04 80 94.2 89.2 95.8 94.2 96.7 

Sub05 69.2 79.2 69.2 90 77.5 90 

Sub06 67.5 76.7 74.2 80.8 79.2 80 

Sub07 66.7 80 68.3 80 74.2 81.7 

Sub08 73.3 98.3 96.7 98.3 98.3 98.3 

Sub09 78.3 85.8 79.2 86.7 86.7 86.7 

Sub10 77.5 84.2 71.7 82.5 75.8 80.8 

Sub11 70 92.5 80 90.8 85.8 88.3 

Continued on next page 
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Sub12 71.7 86.7 81.7 89.2 83.3 87.5 

Sub13 70.8 95 75 95 89.2 93.3 

Sub14 75.8 89.2 85 91.7 85 90 

Sub15 74.2 94.2 90 95.8 92.5 94.2 

Sub16 83.3 90 85 93.3 84.2 92.5 

Sub17 74.2 97.5 90 98.3 94.2 98.3 

Sub18 67.5 89.2 78.3 92.5 87.50 92.5 

Sub19 65 82.5 62.5 80.8 76.7 83.3 

Sub20 73.3 79.2 75 87.5 80 83.3 

Mean 72.25 86.89 78.43 89.62 84.14 88.08 

Figure 3 shows the average classification accuracy of the CSP features of all subjects for the 

six classifiers. 

 

Figure 3. Average classification accuracy of CSP features for all subjects. 

According to the classification results, Subject 8 achieved the highest classification accuracy 

of 98.3%, while Subject 6 achieved only 80.8%. The highest classification accuracy of a single subject 

was mainly focused on the SVM classifier. Meanwhile, the average classification accuracy of the SVM 

classifier was also the highest, reaching 89.62%. Therefore, the CSP algorithm and SVM classifier can 

achieve good classification accuracy on the unilateral fine motor imagery of two actions, but there is 

still much room for improvement. 

4.2. IMPE feature extraction and classification results 

The embedding dimension d affects the IMPE feature extraction when calculating the permutation 

entropy value, so either 𝑑! ≤ 𝑁 or (𝑑 + 1)! ≤ 𝑁 should be used [26]. The value of d will affect the result 

of feature extraction. When d is too large, the calculation time will be very long. When the IMPE 

algorithm was used in this study, the order of permutation entropy was set to 3, the scale factor was set 

to 3 and the time delay was set to 1. The feature matrix after screening outliers was put into six 

classifiers for training and classification, namely, Tree, LDA, Naive Bayes, SVM, KNN and ensemble 
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classifiers. Ten-fold cross-validation was used for classification. Table 2 shows the IMPE feature 

classification results for the unilateral fine motor imagery EEG data of 20 healthy people. The bold 

part of the table shows the highest classification accuracy of different participants for different 

classifiers. 

Table 2. Classification accuracy of IMPE features for various classifiers (unit: %). 

Participants Tree LDA Naive Bayes SVM KNN Ensemble 

Sub01 47.5 48.3 49.2 53.3 56.7 47.5 

Sub02 60 52.5 55.8 56.7 54.2 55.8 

Sub03 48.3 50.8 50.8 50.8 55 50 

Sub04 60.8 48.3 45.8 60 63.3 64.2 

Sub05 55.8 51.7 52.5 51.7 50 60 

Sub06 60.8 65.8 67.5 63.3 65.8 60.8 

Sub07 45 55.8 53.3 58.3 51.7 56.7 

Sub08 50 60.8 60.8 61.7 59.2 60.8 

Sub09 60.8 55 47.5 52.5 53.3 54.2 

Sub10 53.3 54.2 54.2 53.3 55.8 55 

Sub11 46.7 45 41.7 44.2 53.3 43.3 

Sub12 52.5 52.5 45 56.7 51.7 53.3 

Sub13 66.7 63.3 63.3 62.5 60.8 63.3 

Sub14 51.7 59.2 55.8 58.3 60.8 60.8 

Sub15 59.2 65.8 62.5 65 63.3 65.8 

Sub16 52.5 51.7 45.8 50.8 53.3 51.7 

Sub17 56.7 59.2 60.8 60 60.8 63.3 

Sub18 58.3 56.7 55 56.7 54.2 60 

Sub19 51.7 57.5 46.7 56.7 57.5 55.8 

Sub20 55.8 58.3 60.8 60 58.3 58.3 

Mean 54.71 55.62 53.74 56.63 56.95 57.03 

Figure 4 shows the average classification accuracy of the IMPE features of all subjects for the 

six classifiers. 

 

Figure 4. Average classification accuracy of IMPE features for all subjects. 
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It can be seen in Table 2 that, when the scale factor was set to 3, the overall classification accuracy 

of all subjects was low and the classification accuracy of Subject 6 reached the highest at 67.5%.  

The average classification accuracy of the six classifiers was the highest at 57.03%. The small number 

of single-subject samples shows the low classification accuracy of the IMPE features. When IMPE 

was used alone, the problem of low sensitivity to EEG data was magnified. 

