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Abstract: Early screening for cervical cancer is a common form of cancer prevention. In the 

microscopic images of cervical cells, the number of abnormal cells is small, and some abnormal cells 

are heavily stacked. How to solve the segmentation of highly overlapping cells and realize the 

identification of single cells from overlapping cells is still a heavy task. Therefore, this paper proposes 

an object detection algorithm of Cell_yolo to effectively and accurately segment overlapping cells. 

Cell_yolo adopts a simplified network structure and improves the maximum pooling operation, so that 

the information of the image is preserved to the greatest extent during the model pooling process. 

Aiming at the characteristics of many overlapping cells in cervical cell images, a non-maximum 

suppression method of center distance is proposed to prevent the overlapping cell detection frame from 

being deleted by mistake. At the same time, the loss function is improved and the focus loss function 

is added to alleviate the imbalance of positive and negative samples in the training process. 

Experiments are conducted on a private dataset (BJTUCELL). Experiments have verified that the 

Cell_yolo model has the advantages of low computational complexity and high detection accuracy, 

and it is superior to common network models such as YOLOv4 and Faster_RCNN. 
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1. Introduction  

As one of the diseases that seriously endanger women's health, cervical cancer has become the 

second most deadly malignant tumor. According to the World Cancer Research Fund International, 

there were around 14.1 million cases of cancer in 2012. The number of cancer cases is expected to 

reach about 24 million by 2035 [1]. Especially in developing countries, the incidence of cervical cancer 
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is higher, and the age of onset is earlier. In response to the growing situation, in 2020, the World Health 

Organization launched a major initiative to eliminate cervical cancer worldwide [2]. However, the 

HPV vaccination rate of women in the world is currently low, so the early screening and diagnosis of 

cervical cancer can reduce the incidence of cervical cancer and play a crucial role in the prevention of 

the disease. Machine vision assisted detection has become a key technology. The main steps are image 

segmentation, feature extraction and selection and image classification. Among them, good image 

segmentation can be used to extract cell structure information (shape, color and number) [3,4], which 

is also the most critical step to complete cell detection. 

The segmentation of cervical cell images is a major difficulty in the medical field. Overlapping 

cells, impurity interference and complex backgrounds in the images all make segmentation difficult. 

Currently, cell segmentation in the field of medical images is mainly divided into two categories: 

segmentation algorithms based on image processing and deep learning methods. When using 

traditional classification algorithms, it is usually necessary to apply various features such as texture, 

shape and color of cervical cells. Harandi N.M. et al. [5–7] took the shape and color of cytoplasm and 

nucleus as the basis for the segmentation of cervical cancer cells. The image segmentation and 

classification of simple cervical cancer cells were acheieved. Feature selection has become a key factor 

affecting the detection accuracy. Chankong T. et al. [8] tested the Herlev and LCH datasets with a 

classifier with 9 cell features, and the classification accuracy was more than 93%. In order to obtain 

various features, Lee H. et al. [9,10] tried to extract the edge features of cells in different ways. The 

segmentation of overlapping cells has been realized preliminarily. Jung C. et al. [11] proposed an 

unsupervised Bayesian classification method for separating overlapping nuclei. Combined with the 

prior knowledge about the regular shape of cluster nuclei, the overlapping cells are segmented. Diniz, 

D. N. [12] et al. used eight traditional classification algorithms such as decision tree, random forest 

and K-NN and successfully realized the classification of Herlev and CRIC datasets. However, the 

performance of each classifier is different in the testing process, and a single classifier is often unable 

to handle complex datasets. Problems such as low detection accuracy and poor sensitivity also 

appeared in the testing process, and the model's migration ability was also poor. At the same time, it is 

difficult for traditional image processing methods to find a suitable set of parameters such that these 

segmentation methods can simultaneously segment cell images containing multiple complex situations, 

and they can only provide accurate segmentation for images with certain specific cell patterns. 

Relatively speaking, detection algorithms based on deep learning have better feature extraction 

capabilities, and they can quickly and effectively extract the target object in microscopic images. Long 

J. et al. [13] designed a complete convolutional network to achieve efficient and accurate segmentation. 

Badrinarayanan V. et al. [14] improved the deep full convolutional neural network structure. On the 

premise of achieving good segmentation effect, the computational memory and precision are balanced. 

