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Abstract: In this paper, a stochastic epidemic model with logistic growth is discussed. Based on
stochastic differential equation theory, stochastic control method, etc., the properties of the solution of
the model nearby the epidemic equilibrium of the original deterministic system are investigated, the
sufficient conditions to ensure the stability of the disease-free equilibrium of the model are established,
and two event-triggered controllers to drive the disease from endemic to extinction are constructed.
The related results show that the disease becomes endemic when the transmission coefficient exceeds
a certain threshold. Furthermore, when the disease is endemic, we can drive the disease from endemic
to extinction by choosing suitable event-triggering gains and control gains. Finally, the effectiveness
of the results is illustrated by a numerical example.
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1. Introduction

As we know, due to the limitation of medical knowledge, the pathogenesis of many infectious
diseases such as influenza A, AIDS, etc. still are not fully understood, which makes it difficult to cure
them in a short time. In order to control these diseases, some mathematical models which can reflect
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the transmission modes of diseases have been established to assist in the formulation of public policies
during infectious disease outbreaks [1–4]. In early research, some ordinary differential equation models
were used to characterize the dynamic transmission characteristics of infectious diseases [5–8].

Owing to the non-negligible effect of noise [9,10], many researchers introduced stochastic perturba-
tions into deterministic models to transform the deterministic problem into a corresponding stochastic
problem [11–14]. Recently, the stochastic epidemic model with logistic growth has attracted extensive
attention due to the assumption that logical growth input of the susceptible individuals and infected
individuals is more reasonable for a disease with a high death rate [15–20]. Although [15–17] inves-
tigated the stochastic epidemic model with logistic growth, they introduced Gaussian white noise into
the deterministic model by perturbing the recruitment rate coefficient and the death rate coefficient of
the epidemic model. In fact, for an epidemic model, it is more worth discussing that its transmission
coefficient is perturbed [18], since the infection rate of infectious diseases often plays a key role in
the persistence or extinction of the disease and more easily fluctuates around some average value due
to the continuous environmental stochastic perturbations. The current situation of COVID-19 shows
that the rate of infections fluctuates with the temperature. When the temperature goes up, it becomes
higher. Although [19, 20] introduced Gaussian white noise into the deterministic model by perturbing
the transmission coefficient, they have not discussed the properties of the solution of the stochastic
epidemic model near the equilibrium of the original deterministic system.

On the other hand, many researchers recently began to pay attention to the systems and control the-
ory toward the epidemic models, which can explore how to drive diseases from epidemic to extinction.
Until now, a wide variety of control approaches have been used to mitigate the epidemic spreading
processes. For example, sliding mode control [21–23], state feedback control [24, 25], impulse con-
trol [26,27] and optimal control [28,29]. Event-triggered control updates the control inputs only when
certain trigger conditions are met, rather than updating the inputs at every time instant, and it is a novel
feedback control strategy [30–32]. Compared with the traditional control method, the event-triggered
control may be more practical, since the latter can reduce the number of control actuation updates. For
example, when the number of medical resources or the level of traffic regulations is regarded as one
of the control inputs for controlling the epidemic spreading processes, the traditional control strategies
force us to update continuously or even per unit of time the control inputs (the number of medical
resources or the level of traffic regulations), which is neither economical nor practical because even
a small adjustment should require tremendous efforts. A more suitable approach is that the control
input (the number of medical resources or the level of traffic regulations) is updated only when some
indicators related to the number of infected individuals meet a limitation condition, which is called
the event-triggered condition in the event-triggered control [33]. Although the event-triggered control
for the epidemic processes is reasonable and useful in practice, relevant results that treat the epidemic
as a system and design the event-triggered controller for the epidemic model are rare in the existing
literature. References [33] first investigated the event-triggered control problem for a susceptible-
infected-susceptible (SIS) model, where the discussed object is a deterministic system. To the best of
our knowledge, the event-triggered control for a stochastic epidemic model has not been investigated.

Motivated by the aforementioned discussions, this paper aims to discuss the properties of the so-
lution of a stochastic epidemic model with logistic growth and design two event-triggered controllers
to drive the disease from endemic to extinction. By analyzing the linear form of the stochastic epi-
demic model, the threshold of being endemic or extinction of the infectious disease has been obtained.
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Based on the Lyapunov stability theory, the mean square stability of the disease-free equilibrium of the
stochastic system under event-triggered control has been analyzed. By applying the comparison prin-
ciple, stochastic analysis method, etc., the almost sure exponential stability for the stochastic epidemic
model under event-triggered control has been achieved. Finally, the effectiveness of the theoretical
results has been demonstrated in a numerical example.