4.3. Multi-domain feature fusion and classification 

The multi-domain feature matrix was obtained by fusing the spatial-based CSP features with the 

entropy-based IMPE features. The feature matrix was put into the Tree, LDA, Naive Bayes, SVM, 

KNN and ensemble classifiers for training and classification. Ten-fold cross-validation was used for 

classification. Table 3 shows the multi-domain feature classification results for the unilateral fine 

motor imagery EEG data of 20 healthy subjects. The bold part of the table shows the highest 

classification accuracy of different participants for different classifiers. 

Table 3. Classification accuracy of fusion features for multiple classifiers (unit: %). 

Participants Tree LDA Naive Bayes SVM KNN Ensemble 

Sub01 69.2 93.3 81.7 94.2 91.7 91.7 

Sub02 63.3 80.8 73.3 90 81.7 85 

Sub03 70 79.2 65.8 80.8 69.2 77.5 

Sub04 75 95 87.5 96.7 90 97.5 

Sub05 69.2 85 65 91.7 72.5 87.5 

Sub06 68.3 80.8 70 80 75.8 77.5 

Sub07 67.5 82.5 66.7 76.7 67.5 80 

Sub08 80.8 99.2 98.3 99.2 98.3 99.2 

Sub09 76.7 85 78.3 88.3 82.5 86.7 

Sub10 75 80.8 71.7 80 72.5 85 

Sub11 73.3 93.3 78.3 90 89.2 91.7 

Sub12 73.3 90.8 78.3 88.3 82.5 87.5 

Sub13 76.7 96.7 80 95.8 86.7 94.2 

Sub14 71.7 90.8 88.3 90.8 85.8 92.5 

Sub15 73.3 95 97.5 95 94.2 95 

Sub16 84.2 89.2 84.2 93.3 83.3 82.5 

Sub17 78.3 98.3 90.8 99.2 94.2 99.2 

Sub18 77.5 90 73.3 92.5 82.5 90 

Sub19 69.2 81.7 65 80 76.7 83.3 

Sub20 75.8 80.8 76.7 87.5 81.7 82.5 

Mean 73.42 88.41 78.54 89.5 82.93 88.3 

Figure 5 shows the average classification accuracy of the fusion features of all subjects for the 

six classifiers. 



2493 

Mathematical Biosciences and Engineering  Volume 20, Issue 2, 2482-2500. 

 

Figure 5. Average classification accuracy of fusion features for all subjects. 

According to Table 3, the proposed multi-domain feature fusion algorithm achieved good results, 

with the highest classification accuracy of 99.2%. Compared with the CSP feature classification results, 

the highest average classification accuracy improvement of the same classifier was 1.52%. Compared 

with the result of IMPE feature classification, the average classification accuracy improvement of the 

same classifier was the highest at 32.87%. It can be seen that, when the CSP and IMPE were combined, 

the classification results for unilateral fine motor imagination were significantly improved. Fusing 

features from different domains can compensate for the lack of a single feature, and the interpretation 

of EEG signals will be more precise. 

Figure 6 shows the confusion matrix diagram for the CSP feature, IMPE feature and multi-domain 

feature fusion of Subject 8. The diagram shows that the proposed multi-domain feature fusion 

algorithm had improved the accuracy relative to that of the single feature. Figure 7 shows the receiver 

operating characteristic (ROC) curves for CSP, IMPE and multi-domain feature fusion. According to 

the figure, the area under the curve values for CSP, IMPE and multi-domain feature fusion were 0.983, 

0.590 and 0.992, respectively. 
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(b) 

 

(c) 

Figure 6. Confusion matrix for different features: (a) confusion matrix for CSP features; 

(b) confusion matrix for IMPE features; (c) confusion matrix for multi-domain fusion 

features. 

 

Figure 7. ROC curves for different feature extraction algorithms. 
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In order to evaluate the reliability of the feature extraction algorithm, the Kappa value was used 

as the evaluation index in this study. The Kappa value can be used to measure the classification 

accuracy and eliminate the disadvantages of random classification. The Kappa value is calculated using 

the following formula: 

 𝐾𝑎𝑝𝑝𝑎 =
𝑃0−𝑃𝑒

1−𝑃𝑒
 (4.1) 

P0 is the subject’s classification accuracy and Pe is the random classification accuracy. Since the 

unilateral fine motor imagery paradigm for upper limbs designed in this study is dichotomous, the Pe 

value was 0.5. 

Figure 8 shows the highest classification rate and Kappa value for all subjects. As can be seen in 

the figure, the highest classification accuracy among subjects was 0.992, and the Kappa value was 

0.984. It proves the superiority of the proposed multi-domain fusion feature extraction algorithm on 

fine motor imagery EEG data. 

 

Figure 8. Classification accuracy and Kappa values of all subjects. 

