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Abstract: As an important task in bioinformatics, protein secondary structure prediction (PSSP) is not 
only beneficial to protein function research and tertiary structure prediction, but also to promote the 
design and development of new drugs. However, current PSSP methods cannot sufficiently extract 
effective features. In this study, we propose a novel deep learning model WGACSTCN, which 
combines Wasserstein generative adversarial network with gradient penalty (WGAN-GP), 
convolutional block attention module (CBAM) and temporal convolutional network (TCN) for 3-state 
and 8-state PSSP. In the proposed model, the mutual game of generator and discriminator in WGAN-
GP module can effectively extract protein features, and our CBAM-TCN local extraction module can 
capture key deep local interactions in protein sequences segmented by sliding window technique, and 
the CBAM-TCN long-range extraction module can further capture the key deep long-range 
interactions in sequences. We evaluate the performance of the proposed model on seven benchmark 
datasets. Experimental results show that our model exhibits better prediction performance compared 
to the four state-of-the-art models. The proposed model has strong feature extraction ability, which 
can extract important information more comprehensively. 

Keywords: protein secondary structure prediction; Wasserstein generative adversarial network; 
convolutional block attention module; temporal convolutional network; feature extraction 
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1. Introduction 

Protein is an organic macromolecule composed of amino acids, which is the key prerequisite for 
all life activities. Protein primary structure is the sequence of amino acids in a peptide chain [1]. 
Secondary structure is a specific structure formed by the atoms of the polypeptide backbone coiled or 
folded along a certain axis. On the basis of the secondary structure, a tertiary structure can be further 
formed. Secondary structure is a bridge connecting primary structure and tertiary structure, so it is a 
key step in the study of tertiary structure [2,3]. Protein secondary structure prediction (PSSP) not only 
helps us to further understand the structure and function of proteins but also can facilitate the design 
and development of drugs. Since experimental methods for PSSP are expensive and time-consuming, 
we use deep learning methods for PSSP. 

Generally, secondary structure can be divided into 3 states or 8 states. The 3-state secondary 
structure is divided into helix (H), strand (B), and coil (C) [4,5]. The 8-state secondary structure is 
divided into α-helix (H), helix (G), π-helix (I), β-bridge (B), β-sheet (E), bend (S), turn (T), and coil 
(C) [6]. Compared with the 3-state secondary structure, the 8-state secondary structure information is 
more abundant, which is more beneficial to protein research, but the prediction of the 8-state is more 
complex and challenging. 

Early research work using machine learning methods such as k-nearest neighbors [7], support 
vector machines [8] and neural networks [9] mainly focused on 3-state PSSP. In recent years, neural 
networks with deep architectures have been widely used in various fields including PSSP and achieved 
outstanding results. The SSpro utilized BRNN and structural similarity for PSSP [10]. The GSN can 
learn Markov chains to sample from conditional distributions and be used for PSSP [11]. The SPIDER3 
server combined LSTM and BRNN to extract long-range interactions in protein sequences [12]. The 
SSREDNs used a deep encoder-decoder model to learn the sequence-structure relationship of 
proteins [13]. The combination of CNN and RNN can extract local and long-range dependencies in 
protein sequences, which achieves remarkable performance in PSSP [2,14]. The SAINT utilized the 
deep 3I network and self-attention mechanism to predict secondary structure [15]. 

Inspired by the effectiveness and development of deep learning techniques in PSSP, we propose 
a novel deep learning model WGACSTCN for PSSP using Wasserstein generative adversarial network 
with gradient penalty (WGAN-GP) [18], convolutional block attention module (CBAM) [19] and 
temporal convolutional network (TCN) [20]. We use PSSM profile and one-hot encoding as input to 
the model. In our model, WGAN-GP can efficiently extract protein features, and TCN with CBAM 
(CBAM-TCN) can capture key deep local and long-range dependencies in residue sequences. To 
evaluate the model, we conduct extensive experiments on the public test sets CASP10, CASP11, 
CASP12, CASP13, CASP14, and CB513. 