With the development and improvement of deep learning technology, it has been applied more widely 

in the medical field. More and more people try to use deep learning algorithm to segment medical 

images and achieve good segmentation effect [15–17]. Ronneberger O. et al. [18] proposed a network 

and training strategy that achieved good results in the 2015 ISBI cell Tracking Challenge. At the same 

time, the pathological cells in microscopic images can be extracted quickly and effectively. Although 

models such as Convolutional Neural Network (CNNs) and Fully Convolutional Networks (FCNs) 

have good segmentation effects, they are not ideal when dealing with highly overlapping targets. The 

reason is that both CNNs and FCNs are discriminative models, both based on pixel classification to 

achieve image segmentation. At the same time, deep learning methods inevitably suffer from 
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insufficient training data and network overfitting. For example, for Hep-2 segmentation detection, Li 

Y and Shen L [19] pre-trained their network on a large data set, I3A. However, due to the problem of 

overfitting, the performance of MIVIA on a small sample data set was reduced. 

In response to the above problems, we have studied and improved the YOLOv4 model [20,21]. 

Compared with other detection models, YOLOv4 has better performance in both detection accuracy 

and detection speed. The existing YOLO series researchers have greatly improved its network structure, 

but the current method is still difficult to use to accurately identify single cells from highly overlapping 

cells. In order to obtain a target detection model that meets this requirement, this study adopts an 

improved YOLOv4 model, namely, the Cell_Yolo model. In order to build an efficient Cell_Yolo 

detection network, this paper makes the following contributions: 

1. Improve the preliminary image feature extraction of the Cell_Yolo network based on the 

YOLOv4 network structure, and use multi-volume structures to enhance the feature extraction 

capability of the network. The design of the residual network is used to slow down the problem that 

the gradient disappears with the deepening of the network. The two valid feature layers obtained in the 

backbone extraction network were fused using the FPN structure. 

2. To perform cluster analysis of the target frame of the cell data set by improved non-supervised 

clustering algorithms, set reasonable proven frame size and quantity. 

3. On the basis of the original network loss function, add the Focus_pooling operation. This avoids 

the loss of local information in the extraction characteristics, and the boundary information of the 

overlapping cells remains. 

4. Center distance NMS is used to process the model. This improves the detection accuracy of 

overlapping cells. 

The rest of the paper is structured as follows. The second part introduces the improved network 

model. The third part introduces the details of the experimental design. The fourth part is the summary. 

2. Network model optimization 

2.1. YOLO network structure and improvement 

As mentioned above, the Two-Stage object detection algorithm can obtain candidate regions in 

advance, and it can fully learn the characteristics of the target, with high detection and positioning 

accuracy. However, this algorithm has complex network structure, a large amount of computation and 

slow detection speed, so it is not suitable for high real-time application scenarios. 

The One-Stage object detection algorithm is simple in structure, can process the input image 

directly, has high detection accuracy and fast detection speed and can realize real-time detection.            

This algorithm can meet some real-time on-line detection application scenarios, such as real-time 

surface defect detection, real-time fire detection, real-time aerial operation detection and so on.            

However, the One-Stage algorithm has low detection accuracy for small targets and multi-target 

objects. Especially in complex scenes, the detection accuracy cannot meet the requirements. Some 

people put forward the concept of multi-scale fusion, which has achieved better results [22]. Since this 

scenario uses the object detection algorithm to do two-class cell recognition (that is, the network model 

only needs to distinguish the cell from the background, does not need to classify the cell type 

specifically and needs the algorithm to detect as fast as possible), it draws on the well -known 
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YOLOv4 [23] network. The YOLOv4 network is one of the most outstanding network models in target 

identification tasks. Using the YOLOv4 network for cell classification, YOLOv4 has obvious 

advantages in speed and accuracy. The basic structure of YOLOv4 is shown in Figure 1, in which the 

box numbers represent the characteristic image size. The main feature extraction layer uses 

CSPDarknet53, with SPP added to the middle for multi-pooling, which processes the feature map of 

the upper output using four different scales of maximum pooling. Maximum pooled core sizes are 

13*13, 9*9, 5*5 and 1*1 (1*1 is unprocessed), which greatly increases the field of perception, isolates 

the most significant contextual features and hardly increases the run time of YOLOv4. The middle 

structure of the network is a simple two-way feature fusion PANet structure [24]. An important means 

in the object detection algorithm is to improve the FPN (feature pyramid). PANet is the first model to 

propose the second from bottom to top fusion. PANet is based on the FPN of Faster RCNN and simply 

adds the fusion path from bottom to top. A single feature map cannot effectively represent objects of 

different scales. Using multi-feature charts to represent objects of different scales can significantly 

improve the performance of object detection, especially for small targets, by fusing high-level and 

low-level features. Multiscale prediction is used in YOLOv4, which improves the detection results for 

different scales. 