The remainder of the paper is organized as follows: In Section 2, a classical plant infectious disease
model is introduced. In Section 3, the existence of a global positive solution of the system is discussed,
the sufficient conditions for being endemic or extinction of the infectious disease are given, and when
the disease becomes endemic, two event-triggered controllers are designed to achieve the mean square
stability and almost sure exponential stability of the disease-free equilibrium for the stochastic epi-
demic system. In Section 4, an illustrative example is used to demonstrate. Finally, conclusions and
discussion are presented.

Notation: Let R+ be the set of non-negative real numbers, and Rn
+ be n dimensional Euclidean

space. Rn×n stands for the set of all n× n real matrices, and || · || denotes the Euclidean norm in Rn. The
superscript T denotes matrix transposition. a∨b represents the maximum of a and b, and a∧b denotes
the minimum of a and b. (Ω,F ,P) stands for a complete probability space with a filtration {Ft}t≥0,
and C2,1(R2

+ × R+;R+) denotes the set of functions from R2
+ × R+ to R+ which are continuously twice

differentiable in ξ(0) ∈ R2
+ and once differentiable in t ∈ R+. < M(t),M(t) >t≥0 is called the quadratic

variation of M(t).

2. A model from mathematical ecology

Next, a model which is typical for a large class of plant infectious disease dynamics and may be
applicable to other ecological realms is given, as follows:dS (t) = S (t)(α1 − βI(t) − δ1S (t))dt

dI(t) = I(t)(−α2 + βS (t) − δ2I(t))dt,
(2.1)

where S (t) is the number of healthy individuals who are susceptible to infection, and I(t) is the number
of infected individuals who can transmit the disease to the healthy ones. α1 > 0 and α2 > 0 denote
the recruitment rate of susceptible individuals and the death rate of infected individuals, respectively.
β > 0 is the transmission coefficient of susceptible individuals when they contact the infectious. δ1 > 0
and δ2 > 0 denote respectively the intraspecific competition coefficients of susceptible individuals
and infected individuals, which are caused by the limitation of natural resources and environmental
conditions.

By simple computation, it is not difficult to obtain the threshold value γ0 =
α1β

δ1α2
of the system

(2.1), i.e., when α2
β
< α1
δ1

, system (2.1) has a locally stable equilibrium (S ∗, I∗), where S ∗ = α1δ2+βα2
β2+δ1δ2

and I∗ = βα1−δ1α2
β2+δ1δ2

. When α2
β
> α1
δ1

, system (2.1) exists a stable disease-free equilibrium (S 0, 0), where
S 0 = α1

δ1
.

In fact, in the real environment, some parameters of the system will inevitably be disturbed by noise
[9, 10]. Recall that the parameter β represents the transmission coefficient of susceptible individuals
when they contact the infectious. In practice, when considering stochastic environmental disturbance,
we usually estimate it by an average value plus an error term. By the central limit theorem, the error
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term often follows a normal distribution and can be described by Gaussian white noise. Therefore, we
may model the case by perturbing the transmission coefficient β of the system (2.1) by β + ρdω(t) to
obtain the following stochastic differential equations:dS (t) = S (t)(α1 − βI(t) − δ1S (t))dt − ρS (t)I(t)dω(t)

dI(t) = I(t)(−α2 + βS (t) − δ2I(t))dt + ρS (t)I(t)dω(t),
(2.2)

where ω(t) is a Brownian motion defined on the complete probability space (Ω,F , P) with a natural
filtration {Ft}t≥0. ρ is the Gaussian white noise intensity coefficient.

Remark 1. The general method of introducing noise to the deterministic epidemic model is to perturb
some important parameters in a deterministic model. In this paper, the transmission coefficient β of
the system (2.1) is perturbed, which is different from many studies [15–17], where the parameters α1

and α2 are perturbed.

Remark 2. In this paper, the transmission coefficient β has been estimated as an average value β0 plus
an error term, and the error term follows a normal distribution with a mean of zero. Another approach
for introducing environmental stochasticity to the disease transmission coefficient is to model the trans-
mission coefficient as a time-dependent stochastic process β(t), where β(t) may be a Wiener process
and approximately normally distributed with mean β0 [34]. Although both methods are biologically
reasonable, the first method is more suitable for autonomous systems.

To prove the main results, the following Lemma is needed.

