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Abstract: Anti-vascular endothelial growth factor (Anti-VEGF) therapy has become a standard way 

for choroidal neovascularization (CNV) and cystoid macular edema (CME) treatment. However, anti-

VEGF injection is a long-term therapy with expensive cost and may be not effective for some patients. 

Therefore, predicting the effectiveness of anti-VEGF injection before the therapy is necessary. In this 

study, a new optical coherence tomography (OCT) images based self-supervised learning (OCT-SSL) 

model for predicting the effectiveness of anti-VEGF injection is developed. In OCT-SSL, we pre-train 

a deep encoder-decoder network through self-supervised learning to learn the general features using a 

public OCT image dataset. Then, model fine-tuning is performed on our own OCT dataset to learn the 

discriminative features to predict the effectiveness of anti-VEGF. Finally, classifier trained by the 

features from fine-tuned encoder as a feature extractor is built to predict the response. Experimental 

results on our private OCT dataset demonstrated that the proposed OCT-SSL can achieve an average 

accuracy, area under the curve (AUC), sensitivity and specificity of 0.93, 0.98, 0.94 and 0.91, 

respectively. Meanwhile, it is found that not only the lesion region but also the normal region in OCT 

image is related to the effectiveness of anti-VEGF. 
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1. Introduction  

The World Health Organization’s survey reported that 8.7% of the worldwide population has age-

related macular degeneration (AMD) in 2014, and the projected number of people with AMD will 

increase to 288 million in 2040 [1]. As the most common cause of loss vision for elderly people, AMD 

starts from the dry kind and always moves to the wet kind, i.e., choroidal neovascularization (CNV), 

then to the retinal layer [2,3]. And it is found that cystoid macular edema (CME), a main cause of loss 

vision related to vascular disease, is a common complication in patients with CNV associated with 

AMD [4,5]. Although the etiology of CME is not completely understood, pre-existing condition such 

as diabetes mellitus and uveitis as well as intraoperative complications can cause the risk of CME 

postoperatively [6].  

As anti-vascular endothelial growth factor (anti-VEGF) therapy can slow down or stop damage 

from the abnormal blood vessels and even improve vision, it has become a standard way for CNV and 

CME treatment [7,8]. However, there are some issues on anti-VEGF therapy [9]. For example, anti-

VEGF therapy is too expensive to be affordable for some patients, particularly in developing countries 

[10]. Meanwhile, it is a long-term therapy with three injections rounds and these injections are 

conducted at four-week interval [11]. Another challenge is that the anti-VEGF injection may not 

always be effective for patients [12]. Optical coherence tomography (OCT) imaging has been widely 

for ophthalmologists to analyze and diagnose retinal pathologies [13]. As such, it is necessary to 

develop an OCT based model for predicting anti-VEGF’s effectiveness before injection. 

Predicting effectiveness of anti-VEGF is essentially a treatment outcome prediction problem. 

According to the recent literature study, the strategies for treatment outcome prediction mainly consists 

of two categories: hand-crafted feature-based models and deep learning feature-based models. Hand-

crafted features such as intensity features, texture features, and wavelet features have been widely used 

in treatment outcome prediction [14,15]. However, designing hand-crafted features requires domain 

knowledge and these features are low-level which may lead to inferior performance. Deep learning 

can obtain high-level features for specific task in an end-to-end way with superior performance in 

treatment outcome prediction tasks, such as survival time assessment [16–18], metastasis prediction 

[19,20], and treatment response prediction [21–23]. However, it is always difficult to collect amounts 

of images for the particular disease to feed the deep learning models. To handle this issue, transfer 

learning has been widely used and achieves great success [16, 21, 24–26]. For example, Paul et al. [16] 

predicted non-small cell adenocarcinoma lung cancer patients’ short- or long-term survival time using 

CT scans’ deep features as well as traditional features. Cha et al. [21] developed a predictive model to 

distinguish whether the patients of bladder cancer are in complete chemotherapy response via deep 

learning features through pre- and post-treatment CT images. However, these transfer learning-based 

pre-training are implemented based on large-scale natural image databases such as ImageNet. Our 

group also utilized transfer learning on ImageNet to predict effectiveness of anti-VEGF via OCT 

images in our previous study [27]. Although the results in [27] are acceptable, the large differences of 

imaging principle between natural image and OCT image may limit the performance of the fine-tuned 

model.  



2441 

Mathematical Biosciences and Engineering  Volume 20, Issue 2, 2439–2458. 