 

Figure 1. The structure of YOLOv4. 

New activation function Mish function is used in feature extraction of YOLOv4, as shown in (1). 

            𝑀𝑖𝑠ℎ = 𝑥 ∗ 𝑡𝑎𝑛ℎ(𝑙𝑛(1 + 𝑒𝑥)) (1) 

Its function image is shown in Figure 2. 
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Figure 2. Mish function image. 

 

Figure 3. The structure of Cell_yolo. 

From the function image, it can be seen that the Mish function has a lower bound and no upper 

bound, which can effectively avoid the gradient descent to speed up the training process, and the 

attributes with the lower bound can help to achieve strong regularization effect. The Mish function is 

not completely truncated when the value is negative, allowing a smaller negative gradient to flow in, 
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ensuring the flow of information. At the same time, the Mish function has infinite continuity and 

smoothness, has strong generalization ability and optimization ability and can improve the quality of 

training results to a certain extent. 

This paper presents a target recognition network Cell_Yolo that optimizes the network structure 

while maintaining the detection accuracy. The structure of Cell_Yolo is shown in Figure 3. The 

backbone of Cell_Yolo extracts the YOLOv4 design from the network and simplifies and optimizes its 

structure, as shown in Figure 3. Conv2D-BN-Mish represents the structure blocks of convolution, 

batch standardization, Mish activation function, and Resnet represents the structure blocks of residual 

network. Preliminary image feature extraction using multiconvolution structure enhances the feature 

extraction capability of the network, while the design of a residual network alleviates the problem of 

gradient disappearance as the network deepens. In the middle of Cell_Yolo, the FPN structure fuses 

the two valid feature layers obtained from the trunk extraction network from the bottom to the top. The 

FPN convolutes the valid feature layers of the last scale, then samples them up, stacks and convolutes 

them with the valid feature layers of the previous scale to fuse the high-level feature information with 

the low-level feature information. 

In the final prediction section, the original YOLOv4 network has three detection heads, which are 

designed to predict targets of different scales. Large objects are predicted using small-scale feature 

layers, while small objects are less predicted using large feature layers. A large number of cervical 

cancer cell datasets have been observed, the cell size differences are not large, and the small targets in 

the background are impurities and other types of unrelated cells. The design reduces the output of a 

detection head, focusing on accurate identification of the location of cervical cells, while reducing the 

focus on unrelated cells and impurities. Cell_Yolo only sets two feature detection heads, each 

responsible for detecting targets of different scales. Three different prior boxes are preset in the feature 

map of each detection head to generate prediction boxes for predicting target objects. Cell_Yolo sets 

six prior boxes for both detection heads. In the process of network training, the model parameters need 

to be changed iteratively, and the information of the preset box should be changed according to the 

real-time model parameters, so that the preset box fits the target box as much as possible. Whether the 

preset box is selected correctly or not is directly related to the convergence speed of the network in the 

training process, but it also has an impact on the final detection accuracy. In this paper, an improved 

K-means clustering algorithm is used to cluster tag data to determine the optimal size of the preset box. 

The original K-means algorithm flow is described as follows: 

Step 1: Randomly select K sample points as initial cluster centers in a given dataset. 

Step 2: Calculate the distance between each sample and K cluster centers in the dataset and assign 

the sample points to the nearest cluster centers so that each cluster center can form a cluster. 

Step 3: For each cluster, the centroid of all samples in the cluster is calculated and selected as the 

new cluster center. 

Step 4: Repeat step 2 and step 3 until the cluster center location does not change.  

Obviously, the selection of initial cluster centers in the algorithm is random. Random cluster 

centers can cause a lot of time waste and classification error. To overcome these shortcomings, the 

improved K-means algorithm is described as follows: 

Step 1: Randomly select a sample point in a given dataset as the initial cluster center; 
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Step 2: Calculate the distance between each sample point and the current nearest cluster center, 

expressed as 𝐷(𝑥), and then calculate the probability that each sample will become the next cluster 

center with (2). The next cluster center is determined by the probability value. 

                       𝑃(𝑥) =
𝐷(𝑥)2

∑ 𝐷(𝑥)2
𝑥∈𝑋

 (2) 

Step 3: Repeat step 2 until 𝐾 cluster centers are selected, and repeat steps 2 to 4 of the K-means 

algorithm. 

The improved K-means algorithm mainly improves the selection of the initial cluster centers. 