Lemma 1. For the systems [35]

dX(t) = f (t, X(t))dt + g(t, X(t))dω(t), (2.3)

and the linear form of Eq (2.3)

dX(t) = F(t)X(t)dt +G(t)X(t)dω(t), (2.4)

If the linear system (2.4) with constant coefficients is asymptotically stable almost surely (or in proba-
bility), and the coefficients of systems (2.3) and (2.4) satisfy inequality

| f (t, X) − F(t) · X| + |g(t, X) −G(t) · X| ≤ γ|X|, f or all (t, X) ∈ [t0,∞) × Rd, (2.5)

in a sufficiently small neighbourhood of the point x = 0 and with a sufficiently small constant γ, then
the trivial solution X(t) = 0 of the system (2.3) is globally asymptotically stable.

3. Main results

In this section, we will discuss the existence of a global positive solution of the system (2.2), the
asymptotic stability of the disease-free equilibrium (S 0, 0) of the system (2.2), the properties of the
solution of the system (2.2) near the epidemic equilibrium (S ∗, I∗) of the original system (2.1), the
mean square stability of the disease-free equilibrium of the system (2.2) via event-triggered control,
and the almost sure exponential stability of the disease-free equilibrium of the system (2.2) via event-
triggered control.

Next, we will prove the existence of a global positive solution of the system (2.2) by a similar
method as in [36] and [37].
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3.1. Existence of unique global positive solution

Theorem 1. If the Gaussian white noise intensity ρ satisfies 1
2ρ

2 < δ1 and 1
2ρ

2 < δ2, then the system
(2.2) has a unique global positive solution (S (t), I(t)) with probability one on t ≥ 0 for any initial value
(S (0), I(0)) ∈ R2

+.

Proof. The coefficients of the system (2.2) satisfy the local Lipschitz condition. When the initial value
(S (0), I(0)) of the system (2.2) is positive, it follows from [37] there exists a unique local positive
solution for system (2.2) on t ∈ [0, τ∞), where τ∞ is the explosion time. Next, we need to prove
τ∞ = ∞ a.s. If this statement is not true, then we can find a pair of positive constants ξ and T such that

P(τ∞ ≤ T ) > ξ. (3.1)

Choose a sufficiently large integer k0 ≥ 0 so that S (0) ∈ ( 1
k0
, k0) and I(0) ∈ ( 1

k0
, k0). For each integer

k > k0, define the stopping time

τk = inf{t ∈ [0, τ∞) : min{S (t), I(t)} ≤
1
k

or max{S (t), I(t)} ≥ k}. (3.2)

For τk → τ∞ almost surely, we have

P(τk ≤ T ) > ξ. (3.3)

Define a function V ∈ C2,1(R+ × R+;R+) by

V(S , I) = S (t) − 1 − ln(S (t)) + I(t) − 1 − ln(I(t)). (3.4)

For any t0 ≤ t ≤ T , by the Dynkin Foumula [37], we have

EV(S (t ∧ τk), I(t ∧ τk)) = V(S (t0), I(t0)) + E
∫ t∧τk

t0
LV(S (s), I(s))ds, (3.5)

where LV(S , I) is defined by

LV(S , I) =(S (t) − 1)(α1 − βI(t) − δ1S (t)) +
1
2
ρ2I2(t)

+ (I(t) − 1)(−α2 + βS (t) − δ2I(t)) +
1
2
ρ2S 2(t)

=(
1
2
ρ2 − δ1)S 2(t) + (δ1 − β + α1)S (t) − α1

+ (
1
2
ρ2 − δ2)I2(t) + (δ2 + β − α2)I(t) + α2.

(3.6)

Based on conditions 1
2ρ

2 < δ1 and 1
2ρ

2 < δ2, we get 1
2ρ

2 − δ1 < 0 and 1
2ρ

2 − δ2 < 0. So, there must
exist a positive constant H satisfying LV(S , I) ≤ H. Substituting this into (3.5), we have

EV(S (T ∧ τk), I(T ∧ τk)) ≤ V(S (t0), I(t0)) + HT. (3.7)

Set Ak = {τk ≤ T }, and by (3.3), we have

P(Ak) > ξ. (3.8)
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For every ω ∈ Ak, S (ω, τk) and I(ω, τk) equal to either k or 1
k , by (3.7), we obtain

V(S (t0), I(t0)) + HT ≥E[1Ak(ω)V(S (ω, τk), I(ω, τk))]

≥ξ[(k − 1 − ln k) ∧ (
1
k
− 1 − ln

1
k

)].
(3.9)

Letting k → ∞ leads to the contradiction

∞ > V(S (t0), I(t0)) + HT = ∞, (3.10)

so we must have τ∞ = ∞ a.s. The proof is complete. □

3.2. Asymptotic stability of the disease-free equilibrium (S 0, 0)

Let S̃ (t) = S (t) − S 0 and Ĩ(t) = I(t) , and then the system (2.2) can be written as follows:dS̃ (t) = (S̃ (t) + S 0)(−βĨ(t) − δ1S̃ (t))dt − ρ(S̃ (t) + S 0)Ĩ(t)dω(t)
dĨ(t) = Ĩ(t)(−α2 + β(S̃ (t) + S 0) − δ2 Ĩ(t))dt + ρ(S̃ (t) + S 0)Ĩ(t)dω(t).