The main contributions of this study include: (1) We propose CBAM-TCN by introducing CBAM 
in TCN, which can extract key features in protein sequences. (2) We use the sliding-window technique 
and zero-filling method to enable the sequence-to-sequence network CBAM-TCN to process 
sequence-to-label data so that local features can be extracted. (3) We propose a novel deep learning 
method WGACSTCN combining WGAN-GP, local CBAM-TCN module and long-range CBAM-
TCN module. (4) The results show that the proposed model exhibits better performance in 3-state 
and 8-state PSSP compared to other popular models. 
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2. Materials and methods 

2.1. Datasets 

The CullPDB [21] dataset consists of 14,991 protein chains selected from the Protein Data Bank 
by the PISCES [21] server, where the percent identity cutoff is set to 25%, the resolution cutoff is set 
to 3 angstroms, and the R-factor cutoff is set to 0.25. PISCES is widely used in PSSP, which can 
produce lists of sequences according to mutual sequence identity and chain-specific criteria. This study 
uses the classification rules of the DSSP [8] program to ensure correct secondary structure information. 
We deleted the proteins in the CullPDB dataset that duplicated the test set and also deleted proteins 
with lengths less than 40 or more than 800. The final CullPDB contains 14,562 proteins. To better 
evaluate the model, our dataset is divided into: a training set (11,650), a validation set (1456) and a 
test set (1456). We use six public test sets CASP10 [22], CASP11 [23], CASP12 [24], CASP13 [25], 
CASP14 [26], and CB513 [27] to further evaluate the model performance, where all CASP datasets 
are from the website https://predictioncenter.org/. The test sets CASP10, CASP11, CASP12, CASP13, 
CASP14, and CB513 contain 99, 81, 19, 22, 23, and 513 proteins, respectively. 

2.2. Feature representation 

In this study, we use two feature representation methods: one-hot amino acid encoding and 
position-specific scoring matrix (PSSM) [28]. Protein sequences consist of 20 standard amino acid 
types and 6 non-standard amino acid types. Usually, the 6 non-standard amino acid types are 
considered as a single type, so the protein sequence is considered to be composed of 21 amino acid 
types. An amino acid sequence of length L can be represented as an L × 21 feature vector through one-
hot encoding, where the corresponding component of the amino acid is 1, and the remaining 
components are 0. Since each type of vector in one-hot encoding is orthogonal to each other, it can be 
called orthogonal encoding. 

PSSM has rich biological evolution information, which is widely used in PSSP. PSSM can 
represent the amino acid sequence as an L × 20 scoring sequence by aligning the sequence itself with 
multiple sequences, where 20 represents the 20 standard amino acid types. PSI-BLAST [29] can 
generate PSSM based on a threshold of 0.001 and 3 iterations. 

2.3. Evaluation criteria 

For evaluation, we use four metrics in this paper: Q3 accuracy, Q8 accuracy and segment overlap 
(SOV) [30] score for 3-state and 8-state PSSP. 

The eight classes of secondary structure are H, G, I, E, B, S, T, and C. The three types of secondary 
structure are H, B, and C. Q3 and Q8 accuracy are defined as follows: 

𝑄3 100                            (1) 

𝑄8 100                     (2) 

where S represents the number of all amino acids and Si (i {H, E, C} or {H, G, I, E, B, C, T, S}) 
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represents the correct number of predicted secondary structure type i. 
Let the number of all residues in the sequence be NSOV, all observed structural segments be S1, all 

predicted segments be S2, and all overlapping segments between S1 and S2 be S0. The SOV score is 
calculated as: 

𝑆𝑂𝑉 ,  ,

,
𝑙𝑒𝑛𝑔𝑡ℎ 𝑆                 (3) 

where maxov(S1, S2) represents the length of the union of segments S1 and S2, and minov(S1, S2) 
represents the length of the intersection of segments S1 and S2. σ(S1, S2) allows changes at the observed 
segment boundaries and is calculated as: 

𝜎 𝑆 , 𝑆 min

𝑚𝑎𝑥𝑜𝑣 𝑆 , 𝑆 𝑚𝑖𝑛𝑜𝑣 𝑆 , 𝑆
𝑚𝑖𝑛𝑜𝑣 𝑆 , 𝑆
𝑖𝑛𝑡 𝑙𝑒𝑛 𝑆 /2
𝑖𝑛𝑡 𝑙𝑒𝑛 𝑆 /2

                (4) 

2.4. Wasserstein GAN with gradient penalty (WGAN-GP) 

The generative adversarial network (GAN) [16] exhibits powerful image denoising and feature 
extraction capabilities in complex distributed data, but it has the problems of difficulty in training and 
slow convergence. The Wasserstein GAN (WGAN) [17] improves the stability of training, but it still 
suffers from problems such as vanishing gradients. Therefore, we use WGAN with gradient penalty 
(WGAN-GP) for feature extraction of protein sequences. 

