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Abstract: With the development of deep learning, medical image segmentation has become a
promising technique for computer-aided medical diagnosis. However, the supervised training of the
algorithm relies on a large amount of labeled data, and the private dataset bias generally exists in
previous research, which seriously affects the algorithm’s performance. In order to alleviate this
problem and improve the robustness and generalization of the model, this paper proposes an end-
to-end weakly supervised semantic segmentation network to learn and infer mappings. Firstly, an
attention compensation mechanism (ACM) aggregating the class activation map (CAM) is designed
to learn complementarily. Then the conditional random field (CRF) is introduced to prune the
foreground and background regions. Finally, the obtained high-confidence regions are used as pseudo
labels for the segmentation branch to train and optimize using a joint loss function. Our model
achieves a Mean Intersection over Union (MIoU) score of 62.84% in the segmentation task, which
is an effective improvement of 11.18% compared to the previous network for segmenting dental
diseases. Moreover, we further verify that our model has higher robustness to dataset bias by improved
localization mechanism (CAM). The research shows that our proposed approach improves the accuracy
and robustness of dental disease identification.

Keywords: weakly supervised semantic segmentation; attention compensation mechanism;
conditional random field; joint loss function; class activation map

1. Introduction

Regular screening and clinical diagnosis of dental diseases are mainly evaluated by Experienced
dentists through manual probing combined with imaging-assisted analysis. Diagnosis becomes more
difficult when more complex situations (such as changes in gingival biotypes) are involved. Optical
coherence tomography (OCT) technology is a standard clinical imaging protocol for observing the

http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2023094


2040

microstructure of tooth tissue, which is used to identify caries and gingival diseases under complex
tissues for more effective prevention procedures [1–4]. However, dental diseases have no obvious
symptoms in the early period, which makes it difficult for manual assessment to make accurate
diagnoses timely, and is easily influenced by subjective factors such as the doctor’s experience. Using
computer technology to assist dentists in early diagnosis can help reduce the workload, improve their
work efficiency and quality, and ultimately provide better patient services, which is of great
clinical significance.

Deep learning, as a complete end-to-end model, can automatically learn nonlinear
high-dimensional features of complex data to make the model stronger generalization ability. It has
been widely used in computer-aided medical detection and diagnosis [5]. Rana et al. [6] introduce
convolutional neural networks (CNN) combined with machine learning classifiers to segment normal
and inflamed gingiva from intra-oral images. Dental professionals can get accurate information for
the early diagnosis of periodontal disease through this segmentation. Xu et al. [7] focus on dental
image segmentation and labeling the dental images using a two-level hierarchical CNN approach.
First approach targets teeth-gingiva labeling, and the other targets inter-teeth labeling. This helps to
segment the teeth and accurately label all the teeth. Sivagami et al. [8] use the UNet architecture for
segmentation of dental x-ray images and obtain 97% accuracy and 94% Dice score. Subsequently,
Li et al. [9] propose a few-shot learning method for the intelligent dental plaque segmentation directly
using oral endoscope images, which is to conduct few-shot learning at the superpixel level and
integrate the superpixels global and local features towards better segmentation results. Kaya and
Akar [10] proposed a more sophisticated model distinguishing background, tooth tissue type, and
decayed tooth. However, the accuracy of this classification model is poor since decayed tooth tissue is
challenging to detect in the early stages.

The deep learning models of the above dental disease segmentation tasks are supervised on private
datasets because the oral field has no public dataset. Therefore, it is difficult to establish an objective
comparison scale for different studies, and the dataset used for training is too small, which directly
limits the generalization ability of the models. The unsupervised deep learning method does not require
labeled samples. Self-encoding can also learn an equality function to make the visible layer data and
the encoded and decoded data as equal as possible, but its robustness is still poor. In particular, it
is less effective in private datasets when the probability distributions of the test and training samples
differ significantly [11]. Weakly supervised learning, as a compromise, trains models using image-
level labels. It can accurately compute the threshold scores that can trigger the category of pixels and
performs better on segmentation tasks [12]. Therefore, This paper proposes an end-to-end semantic
segmentation network based on weakly supervised learning to identify dental diseases.