Since self-supervised learning (SSL) can learn features from raw images without explicit labels, 

it is an alternative solution to overcome the problem caused by small scale dataset and has attracted 

much attention [28–33]. SSL is implemented by designing a pretext task so that more semantic and 

intrinsic feature representation can be obtained through human-designed labels. As a novel 

unsupervised feature representation learning strategy, SSL has become a popular area in computer 

vision [29,30,34–40] and medical image analysis [31–33,41,42]. Several pretext tasks based on color 

transformation [34,35], geometric transformation [35], context [30,36,37], cross-modal [38], instance 

discrimination by contrastive learning [39,40] have been developed. In medical image analysis, the 

domain-specific pretext tasks have been developed to learn the visual feature representation. For 

example, changing multiple pairs of patches’ positions and then recovering the deformed into original 

one are developed by Chen et al. [31]. This pretext task obtains promising results because the medical 

images for specific tissue or organ have similar and regular local structure information. This idea is 

also used in 3D self-supervised learning in [32] by creating three sub-tasks, they are cube ordering, 

cube orientation, and mask identification to learn structure and texture features. In another study [28], 

a unified SSL framework based on the task of recovering deformed volumes is built through multiple 

transformations to obtain multiple perspectives of medical images such as appearance, texture, context, etc.  

To reduce this gap between source and target domain dataset, we proposed to obtain the pre-

trained model on OCT image dataset using SSL based on unlabeled images. In this study, a public OCT 

dataset [43] (termed as UCSD dataset) is used for pre-training. Since the target in our study is different 

from UCSD dataset, labels of UCSD dataset are ignored and we only use the images. Inspired by the 

3D medical pre-trained model on CT and MRI in [33], we employ the transformation-based pretext 

task to learn the general feature representation. And then the model is fine-tuned through our own OCT 

dataset with anti-VEGF effectiveness labels. Finally, classifier is trained through the features extracted 

from fine-tuned model to predict effectiveness of anti-VEGF. Experimental results demonstrate that 

the new OCT based SSL (OCT-SSL) model can obtain promising performance and the comparative 

studies show that OCT-SSL outperforms other available models. 

2. Materials 

Two datasets are used in this study, they are XJTU OCT dataset from our institution, and UCSD 

public dataset [43]. The details are described in the following subsections. 

2.1. XJTU OCT dataset 

The cohort consists of 228 patients collected from October 2017 to October 2019 at the Second 

Affiliated Hospital of Xi’an Jiaotong University (Xi’an, China). All 228 patients fulfilled the following 

criteria: (a) diagnosis of CNV, CME, or both; (b) availability of OCT images acquired by Heidelberg 

Retina Tomograph-IV (Heidelberg Engineering, Heidelberg, Germany) before anti-VEGF injection; 

(c) treatment of anti-VEGF injection and the effectiveness assessment performed on the 21st day the 

first anti-VEGF injection, which indicates the treatment’s effectiveness. Anti-VEGF is effective for 

171 patients, and the remaining 57 patients have no sign of recovery. Written informed consent was 

provided by each patient and approval of the study was obtained from the research ethics committee. 

The OCT image size is 766 × 596. Full retinal images were used in our proposed method for fine-

tuning and final classification. Only one 2D image is used for one patient, which is the B-scan with 
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the maximum lesion CME or CNV, whilst it was selected by an ophthalmologist with 15 years’ 

experience and reviewed by an ophthalmologist with 25 years’ experience. And the lesion regions were 

also contoured by these two ophthalmologists as shown in Figure 1. Therefore, we can investigate how 

the lesion region influence the prediction model. This investigation is discussed in Figure 7. 

In this study, 20% cases (34 effective cases and 11 ineffective cases) were randomly selected as 

testing samples and the remaining cases were training samples. The cases in testing set never involved 

the training process. In fine-tuning stage, due to the limited scale of XJTU dataset, data augmentation 

was performed in the training images. Six data augmentation manners were utilized including 

horizontal flipping, vertical flipping, translation, rotation, Gaussian blurring and contrast changing. 

More detailed procedure for data augmentation is illustrated in our previous work [27]. 

2.2. UCSD OCT dataset 

The UCSD OCT dataset was built by Kermany et al. [43] at the University of California San 

Diego. It is used for diagnosis of three kinds of retinal disorders, CNV, diabetic macular edema (DME) 

and drusen. The contributors also incorporate normal cases into the database. Examples of four classes 

are illustrated in Figure 2. The 2D image was horizontal foveal cut of OCT B-scans. Totally there are 

26,315 normal images, 37,205 CNV images, 11,328 DME images and 8616 drusen images in training 

dataset, respectively. In testing dataset, each class containing 250 images are used to evaluate the model. 