 

Figure 1. The WGAN-GP model architecture. 

As shown in Figure 1, WGAN-GP consists of G and D, where G is the generator and D is the 
discriminator. The G can transform random noise into data similar to amino acid sequences by 
simulating the complex distribution relationship of real samples, but the generated data is not real. The 
D can learn the difference between real and fake data to distinguish whether the data comes from the 
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generator or the real sample. The mutual game between the G and the D can continuously optimize the 
performance of the network. The loss of WGAN-GP is calculated as follows: 

𝐿= 𝐸
~

𝐷 𝑥 𝐸
~

𝐷 𝑥

︸
Original critic loss

𝜆 𝐸
~

‖𝛻 𝐷 𝑥 ‖ 1 ⋅

︸
Gradient penalty

              (5) 

where x represents the real sample, 𝑥  represents the generated fake sample, Pg represents the 
generated sample distribution, Pr represents the real sample distribution, and λ represents the 
hyperparameter with a default value of 10. The 𝑃  distribution is a random sampling distribution after 
Pr and Pg are sampled once each. 

The WGAN-GP utilizes gradient penalty to satisfy the 1-Lipschitz condition while preventing 
drastic changes in weights, which can enhance the learning ability and stability of the network. 

2.5. Temporal convolutional networks (TCN) 

The TCN proposed in recent years not only achieves superior performance in various fields but 
also outperforms popular networks such as recurrent neural network in most aspects. Furthermore, the 
TCN model has fast computation speed, low memory occupation, and stable training. 

2.5.1. Causal convolutions 

Two characteristics of TCN are: 1) The model can map inputs of any length to inputs of the same 
length. 2) Information cannot leak from the future to the past. To achieve the first characteristic, the 
TCN uses a 1D fully convolutional network, where zero padding is used to ensure that all layers have 
the same length. To satisfy the second characteristic, the TCN uses causal convolution. As shown in 
Figure 2(a), the output at time t in causal convolution is only affected by the input at previous time 
and time t. 

2.5.2. Dilated convolutions 

To capture very long-term effective history, as shown in Figure 2(b), TCN uses dilated 
convolutions to expand the receptive field. The dilated convolution operation F on the sequence 
element s is calculated as follows: 

𝐹 𝑠 𝑋 ∗ 𝑓 𝑠 𝑓 𝑖 ⋅ 𝑋 ⋅                    (6) 

where X is the input, f and k are the filter and the size of the filter, s – d • i is the direction of the history, 
and d is the dilation factor. The d increases exponentially with the network depth, (d = 2i at layer i), so 
the dilated convolution at the first layer is equivalent to the regular convolution. The top-level output 
of the network can represent a wider range of inputs as the number of layers increases. 

2.5.3. Residual connections 

As shown in Figure 2(c), TCN uses residual connections to avoid the problem of training 
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instability as the model deepens. The output of the block is calculated as follows: 

𝑜 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑋 𝐹 𝑥                          (7) 

The basic structure of the residual block is shown in Figure 2(d). The dilation factors of the two 
convolutional layers are the same. A weight normalization layer, a ReLU layer, and a dropout layer 
are added after each dilated causal convolutional layer to enhance speed and stability during training. 
In all residual blocks of TCN, the input is added to the output. When the width of the input and output 
of a block is different, we can perform 1 × 1 convolution on the input to ensure the addition. 

    

(a)                                     (b) 

                   

(c)                                  (d) 

Figure 2. Structures in TCN. (a) Causal convolutions. (b) Dilated convolutions. An 
example using four residual blocks. (c) TCN residual connection. (d) TCN residual block. 
An example using two convolutional layers. 
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2.6. CBAM-TCN 

2.6.1. Channel attention 

                         

      (a) The channel attention structure         (b) The spatial attention structure 

Figure 3. Attention mechanism in CBAM. 