From the algorithm steps, the improved K-means ensures that the initial cluster centers are not too 

close and that the distances between cluster centers are as far as possible, thus ensuring the final cluster 

results are more accurate. 

 

Figure 4. The process of Focus_pooling. 

For the pooling operation in the network, the Focus_pooling operation is improved in Cell_Yolo. 

Although the original Maxpooling maximum pooling operation can reduce the size of the feature map 

to extract features, it also means that local information will be lost. The boundary characteristics of 

overlapping cells are extremely important, and excessive use of pooling operation will adversely affect 

the final result, so the Focus_pooling operation is added to the design. The operation flow chart of 

Focus_pooling is shown in Figure 4. For input pictures, take a value every other pixel value, so that 

the original picture becomes four pictures. Four pictures contain all the information of the original 

picture, that is, the W and H dimensions of the original picture are reduced by two times, but the 

channel number dimension is expanded by four times, using concat stitching. The resulting pictures 

are quadrupled compared to the original number of picture channels, and then the resulting pictures 

are convoluted, resulting in a double down-sampling feature map with no loss of information. The 

original input picture is 640*640*3, which first becomes four 320*320*3 slices, then uses concat 

stitching to form a 12*320*320 feature map, and then convolutes to 32*320*320. Focus_pooling 

collects w, h information on the channel without loss of information when sampling images, and then 

uses convolution to extract features, which makes feature extraction more efficient. In this structure, 

three operations using Focus_pooling are designed to replace Maxpooling. First, Focus_pooling is 
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performed once when the picture enters the backbone extraction network, and then Focus_pooling is 

added before two effective feature layers are obtained for feature fusion. The addition of 

Focus_pooling can stabilize the transmission of feature information and improve the feature extraction 

ability of network model. 

2.2. Center distance NMS 

Non maximum suppression (NMS) is generally used to exclude non maximum elements. It is 

mainly used to solve the problem of repeated detection of the same target in object detection. Generally 

speaking, when the analytical model is output to the target box, there will be many target boxes, in 

which many duplicate boxes are located to the same target. NMS is used to remove these duplicate 

boxes and obtain the real target box. Yolo sets NMS to solve the problem of repeated detection of a 

target. It relies on the classifier to obtain multiple candidate boxes and the probability values of the 

categories in the candidate boxes. The flow of the algorithm is as follows: 

Step 1: Sort the scores of all boxes and select the box with the highest score. 

Step 2: Traverse all the remaining boxes, and calculate the IOU of each box and the box with the 

highest score. If this IOU is greater than a certain threshold, it will be considered as duplicate detection, 

and the current box will be deleted.  

Step 3: Continue to select a box with the highest score. After step 2, the box with the highest score 

is usually the label box of another object. After selection, repeat the above process. 

There are several disadvantages in traditional NMS. The first is that the selection of threshold 

greatly depends on experience. Whether the threshold is appropriate or not has a great impact on the 

box screening. In practice, it is difficult to select an appropriate threshold to ensure better accuracy and 

recall. Secondly, the NMS method is too rough. If the IOU of the current box and the box with the 

highest score is greater than the threshold, it will be deleted directly. However, in practice, two objects 

may be very close, resulting in too large detection frame IOU, and a target frame will be deleted by 

mistake. This situation is particularly prominent in images with more overlapping cells, as shown in 

Figure 5. 

 

Figure 5. NMS in overlapping cells. 

In Figure 5, the two frames belong to two targets, but their IOU is large. One may be deleted by 

mistake after NMS algorithm. Due to the complexity of cervical cell image, there are many duplicate 

cells and overlapping cells and impurities in the image, so the traditional NMS is not suitable for the 

application scenario of this project. 

In fact, the main reason why NMS mistakenly deletes boxes of other categories is that NMS only 
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considers IOU. NMS believes that a too large IOU means that an object is repeatedly detected by 

multiple frames, but this situation can be effectively alleviated when considering the center distance 

of the two frames. Therefore, on the basis of the NMS algorithm, the center distance index of the box 

is added to judge whether the current box is deleted, as shown in (3) and (4). 