The images were collected from the Shiley Eye Institute of the University of California San Diego, the 

California Retinal Research Foundation, Medical Center Ophthalmology Associates, the Shanghai 

First People’s Hospital, and Beijing Tongren Eye Center between July 2013 and March 2017. The 

scanning machine was from Heidelberg Engineering, Germany. In this study, we randomly sampled 

250 images of each class from the original training dataset as training images and randomly sample 10 

images of each class from the original testing dataset as the validation images in pre-training stage. 

The dataset in pre-training stage refers as UCSD_P dataset in this paper. 

 

Figure 1. Full retinal images of two cases with contoured lesion region (red rectangular): 

(a) CNV and CME case, (b) CME case. 
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Figure 2. Four examples of CNV, DME, drusen and normal case from UCSD OCT dataset: 

(a) CNV case, (b) DME case, (c) Drusen case, (d) Normal case. 

3. Methods 

The OCT-SSL framework is shown in Figure 3, which consists of three steps: self-supervised pre-

training, fine-tuning, and classification. First, UCSD_P dataset without label was used to build a U-

Net to capture general features of OCT image. In this step, unlabeled OCT images are processed by 

combining multiple transformations to provide the deformed images. The second step is to learn task-

specific feature representation through XJTU OCT dataset with label information. Finally, a classier 

fed with the features extracted by fine-tuned encoder in U-Net is built to predict the treatment response. 

3.1. SSL pre-training 

SSL pre-training includes two stages: image distortion and image restoration. In our study, the 

aim of pre-training based on SSL is to learn common OCT features that are transferable and 

generalizable. In image distortion stage, given original images, four image transformations proposed 

in [33] are consolidated to make model learn more robust feature representation. In image restoration 

stage, encoder-decoder is employed to reconstruct the image distortion stage’s outputs as the original 

input images.  

For each image 𝐼 in UCSD_P dataset during image distortion stage, we apply image transformation: 

 𝐼 = 𝑓(𝐼), (1) 
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Figure 3. Pipeline of OCT-SSL. U-Net is to restore the transformed input OCT image from 

UCSD_P with the corresponding original image as label. The encoder of U-Net is the pre-

trained model. Next, pre-processing and data augmentation are employed on training 

images of XJTU dataset. These data fine-tune the pre-trained model by label supervised 

learning. In classification part, the fine-tuned model without fully connected layer plays 

the role of feature extractor, and outputs features of XJTU OCT images only preprocessed 

without data augmentation. The 1,024 dimensions features are sent to SVM classifier to 

obtain the effectiveness of anti-VEGF. DoubleConv(i,o) and Conv(i,o) represent the 

DoubleConv module and Conv module with input of i channels and output of o channels. 

where 𝑓(∙)  denotes transformation functions. Then in image restoration stage an encoder-decoder 

network is learned to approximate the function 𝑔(∙) which maps the transformed image 𝐼 back to 

the original ones 𝐼: 

 𝑔(𝐼) = 𝐼 = 𝑓−1(𝐼). (2) 

Four transformations are employed in this study, they are non-linear transformation, local pixel 

shuffling, image in-painting, and image out-painting. The operation procedures of the transformations 

are the same as those in [33]. For the integrity and readability of this paper, we also describe the four 

transformations and give the OCT illustrations.  

(1) Non-linear transformation. Intensity value and its distribution represent appearance of organs 

and tissues. Restoring the image distorted with non-linear transformation can make the model learn 

organ appearance. In our study, we employ Bezier Curve [44] as the non-linear function, which is 

smooth, monotonous to ensure a one-to-one mapping. An example is illustrated in Figure 4(b). 

(2) Local pixel shuffling. Texture information is of great importance to represent image. In OCT 

image, the local visual structure information such as retinal layer shows the severity of abnormality. 
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Local pixel shuffling transformation aims to learn local structure and texture feature in randomly 

selected patches. In an original patch, local pixel shuffling means shuffling the order of contained 

pixels resulting in a transformed patch. The patch size and position are determined randomly. In our 

study, the patch height and width are random integer values between 1 and 22. The patch position is 

determined by the left upper coordinate 𝑥 and 𝑦 which are random integer values between 0 and 

202. The number of selected patches is 200 for each OCT image. To restore image from local pixel 

shuffling, the pre-trained model can learn local boundaries and texture. An example is shown in 

Figure 4(c).  