(3.11)

Letting (S (t), I(t)) = (0, 0) is the trivial solution of system (3.11). By using the above variables
substitution, the stochastic asymptotic stability of the disease-free equilibrium (S 0, 0) of the system
(2.2) is equivalent to the stochastic asymptotic stability of the trivial solution (0, 0) of the system
(3.11).

In order to achieve the stochastic asymptotic stability of trivial solution of the system (3.11), we
first consider the linear form of the system (3.11),dS̃ (t) = (−βS 0 Ĩ(t) − δ1S 0S̃ (t))dt − ρS 0 Ĩ(t)dω(t)

dĨ(t) = (βS 0 − α2)Ĩ(t)dt + ρS 0 Ĩ(t)dω(t).
(3.12)

Set R∗ = α2
S 0
+ 1

2ρ
2S 0 and prove the following result:

Lemma 2. If β < R∗, then the trivial solution of the system (3.12) is globally asymptotically stable.

Proof. The second equation of (3.12) has the explicit solution

Ĩ(t) = Ĩ(t0)exp
{∫ t

t0
(βS 0 − α2 −

1
2
ρ2S 2

0)ds +
∫ t

t0
ρS 0dω(s)

}
. (3.13)

Taking logarithms of both sides of (3.13),

log Ĩ(t) = log Ĩ(t0) + (t − t0)(βS 0 − α2 −
1
2
ρ2S 2

0) + M(t), (3.14)

where M(t) =
∫ t

t0
ρS 0dω(s) is a local martingale, and the quadratic variation ⟨M(t),M(t)⟩ of M(t) is

bounded. Based on the Strong law of large numbers for local martingales [37], we have

lim
t→∞

M(t)
t
= 0. (3.15)
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Taking limits on both sides of (3.14) and from (3.15), we obtain

lim
t→∞

1
t

log Ĩ(t) = βS 0 − α2 −
1
2
ρ2S 2

0. (3.16)

Based on the condition β < R∗, we have

lim
t→∞

Ĩ(t) = 0. a.s. (3.17)

Next, consider the first equation of (3.12), and based on Itô’s formula,

log S̃ (t) = log S̃ (t0) +
∫ t

t0
(−δ1S 0 − βS 0

Ĩ(s)
S̃ (s)

−
1
2
ρ2S 2

0(
Ĩ(s)
S̃ (s)

)2)ds

−

∫ t

t0
ρS 0

Ĩ(s)
S̃ (s)

dω(s).
(3.18)

Taking limits on both sides of (3.18),

lim
t→∞

1
t

log S̃ (t) ≤ lim
t→∞

[
−

1
t

∫ t

t0
δ1S 0ds −

1
t

∫ t

t0
βS 0

Ĩ(s)
S̃ (s)

ds −
1
t

∫ t

t0

1
2
ρ2S 2

0(
Ĩ(s)
S̃ (s)

)2ds
]

≤0.
(3.19)

So, we have
lim
t→∞

S̃ (t) = 0. a.s. (3.20)

□

Theorem 2. If β < R∗, then the disease-free equilibrium (S 0, 0) of the system (2.2) is globally asymp-
totically stable.

Proof. Consider the left-hand side of the system (3.11) and its linear form (3.12)√
((S̃ + S 0)(−βĨ − δ1S̃ ) + (βS 0 Ĩ + δ1S 0S̃ ))2 + (Ĩ(−α2 + β(S̃ + S 0) − δ2 Ĩ) − (βS 0 − α2)Ĩ)2

+

√
(−ρ(S̃ + S 0)Ĩ + ρS 0 Ĩ)2 + (ρ(S̃ + S 0)Ĩ − ρS 0 Ĩ)2

=

√
(βS̃ Ĩ + δ1S̃ 2)2 + (βS̃ Ĩ − δ2 Ĩ2)2 +

√
2ρ2S̃ 2 Ĩ2

≤
√

2ρS̃ Ĩ +
√

2βS̃ Ĩ + δ1S̃ 2 + δ2 Ĩ2 < η||Λ(t)||,

(3.21)

where Λ(t) = [S̃ T (t), ĨT (t)]T , S̃ (t) ∈ (−ε, ε), Ĩ(t) ∈ (−ε, ε), and η = 4(
√

2ρε ∨
√

2βε ∨ δ1ε ∨ δ2ε).
Base on Lemmas 1 and 2, the trivial solution of the system (3.11) is globally asymptotically stable.