Figure 3(a) shows the detailed structure of the channel attention. The input feature map xc(i, j)  
RH × W × C is first subjected to global max pooling and global average pooling operations. Two fully 
connected layers are used to share parameters, where r is the reduction rate. Finally, we merge the two 
feature maps and use the sigmoid to get weight coefficients of size 1 × 1 × C. Global average pooling 
Xac and global max pooling Xmc in channel attention are calculated as follows: 

𝑋 ReLU ∑ 𝑥 𝑖, 𝑗 , 0                       (8) 

𝑋 max ReLU 𝑥 𝑖, 𝑗 , 0 , 𝑖 ∈ 1,⋯ ,𝐻 , 𝑗 ∈ 1,⋯ ,𝑊             (9) 

2.6.2. Spatial attention 

The spatial attention structure is shown in Figure 3(b), which can obtain spatial weights. First, we 
perform max-pooling and average-pooling on the input xsRH×W×C to get two feature maps. The two 
feature maps are concatenated in the channel dimension. Then, we use convolutional layers to reduce 
the channels and use the sigmoid function to generate spatial weight coefficients of size H × W × 1. In 
spatial attention, average pooling and max pooling are calculated as follows: 

𝐹 ReLU ∑ 𝑧 𝑖 , 0                         (10) 

𝐹 max ReLU 𝑧 𝑖 , 0 , 𝑖 ∈ 1,⋯ , 𝑘                   (11) 
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where Fas and Fms are the spatial average pooling weight and max pooling weight generated at the s-
th position of the output, respectively, zs is the vector form of xs, and s is equal to H × W. 

2.6.3. The proposed CBAM-TCN 

The CBAM consists of channel and spatial attention modules. CBAM sequentially uses channel 
attention and spatial attention to obtain refined features, which can extract key information in different 
channels and spaces. Compared with optimization algorithms [31–33] such as prairie dog optimization 
algorithm [34], Gazelle optimization algorithm [35], and Aquila optimizer [36], CBAM focusing on 
channels and spaces has strong generalization and low memory. 

 

Figure 4. The CBAM-TCN residual block structure. The input features are from the previous 
residual block. CBAM is used to optimize features extracted by a series of 1D convolutions. 

The feature information of different channels or spaces in the protein sequence has different 
effects on the recognition of secondary structure, so we propose the CBAM-TCN model, which 
combines CBAM and TCN to capture key feature information in amino acid sequences. The detailed 
structure of the block in CBAM-TCN is shown in Figure 4. We add the CBAM after a series of 
convolution operations in the residual block to further obtain the attention weight information of the 
extracted features. 

2.7. The proposed WGACSTCN 

The proposed method mainly contains four modules: input, WGAN-GP module, CBAM-TCN 
local feature extraction module, CBAM-TCN long-range feature extraction module and output. The 
architecture of our method is shown in Figure 5. 

The input part mainly includes feature generation and data processing. First, we transformed the 
initial protein data into PSSM features of size 20 × L and one-hot features of size 21 × L, where L is 
the sequence length. Therefore, the input to the model is the hybrid features of size 41 × L. Since the 
secondary structure is mainly influenced by the local residues in the amino acid sequence, we can 
segment the sequence into feature matrices of size 41 × W by the sliding window technique, where W 
is the size of the window and each feature matrix corresponds to a single label. 

In the WGAN-GP module, the mutual game between the discriminator and the generator can fully 
extract the features in protein sequences. We use three layers of 2D convolutions in the generator to 
generate protein sequences and three layers of 2D convolutions in the discriminator to discriminate 
between real and fake protein samples. 

In the CBAM-TCN local feature extraction module, we use four residual blocks with the attention 
mechanism to capture the key deep local interactions between amino acid residues. We use three layers 
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of dilated causal convolutions with the same dilation factor in the residual block. After each layer of 
dilated causal convolution, we also use an instance normalization layer to accelerate the model 
convergence, a ReLU layer to ensure the stability of the gradient and a spatial dropout layer to prevent 
the risk of network overfitting. In addition, since CAMB-TCN is a sequence-to-sequence prediction 
network, when using the sliding window technique, we set the position W of the label sequence as the 
secondary structure label corresponding to the segmented short sequence, and set the remaining 
positions to 0. 

 

Figure 5. The detailed structure of the proposed WGACSTCN. 

In the CBAM-TCN long-range feature extraction module, we first concatenate the input features 
and the extracted local features into matrices of size 61 × L. We then use four CBAM-TCN residual 
blocks to further capture key deep long-range dependencies in residue sequences. The broad receptive 
field of residual blocks composed of 1D convolutional architectures enables flexible long-range 
interactions of elements between layers. Therefore, we still use three dilated causal convolutional 
layers in each residual block to extract features. 