(3) Image in-painting. Image in-painting is to paste constant gray-level windows randomly on the 

OCT image with random size, which means retaining the original intensities outside the window and 

replacing the intensity values of the inner pixels with a constant value. There are 5 windows for 

occlusion and the value of inner pixel is set to 0 in our study. The height and width are set as random 

integers between 28 and 56. The left upper position coordinate 𝑥  and 𝑦  are between 3 and 221-

height. Compared with the local pixel shuffling, the image in-painting transformation increases the 

degree of difficulty which needs to assume the replaced region’s pixel values according to the neighbor 

regions’ intensity and structure information. Image in-painting requires the pre-trained model get local 

continuities of organs via interpolating. A typical example is shown in Figure 4(d). 

(4) Image out-painting. As for image out-painting transformation, pixel values inside these 

windows are retained and the outside pixels are all replaced by background. In image out-painting, we 

also used 5 windows and the value of outside pixel is set to 0. The height and width of windows are 

between 96 and 128. And the left upper coordinate 𝑥  and 𝑦  are between 3 and 221-height. This 

transformation needs to assume the edge information from global perspective, which requires the pre-

trained model to learn global geometry and spatial layout of organs via extrapolating. An example is 

shown in Figure 4(e) as well. Notice that image in-painting and out-painting transformations can’t be 

conducted in one OCT image simultaneously. 

In image distortion stage, each OCT image in UCSD_P is processed by the transformations 

ordered as local pixel shuffling, non-linear transformation, image in-painting or image out-painting, 

where image in-painting and image out-painting are exclusive. Figure 4(f) shows an example of the 

image processed by local pixel shuffling, non-linear transformation, image out-painting. After these 

transformations, OCT images have changes in appearance, texture and structure compared to the 

original ones. Then in image restoration stage, encoder-decoder network serves as a restoration model 

to transform the deformed images into original image. Since the decoder requires shape, texture, and 

structure information to restore the image, the encoder can provide richer semantic representation if 

the restoration model achieves great performance. In our study, we utilize U-Net as the backbone to 

accomplish model pre-training [45]. More details of U-Net are shown in Figure 3. During pre-training, 

U-Net served as the encoder-decoder to restore the deformed OCT image into original one where the 

encoder can learn the general representation of OCT images, such as intensity, texture, global structure, 

local structure, etc.  
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Figure 4. (a) Original OCT image of UCSD_P dataset. (b) Processed by Non-linear 

transformation. (c) Processed by Local pixel shuffling. (d) Processed by Image-in-painting. 

(e) Processed by Image-out-painting. (f) Processed by the combination of three 

transformations (Local pixel shuffling, Non-linear transformation, and Image-out-

painting). 

3.2. Model fine-tuning 

In pre-trained encoder, we can obtain the general features of OCT images which can describe the 

OCT images comprehensively but are not specifically used to predict anti-VEGF effectiveness. In fine-

tuning stage, these general features can be fine-tuned on the target dataset (XJTU dataset), where the 

anti-VEGF effectiveness is used as supervised label. In this stage, the encoder is used as a classifier. 

The feature maps of the last DoubleConv module in encoder are taken as the input of adaptive average 

pooling layer. Then feature maps of pooling layer are cropped by rectified linear unit (ReLU) activation 

mapping. In the next step, the output features are sent to a fully connected layer of size 1024 × 2, 

where two neurons output the predicted probabilities of each class. This procedure is based on training 

images of XJTU dataset with data augmentation. 

3.3. Classification 

In classification phase, features extracted from XJTU OCT images by fine-tuned encoder are 

taken into the SVM classifier [46] to predict the treatment response of anti-VEGF. And the predictive 

model is built based on XJTU OCT dataset (228 cases) without data augmentation. Since the number 

of effective cases and the number of non-effective cases are imbalanced, sample weighting strategy [47] is 

used in SVM training to mitigate the imbalance of classes and results in balance between sensitivity 

and specificity metrics. 
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4. Experiments 

4.1. Set up 

To avoid the predictive model being distracted by the background speckle, pre-processing is 

performed on XJTU dataset. The pixels in the top and bottom region of the retinal layers are set as 0 

and pixels in the middle region, i.e., retinal layers are preserved without destroying the foreground 

information as illustrated in Figure 5. More detailed procedure for pre-processing is illustrated in our 

previous work [27]. 