Accordingly, if condition β < R∗ holds, the disease-free equilibrium (S 0, 0) of the system (2.2) is
globally asymptotically stable, i.e., the disease fades out. □

To obtain the threshold of being endemic or extinction of the infectious disease, we will investi-
gate the properties of the solution of the model (2.2) near the epidemic equilibrium of the original
deterministic system (2.1).
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3.3. The properties near the epidemic equilibrium (S ∗, I∗) of the original system

Theorem 3. If β > R∗ and δ2 >
1
2ρ

2S ∗, then the solution of the system (2.2) satisfies

lim sup
t→∞

1
t
E

∫ t

t0
(S (s) −

2δ1S ∗

2δ1 − ρ2I∗
)2 + (I(s) −

2δ2I∗

2δ2 − ρ2S ∗
)2ds ≤

h
h3
, (3.22)

where h = ρ
2δ1I∗(S ∗)2

2δ1−ρ2I∗ +
ρ2δ2S ∗(I∗)2

2δ2−ρ2S ∗ , h1 = δ1 −
1
2ρ

2I∗,h2 = δ2 −
1
2ρ

2S ∗, h3 = h1 ∧ h2.

Proof. For the system (2.2), construct the following Lyapunov function V ∈ C2,1(R+ × R+;R+):

V(S , I) = S (t) − S ∗ − S ∗ ln(S (t)/S ∗) + I(t) − I∗ − I∗ ln(I(t)/I∗). (3.23)

Computing LV along the trajectory of the system (2.2), we get

LV(S , I) =(S (t) − S ∗)(−β(I(t) − I∗) − δ1(S (t) − S ∗)) +
1
2
ρ2S ∗I2(t)

+ (I(t) − I∗)(β(S (t) − S ∗) − δ2(I(t) − I∗)) +
1
2
ρ2I∗S 2(t)

= − δ1(S (t) − S ∗)2 − δ2(I(t) − I∗)2 +
1
2
ρ2S ∗I2(t) +

1
2
ρ2I∗S 2(t)

= − (δ1 −
1
2
ρ2I∗)(S (t) −

2δ1S ∗

2δ1 − ρ2I∗
)2 +
ρ2δ1I∗(S ∗)2

2δ1 − ρ2I∗

− (δ2 −
1
2
ρ2S ∗)(I(t) −

2δ2I∗

2δ2 − ρ2S ∗
)2 +
ρ2δ2S ∗(I∗)2

2δ2 − ρ2S ∗
.

(3.24)

Based on the Dynkin formula [37], we have

EV(S (t), I(t)) = EV(S (t0), I(t0)) + E
∫ t

t0
LV(S (s), I(s))ds ≥ 0. (3.25)

Set h1 = δ1 −
1
2ρ

2I∗, h2 = δ2 −
1
2ρ

2S ∗, h = ρ2δ1I∗(S ∗)2

2δ1−ρ2I∗ +
ρ2δ2S ∗(I∗)2

2δ2−ρ2S ∗ . When conditions β > R∗ and
δ2 >

1
2ρ

2S ∗ hold, h1 > 0 and h2 > 0. So, we obtain

lim sup
t→∞

1
t
E

∫ t

t0
(S (s) −

2δ1S ∗

2δ1 − ρ2I∗
)2 + (I(s) −

2δ2I∗

2δ2 − ρ2S ∗
)2ds ≤

h
h3
, (3.26)

where h3 = h1 ∧ h2. □

Remark 3. By Theorem 3, we obtain that when conditions β > R∗ and δ2 >
1
2ρ

2S ∗ hold, the solution of
the system (2.2) finally fluctuates around the point Q( 2δ1S ∗

2δ1−ρ2I∗ ,
2δ2I∗

2δ2−ρ2S ∗ ), which is related to the epidemic
equilibrium (S ∗, I∗) of the original deterministic system (2.1). Especially, when the noise intensity
coefficient ρ = 0, the point Q( 2δ1S ∗

2δ1−ρ2I∗ ,
2δ2I∗

2δ2−ρ2S ∗ ) becomes the epidemic equilibrium (S ∗, I∗).

Remark 4. By Theorems 2 and 3, we notice that when the condition β < R∗ holds, the disease fades
out; and when the conditions β > R∗ and δ2 >

1
2ρ

2S ∗ hold, the disease becomes endemic. The threshold
value R∗ is related to the noise intensity coefficient. It is obvious that reducing the transmission rate β
is helpful to control the disease.