       𝑠𝑖 = {
𝑠𝑖 , 𝐼𝑜𝑈 − 𝑅𝐷𝐼𝑜𝑈(𝑀, 𝐵𝑖) < 𝜀

0, 𝐼𝑜𝑈 − 𝑅𝐷𝐼𝑜𝑈(𝑀, 𝐵𝑖) ≥ 𝜀
 (3) 

             𝑅𝐷𝐼𝑜𝑈 =
𝜌2(𝑏,𝑏𝑔𝑡)

𝑐2  (4) 

Where 𝑅𝐷𝐼𝑜𝑈 is the distance between the center points of two boxes, 𝑏𝑔𝑡 represents the box 

with the highest score, 𝑏  represents the currently selected box, 𝜌2  represents the distance, and 𝑐 

represents the diagonal length of the smallest box containing two boxes. The biggest difference 

between the center distance NMS and NMS is that the center distance NMS believes that the boxes 

with two distant center points may be located on different objects and should not be deleted. The 

problem of box deletion of overlapping cells can be effectively alleviated through the center 

distance NMS. 

2.3. Definition and introduction of loss function 

Generally, 𝐼𝑜𝑈 will be used to measure the gap between the prediction box and the real box as (5). 

               𝐼𝑜𝑈 =
𝐴∩𝐵

𝐴∪𝐵
 (5) 

where A is the area of the prediction box area, and B is the area of the label box area. The 𝐼𝑜𝑈 

of A and B is the intersection of the area of the prediction box area and the area of the real box area 

divided by its union. 

 

Figure 6. Calculation of 𝐼𝑜𝑈. 

As can be seen from (5), it is clear that 𝐼𝑜𝑈 measures the overlap rate between the prediction 

box and the real box. For two objects with the same 𝐼𝑜𝑈 , their alignment cannot be represented.     

If the prediction box does not overlap the real box, the 𝐼𝑜𝑈 is always zero, and as shown in the right 

figure in Figure 6, the regression loss optimization of the border is not equivalent to the optimization 

of the 𝐼𝑜𝑈. Therefore, 𝐼𝑜𝑈 as a loss function can result in a severe deviation of the prediction border. 

This paper uses 𝐷𝐼𝑜𝑈  as the loss function of the border. 𝐷𝐼𝑜𝑈  can directly minimize the 
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distance between two targets, and 𝐷𝐼𝑜𝑈 adds a penalty on top of 𝐼𝑜𝑈 to measure the center point 

distance between the prediction box and the real box. In the process of minimizing the distance 

between the center point of the bounding box, the bounding box converges faster, and 𝐷𝐼𝑜𝑈  can 

alleviate the problem that the prediction box contains all the real boxes, as shown in (6). 

            𝐷𝐼𝑜𝑈 = 𝐼𝑜𝑈 −
𝜌2(𝑏,𝑏𝑔𝑡)

𝑐2  (6) 

where 𝑏  and 𝑏𝑔𝑡  represent the center points of the prediction box and the marker box, 

respectively, 𝜌 represents the Euclidean distance of the center points of the two boxes, 𝑐 represents 

the diagonal distance of the minimum closure area that can contain both the prediction box and the 

label box. 

As shown in Figure 7, if the 𝐼𝑜𝑈 index is used, the same 𝐼𝑜𝑈 loss will be obtained, but in fact 

the result of the two returning to the real box is different. Because 𝐷𝐼𝑜𝑈 adds a penalty of center 

distance between frames, this problem can be solved effectively. 

YOLO series of algorithms belong to one-stage single-stage object detection algorithms, and the 

data needs to be labeled manually. On the one hand, for a small number of target objects and a large 

number of backgrounds in an image, the difference between positive and negative samples is large. On 

the other hand, because YOLO algorithm presets a lot of prior boxes, input an image and divide it into 

N*N grids, each grid will produce a lot of prediction boxes, but the real number of targets is certain. 

Only a few of the many prior boxes contain target objects, which results in simple and difficult sample 

problems. Background is a distinguishable sample. Too many distinguishable samples will cause the 

overall learning direction of the model to deviate, making the downward direction of the loss function 

unexpected, resulting in invalid learning. That is, after training, the network can easily distinguish the 

background area without the target object and cannot distinguish the specific target object. 

Reducing the weight of easy-to-classify samples makes the model more focused on hard-to-

classify samples in training. 

 

Figure 7. Complete inclusion problem. 

Aiming at the above problems, this paper improves the design of the loss function of the Cell_yolo 

model. The improved loss function is composed of three parts, including the coordinate position 

prediction loss of the target box 𝑙𝑜𝑠𝑠𝑏𝑜𝑥
𝐷𝐼𝑜𝑈 , the confidence loss of the target box 𝑙𝑜𝑠𝑠𝑜𝑏𝑗

   and the 

category loss 𝑙𝑜𝑠𝑠𝑐𝑙𝑠
𝐹𝑜𝑐𝑎𝑙 𝑙𝑜𝑠𝑠. The loss function for Cell_yolo is (7). 