During pre-training, all OCT images are resized to 224 × 224 before image deformation. And the 

probability thresholds of transformations, i.e., non-linear transformation, local pixel shuffling, image 

in-painting/image out-painting, are 0.9, 0.5, 0.9, respectively, as in [33]. We set the U-Net input 

channel and output channel as 1. The loss function for the encoder-decoder network is Minimum 

Square Error (MSE), and the network restores the image pixel by pixel. Adam algorithm is used as 

optimizer to update weights with a batch size of 16 and initial learning rate of 0.01. This network is 

trained through 100 epochs. We adopt the early stopping strategy so that if loss on validation set has 

not increased for 5 consecutive epochs, the training process will stop to avoid overfitting and improve 

training efficiency [48].  

In fine-tuning, the input images are pre-processed full retinal images from XJTU dataset and cross 

entropy is used as the loss function. The weights are updated by the Adam optimizer on the mini-batch 

of 16 images and we empirically set the learning rate as 0.00001. The model is fine-tuned for 100 

epochs and we employ testing set to evaluate model’s performance by four metrics, accuracy, 

sensitivity, specificity, and AUC. Early stopping strategy is also used and the metric for early stopping 

is MSE. 

 

Figure 5. Original OCT image and its pre-processed image: (a) Original OCT image, (b) 

Pre-processed OCT image. 

In classification model construction, we perform five-fold cross validation on training set of 

XJTU OCT images to select parameters of SVM’s radial gaussian function (RBF) [46]. For RBF kernel, 

the parameter lists are [0.00002,0.0002, 0.002, 0.02, 0.2, 2, 20, 200] for C and [0.00002,0.0002, 0.002, 

0.02, 0.2, 2, 20] for gamma. For each group of parameters, we run 10 times to get the average results. 

We find that SVM with RBF kernel of C = 2 and gamma = 0.0002 performs the best. 
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In addition, we conduct some comparative studies. First, the proposed OCT-SSL is compared with 

our previous method based on transfer learning on ImageNet. Second, since source domain dataset and 

pre-training manner are crucial to feature learning, we perform more experiments to investigate the 

influence of these factor on the results.  

Meanwhile, we also investigate the performance of hand-crafted features for anti-VEGF 

effectiveness prediction. For OCT image-based pathological diagnosis classification tasks [43, 49–53], 

deep learning features or hand-crafted features can be used. Liu et al. [49] employ local binary pattern 

(LBP) and a multi-scale spatial pyramid to classify normal cases and three types of macular pathologies. 

And Srinivasa et al. [50] categorize normal cases, AMD, and DME utilizing multi-scale histogram of 

gradient (HoG) descriptors. More recently, Bogunović et al. [53] used quantitative spatial-temporal 

features computed from automated segmentation of retinal layers and fluid-filled regions in OCT 

images acquired after three initial monthly injections of anti-VEGF to predict further treatment 

requirements. In our proposed method, full retina images are used without any retinal layers or fluid-

filled regions segmentation. To perform a reasonable comparison on the performance of hand-crafted 

features and deep features, we only use LBP and HoG features calculated from the full retina image. 

For LBP descriptor, 8 neighbors are deemed as a circle surrounding the central one with radius of 1 

resulting in 64-dimesional feature. The HoG descriptor with 262,44 dimensions is computed on the 

resized OCT image of 224 × 224, and a cell size of 8 × 8 with 9 histogram bins. Principal component 

analysis (PCA) is used to obtain the top-200 dimensions with the explained variance ratio of 0.97. And 

the concatenation of LBP and HoG feature vectors is also studied and reduced by PCA. Intensity and 

texture features are also used. In our experiment, we extract 9 intensity features according to [54]. For 

the texture features, we extract 96 features based on gray-level co-occurrence matrix (GLCM) as 

in [54]. When calculating GLCM, we choose the distance or offset between the reference pixel and 

neighbor ones as 1 and 2 and pixel pairs with four directions including horizontal, vertical, diagonally 

up and diagonally down are employed. And then we combine the intensity and texture features as 

Intensity-Texture of 105 dimensions. The concatenation of deep features and LBP features is also 

investigated. The classifier is SVM with sample weighting to balance the effective cases and non-

effective cases. 

4.2. OCT-SSL results 

In this section, model based on the proposed OCT-SSL is named 𝑈𝑁𝑒𝑡𝑆𝑆𝐿
𝑈𝐶𝑆𝐷_𝐹_𝑆𝑉𝑀 according to 

its configuration. The superscript of the name represents the source domain dataset used for pre-

training, and the subscript represents the pre-training strategy. The prediction results of 

𝑈𝑁𝑒𝑡𝑆𝑆𝐿
𝑈𝐶𝑆𝐷_𝐹_𝑆𝑉𝑀  are listed in Table 1. This model can achieve accuracy, AUC, sensitivity, and 

specificity of 0.93, 0.98, 0.94 and 0.91, respectively. Our previous study employed the classical transfer 

learning method on ImageNet database named 𝑅𝑒𝑠𝑁𝑒𝑡𝑆𝑢𝑝
𝐼𝑚𝑔 where ResNet-50 [55] was the backbone 

and pre-trained model was also fine-tuned on XJTU OCT dataset, the prediction results achieved 0.72, 

0.81, 0.78 and 0.71 for accuracy, AUC, sensitivity and specificity, respectively [27]. The better results 

demonstrate the superiority of the proposed method in predicting the effectiveness. 