4.4. Comparison with existing studies 

The common time-frequency-spatial patterns (CTFSP) [31] algorithm was selected to compare 

the classification accuracy with the self-collected fine motor imagery EEG data and the proposed 

multi-domain fusion features. As shown in Table 4, the highest classification rate and Kappa value for 

CTFSP, as obtained by using the self-collected data in this study, were compared with the multi-domain 

fusion feature extraction algorithm. 
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Table 4. Comparison of accuracy (ACC) and Kappa values for CTFSP and fusion features. 

 CTFSP Multiple-domain fusion 

 ACC (%) Kappa ACC (%) Kappa 

sub01 90.8 0.816 94.2 0.884 

sub02 92.5 0.85 90 0.8 

sub03 75 0.5 80.8 0.616 

sub04 86.7 0.734 96.7 0.934 

sub05 96.7 0.934 91.7 0.834 

sub06 85.8 0.716 80.8 0.616 

sub07 78.3 0.566 82.5 0.65 

sub08 79.2 0.584 99.2 0.984 

sub09 98.3 0.966 88.3 0.766 

sub10 89.2 0.784 80.8 0.616 

sub11 91.7 0.834 93.3 0.866 

sub12 91.7 0.834 90.8 0.816 

sub13 96.7 0.934 96.7 0.934 

sub14 87.5 0.75 90.8 0.816 

sub15 97.5 0.95 97.5 0.95 

sub16 97.5 0.95 93.3 0.866 

sub17 92.5 0.85 99.2 0.984 

sub18 96.7 0.934 92.5 0.85 

sub19 91.7 0.834 81.7 0.634 

sub20 81.7 0.634 87.5 0.75 

Mean 89.885 0.7977 90.415 0.8083 

As can be seen in the above table, the proposed multi-domain fusion feature extraction algorithm 

has certain advantages over the CTFSP algorithm. The average accuracy and average Kappa values 

for the proposed method were 0.53% and 0.0106 higher than those obtained via the CTFSP algorithm, 

respectively. 

5. Discussion 

The multi-domain feature fusion algorithm combining the spatial domain and the entropy domain 

was used to extract features from the EEG data of unilateral fine motor imagery, which was 

significantly improved relative to the single-domain feature extraction method. 

In this study, CSP features were extracted from the spatial domain, IMPE features were extracted 

from the entropy domain and multi-domain features were extracted. The highest classification 

accuracies were 98.3, 67.5 and 99.2%, respectively. Compared with CSP feature classification results, 

the average classification accuracy improvement of the same classifier was 1.52%. Compared with the 

result of IMPE feature classification, the average classification accuracy improvement of the same 

classifier was the highest at 32.87%. Compared with existing studies, Hou et al. [32] proposed to 

combine the CSP with the dual spectrum and Shannon entropy, and the improvement rates after feature 

fusion were 2.05, 24.85 and 20.18%, respectively. Hu et al. [33] proposed a method combining WOSF 
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and MSE, which improved the average accuracy by 9.4%.  

The multi-domain feature fusion algorithm applies the high sensitivity of the CSP for motor 

imagery feature extraction to make up for the low sensitivity and high time cost of IMPE alone, and it 

uses the reliability of IMPE to make up for the inadaptability of the CSP when the number of leads 

was small. 

There are still some deficiencies in the study of unilateral fine motor imagery. The unilateral fine 

motor imagery designed in this study is limited to the movement of a single joint. In contrast, in daily 

life, every movement of healthy people often combines more than two joints. Hence, subsequent 

research needs to combine multiple unilateral joint data. The classifiers used in this study are still 

classical classifiers, and some improved classifiers should be considered to measure the extracted 

motor imagery features in subsequent studies, such as the combination of ensemble learning and an 

attention mechanism [34], LS-SVM [35], etc. After expanding enough self-collected datasets, an 

attention network [36] can be used to further explore the feature extraction of fine motor imagery EEG 

data. In future studies, it is necessary to further compare the multi-domain fusion feature extraction 

algorithm proposed in this paper with SOTA models. 

6. Conclusions 

The classical motor imagery paradigm cannot meet the needs of rehabilitation training for 

patients after stroke, and a paradigm for fine joint motor training has emerged. This study involved 

the design of a fine motor imagery paradigm for unilateral rehabilitation training of the shoulder and 

elbow joints and the use of a Neuracle EEG acquisition device to collect EEG data from 20 healthy 

people. 

The preprocessed EEG data were extracted by using the CSP algorithm in the spatial domain 

and IMPE algorithm in the entropy domain. The features of the two domains were fused to obtain 

the highest classification accuracies of 98.3, 67.5 and 99.2%, respectively. The results show that the 

multi-domain feature fusion algorithm can complement the advantages of the feature extraction 

algorithms between different domains to a certain extent, and our results prove that the multi-domain 

feature extraction algorithm has a noticeable effect on the discrimination of unilateral fine motor 

imagery tasks, which provides a new means of rehabilitation training for affected limb rehabilitation 

after stroke. 
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