How to mitigate the epidemic-spreading processes when the transmission rate β is very large and
the disease has become epidemic is the next question.
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3.4. Mean square stability of the disease-free equilibrium via event-triggered control

By Theorem 3, when β > R∗ and δ2 >
1
2ρ

2S ∗, the disease becomes endemic. In order to drive the
disease from epidemic to extinction and maintain stability at the disease-free equilibrium point (S 0, 0),
a feedback controller U(t) should be required, as follows:dS (t) = S (t)(α1 − βI(t) − δ1S (t))dt − ρS (t)I(t)dω(t)

dI(t) = [I(t)(−α2 + βS (t) − δ2I(t)) + U(t)]dt + ρS (t)I(t)dω(t),
(3.27)

where U(t) is a control input.
As previously described in the Introduction, traditional control strategies for epidemic models as-

sume that the control inputs (the number of medical resources and the level of traffic regulations) can be
updated continuously or even per unit of time. However, such frequent control updates are neither eco-
nomical nor practical because even a small change to control inputs should require tremendous effort.
In order to reduce the number of control actuation updates, the event-triggered control is considered
in the controlled system (3.27). In the system with an event trigger mechanism, the event-triggered
control is updated only when certain trigger conditions are met. Suppose t0, t1, ..., tk, ... is the event-
triggering time sequence, which will be determined by the next proposed event-triggered condition.
By introducing the event-triggered protocol, the system (3.27) will be changed into

dS (t) = S (t)(α1 − βI(t) − δ1S (t))dt − ρS (t)I(t)dω(t)
dI(t) = [I(t)(−α2 + βS (t) − δ2I(t)) + U(tk)]dt + ρS (t)I(t)dω(t).

∀t ∈ [tk, tk+1), k = 0, 1, ... (3.28)

Remark 5. From the system (3.28), It is easy to find that the control input U(t) of the event-triggered
control holds a constant U(tk) in the time interval [tk, tk+1), which is often referred to as sample-and-
hold in the literature and different from feedback control where control inputs are updated continuously
(for the continuous-time case) or per unit of time (for the discrete-time case).

In order to achieve the mean square stability of the disease-free equilibrium for the system (2.2),
the control input U(t) of the system is designed in the following form:

U(t) = −γI(t), (3.29)

where γ denotes the isolation or cure rate of infected individuals and is often affected by the number
of medical resources and the level of traffic regulations. In the time interval [tk, tk+1), the control input
U(t) = U(tk) is only related to the control gain γ and the number of infected individuals I(tk) at the
time tk.

Consider the following event-triggered condition:

|ε(t)| ≤ λ1I2(t), (3.30)

where ε(t) = I(t)− I(tk) is the state measurement error of the current state and the state at the last event-
triggering instant for the system, λ1 is called the event-triggering gain. When the state measurement
error of these states meets the trigger condition (3.30), the controller will update to drive the disease
from endemic to extinction.
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For the convenience of calculation, the system (3.28) can be rewritten:dS (t) = S (t)(α1 − βI(t) − δ1S (t))dt − ρS (t)I(t)dω(t)
dI(t) = [I(t)(−α2 + βS (t) − δ2I(t)) − γ(I(t) − ε(t))]dt + ρS (t)I(t)dω(t).

∀t ∈ [tk, tk+1) (3.31)

Theorem 4. Assume β > R∗ and δ2 >
1
2ρ

2S ∗. If there exist the control gain γ > 0 of the control input
(3.29) and the event-triggering gain λ1 > 0 of the event-triggered condition (3.30) satisfying

γ = βS 0 − α2, (3.32)

λ1 ≤
2δ2 − S 0ρ

2

2βS 0 − 2α2
, (3.33)

then the disease-free equilibrium (S 0, 0) is globally asymptotically stable in the mean square under the
controller U(t), i.e., the disease fades out.

Proof. For the system (3.31), set the initial value ξ(0) ∈ R2
+ and construct the following Lyapunov

function V ∈ C2,1(R+ × R+;R+):

V(S , I) = S (t) − S 0 − S 0 ln(S (t)/S 0) + I(t). ∀t ∈ [tk, tk+1). (3.34)

Then, based on Itô’s formula and from (3.32), we have

dV(S , I) = LV(S , I)dt + ρS 0I(t)dω(t), (3.35)

where
LV(S , I) =(S (t) − S 0)(−βI(t) − δ1(S (t) − S 0)) +

1
2

S 0ρ
2I2(t)

+ I(t)(−α2 + βS (t) − δ2I(t)) − (βS 0 − α2)(I(t) − ε(t))

= − δ1(S (t) − S 0)2 − (δ2 −
1
2

S 0ρ
2)I2(t) + (βS 0 − α2)ε(t).