4.3. Comparison of different source domain datasets 

In conventional transfer learning, the pre-trained models are created based on ImageNet dataset. 
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In this experiment, we compare the performance of ImageNet pre-trained model (𝑅𝑒𝑠𝑁𝑒𝑡𝑆𝑢𝑝
𝐼𝑚𝑔

 ) with 

UCSD dataset pre-trained model (𝑅𝑒𝑠𝑁𝑒𝑡𝑆𝑢𝑝
𝑈𝐶𝑆𝐷). The pre-trained stage and fine-tuning procedure are 

both label-supervised. It can be observed that the results of 𝑅𝑒𝑠𝑁𝑒𝑡𝑆𝑢𝑝
𝐼𝑚𝑔

 performs better than 𝑅𝑒𝑠𝑁𝑒𝑡𝑆𝑢𝑝
𝑈𝐶𝑆𝐷 

(see Table 1). Although UCSD dataset has the same imaging modality with XJTU dataset, it gives 

inferior results, showing obvious imbalance between sensitivity and specificity. The reason may be 

that label-based pre-training manner cannot learn general feature representation of OCT images 

through UCSD dataset due to only four classes in UCSD dataset, but there are over 1,000 classes in 

ImageNet. 

Table 1. Results of different source domain, pre-training strategy and network architecture. 

Configuration Accuracy AUC Sensitivity Specificity 

ResNetSup
Img

 0.72 0.81 0.78 0.71 

ResNetSup
UCSD 0.71 0.74 0.85 0.44 

UNetSSL
UCSD 0.74 0.78 0.83 0.71 

UNetSSL
UCSD_F 0.81 0.89 0.82 0.80 

ResNetSSL
UCSD_F 0.75 0.84 0.76 0.75 

UNetSSL
UCSD_F_SVM 0.93 0.98 0.94 0.91 

4.4. Comparisons of using different pre-training strategies 

Since the label-based pre-training may lead to the task-specific feature representation, the fine-

tuning is hard to get a good performance in other target domain datasets. As such, we changed the pre-

training strategy from label-supervised to self-supervised manner. In this study, we built a 𝑈𝑁𝑒𝑡𝑆𝑆𝐿
𝑈𝐶𝑆𝐷 

model where fully connected layers (FC3 in Table 2) as the classifier were applied directly on the on 

the frozen encoder from self-supervised pre-trained model. The results of 𝑈𝑁𝑒𝑡𝑆𝑆𝐿
𝑈𝐶𝑆𝐷 (shown in Table 

1) are much better than 𝑅𝑒𝑠𝑁𝑒𝑡𝑆𝑢𝑝
𝑈𝐶𝑆𝐷, especially in specificity, which indicates that the self-supervised 

strategy can learn more general feature representation and pre-training based on self-supervised 

strategy is more suitable than pre-training based on label-supervised strategy where source dataset and 

target dataset have different classification tasks. 

4.5. Comparisons using different fine-tune modules 

In our proposed method, the fine-tuned model without fully connected layer plays the role of 

feature extractor and the 1024 dimensions features are sent to SVM classifier to obtain the 

effectiveness of anti-VEGF. In this section, for fine-tune module, we design three types of fully 

connected layer FC1, FC2 and FC3 and use different strategies to freeze the encoder layers. The 

architectures of the fully connected layers and the number of parameters are listed in Table 2. 
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Table 2. Architecture and parameter number of three fully connected layers. 

Fully connected layer FC1 FC2 FC3 

architecture 

(1) Linear (1024, 512) (1) Linear (1024, 256) (1) Linear (1024, 2) 

(2) ReLU (2) ReLU  

(3) Dropout (p=0.5) (3) Dropout (p=0.5)  

(4)  Linear (512, 2) (4) Linear (256, 2)  

number of parameters 525,312 262,656 2048 

Given the three fully connected classifiers, we fine-tune the model with different strategies to 

freeze the encoder layers. The U-Net’s encoder has 5 DoubleConv modules and these convolutional 

modules are followed by max pooling layers. Therefore, we freeze the model’s DoubleConv0 to 

DoubleConv1, DoubleConv0 to DoubleConv2 or DoubleConv0 to DoubleConv3 and we also freeze 

only DoubleConv0 if necessary. In other words, we always fine-tune parameters of the last 

DoubleConv module. 