In the output part, we use the softmax function to complete the classification of the secondary structure. 
The proposed model can use more comprehensive amino acid information for prediction to improve 

the problem of insufficient feature extraction. Furthermore, the proposed method can utilize key local 
and long-range interactions in residue sequences to facilitate connections between input features and 
secondary structures, thereby better modeling complex sequence-structure mapping relationships. 

3. Results 

3.1. The performance of the proposed model 

In this section, we show the effect of different parameters on PSSP in three modules of the model. 
To make our model show good performance in PSSP, we conduct extensive experiments on the 
CullPDB dataset, where the evaluation metrics are Q3 accuracy, Q8 accuracy and SOV score. 
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3.1.1. Impact of WGAN-GP module parameters 

To explore the effect of the number of convolutional layers in the WGAN-GP module on the 
proposed model, we conduct comparative experiments on validation and test sets using 1, 2, and 3 
convolutional layers, respectively. As shown in Figure 6, the model achieves the best experimental 
results in 3-state and 8-state PSSP when using 3 convolutional layers. Because the discriminator and 
generator cannot perform better when the number of layers is too small. Furthermore, too many 
convolutional layers can also make the discriminator and generator unbalanced. 

     

(a) Q3 accuracy                        (b) Q8 accuracy 

Figure 6. Model performance under different number of convolutional layers on the 
CullPDB dataset. 

3.1.2 Impact of CBAM-TCN local feature extraction module parameters 

   
(a) Q3 accuracy                        (b) Q8 accuracy 

Figure 7. Model performance under different sliding window sizes on the CullPDB dataset. 

Secondary structure recognition is mainly affected by residues on a local scale, so we performed 
comparative experiments using protein sequences segmented with window sizes of 13, 15, 17, and 19, 
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respectively. Figure 7 shows the Q3 and Q8 accuracy of our model on the validation and test sets. The 
model achieves the best classification performance on the 2 datasets when the sliding window size is 19. 
Because a large window can contain a wider range of protein information, but too large a window may 
cause key information to be missed. 

To verify the effect of the size and number of filters on secondary structure prediction, as shown 
in Figure 8, we conduct comparative experiments on the validation and test sets. The proposed model 
achieves the highest Q3 and Q8 accuracy when the size and number of filters are 5 and 512. Because 
the size and number of filters determine the range and channels of feature information extraction, 
which affect the capture of key information in the sequence. 

   
(a) Q3 accuracy                        (b) Q8 accuracy 

Figure 8. Model performance under different numbers and sizes of filters on the CullPDB dataset. 

3.1.3. Impact of CBAM-TCN long-range feature extraction module parameters 

   
(a) Q3 accuracy                        (b) Q8 accuracy 

Figure 9. Model performance under different numbers of CBAM-TCN residual blocks on 
the CullPDB dataset. 

The CAMB-TCN residual blocks directly control the depth of our model, so we use different 
CBAM-TCN residual block numbers 3, 4, 5, 6, 7, and 8 for comparison experiments respectively. 
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The 3-state and 8-state PSSP accuracy of the model on the validation and test sets are shown in Figure 9. 
The Q8 accuracy is the highest on the two datasets when the model uses 4 residual blocks, while the 
Q3 accuracy is the maximum on the two datasets when the number of residual blocks is 4 and 5, 
respectively. The main reason is that too few residual blocks of the model will make it difficult to 
extract deeper features, and too many residual blocks of the model will increase the computational 
complexity and the risk of overfitting. Therefore, we use 4 CBAM-TCN residual blocks to capture key 
deep interactions in residue sequences with filter sizes and numbers of 7 and 512. 

3.2. Comparison with popular models 

In this section, we compare our model with four state-of-the-art models DCRNN [37], 
CNN_BIGRU [38], DeepACLSTM [39], MUFOLD-SS [40] on seven datasets CullPDB, CASP10, 
CASP11, CASP12, CASP13, CASP14, and CB513. DCRNN utilizes convolutional neural networks 
with different filter sizes to capture local interactions and a recurrent neural network composed of 
gated units to extract long-range interactions in sequences. CNN_BIGRU utilizes convolutional neural 
networks and bidirectional gated recurrent units for prediction. DeepACLSTM uses an asymmetric 
convolutional neural network and a bidirectional long short-term memory network to extract local and 
global dependencies in residue sequences. MUFOLD-SS predicts secondary structure based on the 
deep inception-inside-inception model. For the fairness of the comparison, all models are trained using 
our CullPDB dataset with hybrid features PSSM + one-hot as input. 