    𝐿𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠𝑏𝑜𝑥
𝐷𝐼𝑜𝑈 + 𝑙𝑜𝑠𝑠𝑜𝑏𝑗

 + 𝑙𝑜𝑠𝑠𝑐𝑙𝑠
𝐹𝑜𝑐𝑎𝑙 𝑙𝑜𝑠𝑠   (7) 

where 𝑙𝑜𝑠𝑠𝑏𝑜𝑥
𝐷𝐼𝑜𝑈  is the loss calculated by mean square deviation function, and 𝑙𝑜𝑠𝑠𝑜𝑏𝑗

   and 
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𝑙𝑜𝑠𝑠𝑐𝑙𝑠
𝐹𝑜𝑐𝑎𝑙 𝑙𝑜𝑠𝑠 are the loss calculated by cross-entropy function. 

For more standard detection, the improved loss function based on Focal loss is used in the model 

of this paper. Focal loss starts from this idea and modifies the original cross-entropy function on the 

basis of two-class cross-entropy function formulas such as (8): 

 𝐿 = −𝑦𝑙𝑜𝑔𝑦′ − (1 − 𝑦)𝑙𝑜𝑔(1 − 𝑦′) = {
−𝑙𝑜𝑔𝑦′              , 𝑦 = 1

− log(1 − 𝑦′) , 𝑦 = 0
                (8) 

The output of the activation function is a 𝑦′ in the range of 0 to 1. The objective of the neural 

network is to minimize the loss function. In (8), the smaller the loss function is, the larger the 

probability value of the output of the activation function is for positive samples, indicating that the 

network model is more certain that the sample is positive. Similarly, for negative samples, the smaller 

the probability value of the activation function output is, the higher the probability that the model 

considers the sample to be negative. Focal loss is calculated as (9): 

            𝐿𝑓𝑙= {
−(1 − 𝑦′)𝛾𝑙𝑜𝑔𝑦′  , 𝑦 = 1

− 𝑦′𝛾log(1 − 𝑦′) , 𝑦 = 0
                (9) 

Focal loss improvements seem small but can be very helpful in training. Focal loss adds a factor 

𝛾 to the original. When 𝛾 > 0, the loss of easily classified samples is reduced, which makes the model 

more focused on difficult samples. Assuming that the probability of activation function output for a 

positive sample is 0.9 with 𝛾 = 2, the (1 − 𝑦′)𝛾 value will be small, and the loss function value will 

be small. Conversely, if the probability value of the positive sample output through the activation 

function is 0.2, this means that although it is a positive sample, it is more likely that the model will 

consider the negative sample, which is a difficult sample and should be trained more. At this time, the 

(1 − 𝑦′)𝛾 value is very large, resulting in the value of the loss function being too large, and the model 

will increase the learning intensity and pay more attention to the difficult samples. Similarly, for 

negative samples, the output probability value of 0.1 is much smaller than the loss value of 0.8. This 

slight change in the loss function reduces the impact of simple samples, strengthens the training of 

difficult samples and shifts the focus of network learning to difficult features. This solves the problem 

of simple and difficult samples. In addition, to solve the problem of balancing positive and negative 

samples, the balance coefficient 𝛼 is added, and the final formula is as (10). 

           𝐿𝑓𝑙= {
−𝛼(1 − 𝑦′)𝛾𝑙𝑜𝑔𝑦′             , 𝑦 = 1

− (1 − 𝛼)𝑦′𝛾log(1 − 𝑦′) , 𝑦 = 0
                (10) 

In summary, the improved Cell_yolo loss function consists of three parts: One is the loss of 

confidence, which continues the cross-entropy loss function in YOLOv4. The second is the location 

loss, which uses the 𝐷𝐼𝑜𝑈  loss function. The third is category loss, which uses an improved loss 

function based on Focal loss. 