(3.36)

For β > R∗, we have

LV(S , I) ≤ −δ1(S (t) − S 0)2 − (δ2 −
1
2

S 0ρ
2)I2(t) + (βS 0 − α2)|ε(t)|. (3.37)

Making use of the event-triggered condition (3.30), we obtain

LV(S , I) ≤ −δ1(S (t) − S 0)2 − (δ2 −
1
2

S 0ρ
2 − λ1(βS 0 − α2))I2(t). (3.38)

Based on the condition (3.33), we have

LV(S , I) ≤ 0. (3.39)

Taking the mathematical expectation operator of both sides of (3.35) and from (3.39), we have

dEV(S , I) = ELV(S , I)dt ≤ 0. (3.40)

Finally, we get
dEV(S , I)

dt
≤ 0. (3.41)

By the Lyapunov stability theory, the system (2.2) is asymptotically stable in the mean square under
the controller U(t). The proof is complete. □
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Remark 6. For the system (2.2), when β > R∗ and δ2 >
1
2ρ

2S ∗, the disease is epidemic. However, by
choosing suitable control gain (3.32) and event-triggering gain (3.33), we can achieve mean square
stability of the disease-free equilibrium (see Fig. 3), i.e., the disease fades out.

Remark 7. In Theorem 4, the triggering conditions are designed to guarantee that the time derivative
of the similar Lyapunov function V(S , I) along the trajectory of the system (2.2) is negative, so as to
achieve mean square stability of the disease-free equilibrium.

3.5. Almost sure asymptotical stability of the disease-free equilibrium via event-triggered control

For a stochastic sequence, it is certain that the almost sure convergence cannot be obtained from the
mean-square convergence. Consequently, it is necessary to design the other event-triggered controller
to achieve the almost sure asymptotical stability of the disease-free equilibrium for the stochastic sys-
tem (2.2). In order to obtain the almost sure asymptotical stability of the disease-free equilibrium for
the system, consider the following event-triggered condition:

|ε(t)| ≤ λ2I(t), (3.42)

where λ2 ∈ (0, 1) is the event-triggering gain.

Remark 8. By Theorem 1 in [30], when a control system satisfies Lipschitz continuity, for the event-
triggering condition (3.42) with λ2 ∈ (0, 1), there exists a minimal inter-event time τ ∈ R+ such that
tk+1 − tk ≥ τ for every k ∈ N. In other words, the inter-event times are always positive. The event-
triggering gain λ2 is required as λ2 ∈ (0, 1) in the above event-triggered condition (3.42), which can
avoid the Zeno behavior.

Let S̃ (t) = S (t) − S 0 and Ĩ(t) = I(t) , then the system (3.31) can be written as follows
dS̃ (t) =(S̃ (t) + S 0)(−βĨ(t) − δ1S̃ (t))dt − ρ(S̃ (t) + S 0)Ĩ(t)dω(t)
dĨ(t) =[Ĩ(t)(−α2 + β(S̃ (t) + S 0) − δ2 Ĩ(t)) − γ(Ĩ(t) − ε(t))]dt

+ ρ(S̃ (t) + S 0)Ĩ(t)dω(t).
∀t ∈ [tk, tk+1) (3.43)

Next, consider the linear form of the system (3.43),dS̃ (t) = (−βS 0 Ĩ(t) − δ1S 0S̃ (t))dt − ρS 0 Ĩ(t)dω(t)
dĨ(t) = [(βS 0 − α2 − γ)Ĩ(t) + γε(t)]dt + ρS 0 Ĩ(t)dω(t).

∀t ∈ [tk, tk+1) (3.44)

Theorem 5. Assume β > R∗ and δ2 >
1
2ρ

2S ∗. If there exist the control gain γ > 0 of the control input
(3.29) and the event-triggering gain λ2 ∈ (0, 1) of the event-triggering condition (3.42) satisfying

(1 − λ2)γ ≥ βS 0 − α2 −
1
2
ρ2S 2

0, (3.45)

then the disease-free equilibrium (S 0, 0) is almost surely exponentially stable under the controller U(t),
i.e., the disease fades out.
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Proof. Consider the following equation:

dφ(t) = (βS 0 − α2 − (1 − λ2)γ)φ(t)dt + ρS 0φ(t)dω(t). ∀t ∈ [tk, tk+1), (3.46)