Table 1. Comparison with popular models on seven datasets in 3-state PSSP. 

Methods CullPDB CASP10 CASP11 CASP12 CASP13 CASP14 CB513 

Q3 SOV Q3 SOV Q3 SOV Q3 SOV Q3 SOV Q3 SOV Q3 SOV 

DCRNN 82.12 78.51 82.57 75.71 80.57 75.53 80.41 74.75 80.49 77.09 80.28 71.46 84.66 79.63 

CNN_BIGRU 82.31 78.68 82.40 76.20 81.03 76.58 80.37 75.62 80.64 76.94 80.45 71.92 84.81 79.90 

DeepACLSTM 82.64 79.45 83.43 77.76 81.32 76.04 80.49 75.56 80.91 77.43 80.79 71.73 85.02 80.12 

MUFOLD-SS 83.02 79.62 83.28 78.04 81.68 77.41 80.94 77.47 81.15 78.02 81.12 70.97 85.30 80.23 

WGACSTCN 82.94 79.23 83.85 78.93 82.01 77.90 80.99 77.62 81.80 78.04 81.02 71.36 84.97 80.01 

Table 2. Comparison with popular models on seven datasets in 8-state PSSP. 

Methods CullPDB CASP10 CASP11 CASP12 CASP13 CASP14 CB513 

Q8 SOV Q8 SOV Q8 SOV Q8 SOV Q8 SOV Q8 SOV Q8 SOV 

DCRNN 72.06 70.42 72.11 69.74 70.50 68.44 69.41 67.24 68.05 68.01 68.87 63.27 75.63 73.06 

CNN_BIGRU 72.28 70.15 71.87 69.17 70.94 69.05 69.67 68.06 67.83 67.92 68.69 62.95 75.54 72.84 

DeepACLSTM 72.86 71.34 73.09 71.42 71.24 69.93 69.82 68.18 68.47 69.31 69.52 63.46 76.01 73.46 

MUFOLD-SS 73.32 71.59 72.98 71.51 71.62 69.84 70.23 69.32 68.23 68.89 69.23 62.69 76.64 74.04 

WGACSTCN 72.79 71.08 73.11 71.56 71.02 69.81 70.36 69.34 68.59 69.50 69.68 63.54 75.72 73.17 

To evaluate the performance of 3-state and 8-state PSSP, we use Q3 accuracy, Q8 accuracy and 
SOV score as overall evaluation measures. The results of comparing our method with four popular 
methods on seven datasets are shown in Tables 1 and 2. It can be seen that the Q3 accuracy, Q8 
accuracy and SOV score of the proposed method outperform the four existing popular classifiers in 
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most cases. This is mainly due to the powerful feature extraction capability of the proposed 
WGACSTCN, which can effectively extract protein information of residue sequences while capturing 
the key deep local and long-range dependencies in residue sequences, thus making full use of more 
comprehensive features to improve the performance of 3-state and 8-state PSSP. However, the wide 
receptive field in the proposed WGACSTCN may also lose some important information. 

4. Conclusions 

In this study, we propose a novel deep learning model WGACSTCN for sequence-to-sequence 
prediction based on WGAN-GP, CBAM, and TCN. We use PSSM profile and one-hot feature encoding 
as input to the model. To extract key feature information in protein sequences, we combine CBAM 
and TCN to propose a CBAM-TCN model. In the proposed model, we use the WGAN-GP module to 
extract the protein information of the sequence. Then, we use the CBAM-TCN local extraction module 
to capture deep local features among amino acid residues, where the residue sequences are segmented 
by a sliding window method. We also use the CBAM-TCN long-range extraction module to further 
capture deep long-range interactions in sequences. We test the performance of the proposed model on 
seven benchmark datasets using Q3 accuracy, Q8 accuracy and SOV score as evaluation metrics. 
Experimental results on 3-state and 8-state PSSP show that our model outperforms four existing 
popular models. Our model can effectively improve the problem of insufficient feature extraction 
through the successful combination of deep architecture modules. Furthermore, the excellent feature 
extraction capability of the WGACSTCN can more comprehensively capture longer-term key 
interactions in residue sequences to facilitate the accurate recognition of secondary structure. However, 
the proposed model can only extract information unidirectionally, so in the future we will improve the 
feature extraction of the model while enriching the input features to improve PSSP. 
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