Figure 6 illustrates the results of different freezing manners of FC1, FC2 and FC3. For FC1, we 

find that the model can achieve the best performance when freezing DoubleConv0 to DoubleConv2. 

And for FC2, the best performance is also achieved when freezing DoubleConv0 to DoubleConv2. 

However, for FC3 without ReLU activation mapping, the best performance is achieved by freezing 

DoubleConv0 to DoubleConv1. This may be because the increase of parameters may overfit on the 

training set even though FC1 and FC2 use ReLU to enhance non-linear property of fully connected 

layer. FC3’s linear classifier needs tuning more layer to obtain the best results and the parameter with 

little update can gain the best result. Then we choose the best model of FC1, FC2 and FC3 for 

comparison. Table 3 shows the results of different architecture of fully connected layer on the testing 

set. FC3 achieves the best result (𝑈𝑁𝑒𝑡𝑆𝑆𝐿
𝑈𝐶𝑆𝐷_𝐹 in Table 1). But, if we use SVM following FC3, the 

improvement is about 0.1 of accuracy, AUC, sensitivity, and specificity (𝑈𝑁𝑒𝑡𝑆𝑆𝐿
𝑈𝐶𝑆𝐷_𝐹_𝑆𝑉𝑀 in Table 

1). The reason is that our dataset is small scale and SVM classifier with the maximum margin’s 

optimizing objective obtains is a more robust classifier for small scale dataset. Using SVM following 

full connected layers can get better performance than only using full connected layers. 

4.6. Comparisons using different encoder modules 

In our proposed method, we use the original U-Net’s encoder in pre-training, the results of 

accuracy, AUC, sensitivity, and specificity on 𝑈𝑁𝑒𝑡𝑆𝑆𝐿
𝑈𝐶𝑆𝐷_𝐹 are 0.81, 0.89, 0.82 and 0.80, respectively 

(Table 1.). We replace the U-Net’s encoder with ResNet-50 (𝑅𝑒𝑠𝑁𝑒𝑡𝑆𝑆𝐿
𝑈𝐶𝑆𝐷_𝐹) for comparison, since we 

found that ResNet-50 is a promising model for predicting the effectiveness of anti-VEGF by OCT 

images using ImageNet for pre-training based on our previous study [27]. However, using the 

complicated ResNet-50 as the encoder obtain worse performance: accuracy, AUC, sensitivity, and 

specificity are 0.75, 0.84, 0.76 and 0.75, respectively. This may be because the complex structure of 

skip connection and deeper model learn more general feature representation of UCSD OCT images 

leading to harder fine-tuning on our XJTU dataset.  
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Figure 6. Results of different freezing manners in FC1, FC2, FC3. The horizontal axis DC 

(0,1,2,3) represents that modules of DoubleConv0 to DoubleConv DC are frozen and the 

remaining modules are updated during fine-tuning. (a) Performance of FC1, (b) 

Performance of FC2, (c) Performance of FC3. 

Table 3. Best results of different fully connected layers. 

Fully connected layers Accuracy AUC Sensitivity Specificity 

FC1 0.72 0.78 0.75 0.67 

FC2 0.73 0.84 0.72 0.75 

FC3 0.81 0.89 0.82 0.80 

4.7. Comparisons between hand-crafted features and deep learning features 

Table 4 shows the prediction results by using different features. In hand-crafted feature 

experiments, we can observe that LBP features can make the best prediction although with a little 

imbalance between sensitivity and specificity. HoG-PCA, LBP-HoG-PCA and Intensity-Texture all 

show obvious imbalance between sensitivity and specificity. Table 4 shows that using deep features 

can make the best prediction. However, combing deep features and LBP features degrades the 

performance on accuracy and AUC. The hand-crafted features are extracted without the class labels’ 

supervision, and the deep features are the results of model pre-trained on UCSD OCT images by self-

supervised learning and fine-tuned on XJTU OCT images by supervised learning. Therefore, the deep 

learning feature-based model can convey more specific features for our task and achieve better 

classification results. 