Eq (3.46) has the explicit solution

φ(t) = φ(tk)exp
{∫ t

tk
(βS 0 − α2 − (1 − λ2)γ −

1
2
ρ2S 2

0)ds +
∫ t

tk
ρS 0dω(s)

}
. (3.47)

Taking logarithms and limits on both sides of (3.47),

lim
t→∞

1
t

logφ(t) = βS 0 − α2 − (1 − λ2)γ −
1
2
ρ2S 2

0. (3.48)

From (3.45) and β > R∗, we obtain

lim
t→∞
φ(t) = 0. a.s. (3.49)

For the second equation of the linear system (3.44), making use of the condition (3.42) and based
on the comparison principle, we have

lim
t→∞

Ĩ(t) = 0. a.s. (3.50)

For the system (3.43), similar to the proof to Theorem 2, we obtain

lim
t→∞

1
t

log S̃ (t) ≤ 0 and lim
t→∞

1
t

log Ĩ(t) ≤ 0, (3.51)

and then the disease-free equilibrium (S 0, 0) of the system (3.43) is almost surely exponentially stable
under the controller U(t), i.e., the disease fades out. □

Remark 9. From the inequality (3.45) in Theorem 5, we notice that when we improve the control gain γ
or decrease the event-triggering gain λ2, i.e., improve the isolation or cure rate of infected individuals
or decrease the event-triggering threshold so as to enhance the frequency of event-triggered control,
the disease becomes extinct.

4. Numerical examples

In this section, an example of the system (2.2) will considered. Let α1 = 0.6, α2 = 0.25, δ1 = 1, δ2 =

1, ρ = 0.8. When β = 0.6, R∗ = 0.608, and the condition β < R∗ holds. By Theorem 2, the disease-free
equilibrium (S 0, 0) of the system (2.2) is globally asymptotically stable. To illustrate this, we depict
the evolution figure of the stability for the system (2.2) (see Figure 1), which shows that the system is
finally stable at (S 0, 0).
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Figure 1. The state trajectory of system (2).

When β = 1, we derive R∗ = 0.608 and 1
2ρ

2S ∗ = 0.136. The conditions β > R∗ and δ2 >
1
2ρ

2S ∗ hold.
By Theorem 3, the solution of the system (2.2) fluctuates around point Q. To illustrate this, we depict
the evolution figure of the system (2.2) (see Figure 2), which shows that the disease becomes endemic.
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t
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0.1

0.2

0.3
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0.6

0.7

S(t)
I(t)

Figure 2. The state trajectory of system (2).

When the conditions β > R∗ and δ2 >
1
2ρ

2S ∗ hold, the disease becomes endemic. Assume the event-
triggering gain λ1 = 0.9 of the event-triggered control, and the condition λ1 ≤ ( 2δ2−S 0ρ

2

2βS 0−2α2
= 2.822) holds.

By Theorem 4, the system (2.2) is stable in the mean square at the disease-free point (S 0, 0) under the
controller U(t). To illustrate this, we depict the evolution figure of the stability for the system (see
Figure 3), which shows that the system is finally stable at (S 0, 0). Figure 4 shows the event-triggered
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control input U(t).
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Figure 3. The trajectory of controlled system (2).
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Figure 4. The event-triggered control input U(t).

When the disease becomes endemic, assume the event-triggering gain λ2 = 0.8 and control gain
γ = 2 of the event-triggered control, and then the condition (1 − λ2)γ ≥ (βS 0 − α2 −

1
2ρ

2S 2
0 = 0.3428)

holds. By Theorem 5, the system (2.2) is almost surely exponentially stable at the disease-free point
(S 0, 0) under the controller U(t). To illustrate this, we depict the evolution figure of the stability for
the system (see Figure 5), which shows that the system is finally stable at (S 0, 0). Figure 6 shows the
event-triggered control input U(t).
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Figure 5. The trajectory of controlled system (2).
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Figure 6. The event-triggered control input U(t).

5. Conclusions

In this paper, we have discussed the stability at the disease-free equilibrium (S 0, 0) of the system
(2.2), the properties of the solution of the system (2.2) near the epidemic equilibrium (S ∗, I∗) of the
original system (2.1), and the event-triggered control for the stochastic epidemic model. By Theorems
2 and 3, we achieve that when β < R∗, the disease fades out. When β > R∗ and δ2 >

1
2ρ

2S ∗, the solution
of the system (2.2) fluctuates around a point, i.e., the disease becomes endemic. By Theorems 4 and 5,
we obtain that when the disease is endemic, if the event-triggering gain and control gain are correctly
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chosen, the disease can be driven from endemic to extinction under the event-triggered controller.
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