3. Region of interest recognition experiment 

This chapter compares the Cell_Yolo network proposed in this article with the main target 

recognition networks YOLOv4, YOLOv4_tiny and Faster-RCNN. Faster-RCNN is an improvement 

of RCNN network and Faster-RCNN network, and it is a two-stage detection algorithm. The first phase 

of Faster-RCNN mainly generates target recommendation boxes, and the second phase adjusts and 

classifies target recommendation boxes. Its main improvement is to use RPN (Region box regression) 
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instead of the original Selective Search method to generate target recommendation boxes and to 

achieve end-to-end object detection. Faster-RCNN uses a set of neural networks for object detection, 

in which parameters can be shared, which greatly improves the speed of the two-stage detection 

algorithm. Compared with single-stage detection methods, the recognition error rate is low, but the 

detection speed is poor. YOLOv4 has been described above and is not covered here. YOLOv4_tiny is 

a simplification of YOLOv4. Compared with YOLOv4, 𝑀𝑖𝑠ℎ  activation function is not used in 

feature extraction, and only one feature pyramid is used in feature fusion. The most significant feature 

of YOLOv4_tiny is its fast speed, but due to the simplification of feature extraction and feature fusion 

structure, the model is not accurate enough to detect small objects and two near objects. 

Cell_Yolo is trained to recognize a single cell in the entire cell image and to give the location of 

each cell in the overlapping cell image. In this section, two index evaluation algorithms, Intersection 

over Union and Frame Per Second, are introduced. Since the Cell_Yolo used in this study does not 

judge the cell type, but identifies and locates the cell, the 𝑚𝐴𝑃 (mean Average Precision) commonly 

used in target recognition detection is not compared. Intersection and union ratio (𝐼𝑜𝑈) is a concept 

used to measure target positioning accuracy in object detection. The intersection-merge ratio represents 

the degree of coincidence between the prediction box and the real box. Mathematically, the 

intersection-merge ratio refers to the ratio between the intersection and the union of the two. This is 

described in Chapter 3 and is not repeated here. Since multiple targets can be identified, and multiple 

target frames can be generated in the image, using only one frame of 𝐼𝑜𝑈  does not prove the 

superiority of the algorithm, so the 𝑚𝐼𝑜𝑈 index is introduced for judgment. The 𝑚𝐼𝑜𝑈 is the average 

intersection-union ratio, which is based on the actual labeled data. For example, (11) calculates the 

𝐼𝑜𝑈 of each prediction box separately from the true box and divides the number of boxes by the sum. 

                    𝑚𝐼𝑜𝑈 =
∑ 𝐼𝑜𝑈𝑛

𝑘
𝑛=1

𝑘
                (11) 

where 𝑘 represents the number of actual boxes in the labeled data, and 𝐼𝑜𝑈𝑛 is the 𝐼𝑜𝑈 for 

calculating the nth box. This avoids the high 𝑚𝐼𝑜𝑈 caused by the precise recognition of individual 

boxes in the algorithm. FPS detection frames per second is a common measure of object detection 

algorithms. This experiment uses FPS to evaluate the efficiency of the algorithm. When comparing 

FPS values of different algorithms, it is necessary to ensure that each algorithm needs the same 

hardware environment. The higher the FPS value is, the higher the efficiency of the algorithm, the 

better the performance of the algorithm in terms of efficiency. This paper compares the Cell_yolo 

network with the main target recognition networks YOLOv4, YOLOv4_tiny and Faster_RCNN. 

Figure 8 selects two typical cell images of cervical cells, with the green box as a rectangular box 

indicating the location of the cells. Figure a) is a highly overlapping cell image labeled. Each cell in 

the field of view overlaps to some extent, and the boundary contrast at the overlap is poor. Figure b) is 

a labeled background complex cell image, with a small number of overlapping cells in the field of 

view, and excessive surrounding impurities and other unrelated cells make the background extremely 

complex. The principle of labeling data is to label cells that are intact, not to consider cells at the 

periphery of the field of view and to require that only one complete cell exists in a target frame. 
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a) Overlapping cell label data         b) Complex background label data 

Figure 8. Label data. 

 

a) Overlapping cell recognition result   b) Complex background recognition result 

Figure 9. Cell_Yolo results. 

Figure 9 shows the recognition performance of the Cell_Yolo algorithm proposed in this paper. 

Figure a) Cell_Yolo has a strong ability to recognize overlapping cells, and each target frame does not 

destroy cell integrity. The model can accomplish overlapping cell recognition tasks. Figure b) The 

results of identifying overlapping cells in complex background show that the model has good 

generalization ability, few impurities can be identified as cells, the model can accurately identify the 

cell location under the interference of many impurities, and the model has good anti-interference ability. 

In terms of visual effect, Cell_Yolo can complete the identification and labeling of complex 

background and overlapping cell images. 