5. Discussion 

During pre-training, U-Net served as the encoder-decoder to restore the deformed OCT image   
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into original one where the encoder can learn the general feature representation of OCT images. Table 

1 suggests that UCSD-U-Net can produce superior result than ImageNet-ResNet. In addition to no 

requirement of labeled OCT images for specific task in self-supervised learning manner, low amount of 

unlabeled source domain dataset can achieve satisfactory performance. In our study, only 1,000UCSD 

OCT images for pre-training can provide good feature representation. This is because the combined 

image transformations with random probabilities can lead to more complicated and enormous 

deformed images in different epochs. 

Table 4. Results of hand-crafted features, deep features, and combinations for prediction. 

Feature Accuracy AUC Sensitivity Specificity 

LBP 0.66 0.68 0.66 0.60 

HoG-PCA 0.67 0.47 0.79 0.31 

LBP-HoG-PCA 0.66 0.48 0.78 0.30 

Intensity-Texture 0.67 0.64 0.74 0.46 

Deep 0.93 0.98 0.94 0.91 

Deep-LBP 0.92 0.95 0.93 0.92 

In image distortion stage of SSL, each OCT image is processed by a combination of 

transformations, local pixel shuffling, non-linear transformation, image in-painting or image out-

painting, according to the probability threshold of each transformation. A variety of distortion 

operations ensure the generalization of the pre-trained model. For example, model learns tissue 

appearance via non-linear transformation, learns tissue texture via local pixel shuffling and learns 

context via image in-painting or image out-painting. In this study, we conducted ablation experiments 

where one type of image transformation was removed and other settings were unchanged. From the 

results in Table 5, even if one type of image transformation is removed, the performance of the model 

is unacceptable. AUC drops down to about 0.73 and there is an extreme imbalance between sensitivity 

and specificity, which means the three types of image distortion are all indispensable. 

Table 5. Results of one type of image transformation removed in SSL based pre-training  

Image transformation removed  Accuracy AUC Sensitivity Specificity 

Non-linear transformation 0.51 0.73 0.78 0.37 

Local pixel shuffling 0.65 0.72 0.32 0.88 

Image in-painting/out-painting 0.71 0.76 0.30 0.93 

In our previous study, we concluded that the results of predicting effectiveness of anti-VEGF 

using full retinal images are better than that of using lesion region images [27]. In this study, we make 

more exploration by visualizing the heatmap of full retinal images based on the 𝑈𝑁𝑒𝑡𝑆𝑆𝐿
𝑈𝐶𝑆𝐷_𝐹_𝑆𝑉𝑀 

method. Gradient-weighted class activation mapping (Grad-CAM) [56] is a technique of obtaining the 

visual explanations for decisions from CNN. Grad-CAM combines the feature maps from forward 

propagation phase and gradients of class score from backward propagations. The regions that 

contribute to decision of anti-VEGF effectiveness are identified by Grad-CAM. Figure 7 shows the 

Grad-CAM visualization result of one effective case. The color variations mean the contribution level 

and red represents highest contribution and blue represents the lowest. The illustration suggests that 
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the decision of anti-VEGF’s effectiveness not only depends on the lesion region but also is related to 

the non-lesion region. This conclusion is consistent with our previous study [27] as well.  

 

Figure 7. Visualization of contribution regions: (a) Full retinal image preprocessed with 

contoured lesion region, (b) Enlarged lesion region, (c) Grad-CAM visualization of 

contribution level to the effectiveness decision. 

Though the proposed method can achieve good performance, there are still some limitations. The 

amount of target domain data set is insufficient and data augmentation strategy is used to increase the 

number for fine-tuning or training from scratch. Although data augmentation can alleviate the lack of 

data, more OCT images should be collected for better fine-tuning. And another limitation is that we 

conducted experiments without distinguishing CNV cases, CME cases and patients with both. These 

three kinds of patients can all be treated by anti-VEGF injection but they differ in pathology. For 

instance, the average CNV size for CNV patients with CME is 5.4 Macular Photocoagulation Study 

(MPS) disc areas and the average CNV size for CNV patients without CME is 5.6 MPS disc areas [4]. 

6. Conclusions 

In this study, a new OCT-SSL model for predicting the effectiveness of anti-VEGF is developed. 

We introduce self-supervised learning to pre-train a U-Net on UCSD OCT dataset to obtain general 

feature representation. Then fine-tuning procedure is conducted on XJTU OCT dataset to learn more 

specific features. Finally, a classification model is built to obtain treatment outcome. The experimental 

results showed that OCT-SSL can achieve promising performance and can be used to assist 

ophthalmologists to make more optimal treatment plan. In future, we will collect more OCT images 

for predicting effectiveness of anti-VEGF with three groups: CNV patients, CME patients, and patients 

contracted with both CNV and CME. 
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