Figure 10 shows the recognition result of YOLOv4. YOLOv4 is qualified in overlapping cell 

images and complex background images. It can recognize overlapping cells accurately and has strong 

anti-interference ability. Figure b) shows that the impurities surrounding the cells do not adversely 

affect the final accurate identification. 
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a) Overlapping cell recognition result   b) Complex background recognition result 

Figure 10. YOLOv4 results. 

 

a) Overlapping cell recognition result   b) Complex background recognition result 

Figure 11. YOLOv4_tiny results. 

Figure 11 shows the recognition effect of YOLOv4_tiny. From the result diagram, overlapping 

cells are not recognized in both images. The model only has strong recognition ability for single cells, 

but in reality, the images of overlapping cells and complex background account for the majority. 

Compared with Cell_Yolo and yolov4, the recognition effect of YOLOv4_tiny model has a large gap. 

Compared with yolov4, YOLOv4_tiny model is greatly simplified, and the parameters of 

YOLOv4_tiny are ten times less than yolov4. The simplification of model and parameters leads to the 

inaccuracy of detection. The results in the Figure show that the recognition ability of YOLOv4_tiny 

on overlapping cells is poor, which makes it difficult to meet the actual needs. 

The recognition effect of Faster-RCNN is shown in Figure 12. Faster-RCNN performs well in 

overlapping cell images and images with high background complexity, and cells can be recognized 

correctly. However, the regression position of the target frame is inaccurate, and some cells fail to be 

calibrated completely. 
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a) Overlapping cell recognition result   b) Complex background recognition result 

Figure 12. Faster-RCNN results. 

 

 

 

    a) Cell_Yolo     b) YOLOv4      c) YOLOv4_tiny    d) Faster_RCNN 

Figure 13. Comparison of experimental data. 

Figure 13 shows more experimental results, from which it can be seen that each network can 

better achieve the segmentation of single cells, but there are certain differences in the processing of 

overlapping cells and cell images under complex background. By comparison, it is obvious that the 

segmentation effect of YOLOv4_tiny model in special scenes is the most unsatisfactory. It has the 

obvious possibility of missing detection. YOLOv4 and Faster_RCNN models also achieve good results 

in the segmentation process, but the regression position of the target box is not ideal. The proposed 

model in this paper has achieved better results in various scenarios, and it is more accurate in detection 

accuracy and target box labeling. 

The above results provide a visual comparison of the actual recognition images of each network. 

Table 1 shows the performance of each network model in the evaluation index 𝑚𝐼𝑜𝑈 and 𝐹𝑃𝑆. 
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Table 1. Comparison of cell recognition effects. 

 Cell_Yolo YOLOv4 YOLOv4_tiny Faster_RCNN 

𝒎𝑰𝒐𝑼 0.905 0.907 0.629 0.910 

𝑭𝑷𝑺 67 50 90 15 

From the above experimental results, it can be seen that Cell_Yolo performs well in both 𝑚𝐼𝑜𝑈 

and 𝐹𝑃𝑆 parameters. Although YOLOv4_tiny performs best in 𝐹𝑃𝑆 metrics, it performs worst in 

accuracy, which confirms the image results above. YOLOv4 is slightly higher than Cell_Yolo in 𝑚𝐼𝑜𝑈 

index, but its frame rate differs greatly from Cell_Yolo. Similarly, Faster_RCNN networks perform 

best in 𝑚𝐼𝑜𝑈 metrics but are inefficient. Operating efficiency is an important reference index in this 

project. The whole segmented network is in two stages, where one stage completes the identification 

of single-cell regions of interest, and the second stage is the segmentation of cell images. Therefore, 

select the one with higher operating efficiency as far as possible in this phase. Cell_Yolo maintains 

high precision while operating efficiently. From the experimental results, Cell_Yolo is designed to 

meet the requirements, and its operating efficiency is about 34% higher than YOLOv4. 

4. Conclusions 

The ultimate goal of the method proposed in this paper is to target highly overlapping regions 

between cells in cervical cell segmentation, and the poor contrast of the overlapping boundaries of 

cells makes cervical cancer image segmentation difficult. This paper takes cervical squamous cells as 

the research object, simplifies the network structure of YOLOv4, adopts the improved maximum 

pooling method to maximize the transmission of image feature information in the neural network and 

proposes a center distance for the problem of mistaken deletion of overlapping cell frames. Regarding 

the NMS algorithm, the whole algorithm greatly improves the detection rate while ensuring the 

detection accuracy. Simplified network architecture also facilitates model training and practical 

application. In the subsequent research process, we will continue to collect and find more data sets to 

optimize the network. It will also be tested in segmentation of other cancer cells. 
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