In this paper, we use image-level labels to generate high-quality pseudo labels through the
attention mining branch, which largely avoids the dependence on manual labeling. However, in
weakly supervised learning using only image-level labels, as shown in Figure 1, the network, when
identifying a decayed tooth on the medial side of the posterior alveolar, focuses on the occlusal
surface (b) that is highly correlated with it, not on the object itself. In this case, due to the imbalance
of the training set, the network learns a priori knowledge that decayed teeth mainly occur on the
occlusal surface of the pit and fissure and has no motivation to focus on the foreground (medial
posterior alveolar (c)) during training. To address this problem, we propose an ACM based on CAM
for self-supervision. This mechanism forces attention to focus on the whole region rather than the
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most probable occlusal surface by mask erasing to ensure that all regions of interest are included in
the attention of the network. For the included non-target region, some mislabeled pixels are removed
by CRF constraint checking network attention to produce a reliable network attention map (c), which
generates high-quality pseudo labels after a thresholding operation. With limited pixels of pseudo
labels as supervision, We introduce a regularized dense energy loss (EN-Loss) combined with pixel
cross entropy loss (CE-Loss) to jointly optimize the training process, which can suppress the wrong
pixels introduced by cross entropy classification loss and improve the segmentation performance of
the network.

Figure 1. Qualitative localization results of the biased dataset are generated by the CAM [24]
technique. The heat map represents the CAM, which locates the attention of the network by
highlighting regions. These highlighted regions means higher class activation scores.

Summarily, our primary contributions are as follows: 1) Our use of CAM-Mask erasing allows the
network to apply more attention to feature extraction and semantic representation, improving the
network’s ability to capture more comprehensive features. Thus, the robustness and generalization
performance of the model will be enhanced. 2) We use the ACM and CRF post-processing to
effectively alleviate the under-activation of foreground regions and over-activation of background
regions in weakly supervised semantic segmentation, bridging the gap between the pseudo label and
the ground truth. 3) The EN-Loss function we designed considers the utilization of both labeled and
unlabeled regions, avoiding the error introduced by CE-Loss and improving the accuracy of
semantic segmentation.

The remainder of the paper is organized as follows. Section 2 describes related work, including
weakly supervised semantic segmentation and CAM mapping. Section 3 presents a detailed description
of the proposed method, and the experimental results and analysis are provided in Section 4. Finally,
the conclusions of this process are discussed in Section 5.

2. Related works

2.1. Weakly supervised semantic segmentation

Semantic segmentation is a fundamental computer vision task aiming to predict the pixel-level
classification results of images [13]. The fully convolutional network for semantic segmentation was
proposed in 2015 [14]. Fully supervised semantic segmentation requires dense pixel-level annotation.
Also, manual labeling of datasets is a very time-consuming and labor-intensive task, and the
reliability of data labels is closely related to the business capabilities of labeling experts. However, it
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is indispensable in many computer vision applications (e.g., autonomous driving [15], intelligent
medical [16]), which makes weakly supervised learning develop into a new research direction.
Weakly supervised semantic segmentation has attracted much attention due to the need for less
manual intervention. The so-called weak supervision is to replace pixel-level truth labeling with more
easily available truth labeling. Common weakly supervised labels include bounding box, scribble,
point, and image-level class labels. Among them, the weakly supervised segmentation based on
bounding boxes labeling [17] gives the location and label of the object with a rectangular box (2D) or
cuboid (3D), which can effectively distinguish the labeling modes of different instances, including
both semantic information and instance information. However, applying it to semantic segmentation
scenarios means that some foreground information will be injected, so the effect is not ideal.
Therefore, this labeling method is widely used in instance and panoramic segmentation. Scribble
labeling [18] does not require dense labels, and just a few lines are drawn to distinguish different
regions as supervision information. But the difficulty is that the supervised training region is very
small, and only these regions may not provide enough information. The point labeling [19] uses poles
as a guide to boxing the object’s approximate location. Yet, the poles are difficult to select because
they need to fit the object boundaries, especially for some oddly shaped objects. Weakly supervised
segmentation based on image-level labeling [20] mainly uses image classification labels to learn the
commonality between high-level semantic information of the same class. It is ideal for semantic
segmentation and takes the least time and effort, but it cannot distinguish instances. This paper adopts
image-level class labels for weakly supervised semantic segmentation.

Image-level weakly supervised semantic segmentation only needs to provide image-level
annotation. Most solutions generate initial object seeds or regions based on CAMs, which are
transformed to generate pseudo labels to train the semantic segmentation model. Wei et al. [21]
propose to iteratively erase and compute discriminative regions of classification networks so that
more seed regions can be mined. These regions are then combined with saliency maps to generate
pseudo-pixel-level labels. It is also shown that dilated convolution can increase the receptive field and
improve the performance of weakly supervised segmentation networks. Subsequently, regional and
pixel networks are trained to predict from the image level to the regional level gradually, and from the
regional level to the pixel level [22]. In addition, the method also uses saliency maps as additional
supervision. Specifically, a traditional seed growth algorithm was implemented to expand the seed
region iteratively [23]. However, all the above methods use various methods to generate high-quality
pseudo masks, meaning they need at least one or two different networks before training for semantic
segmentation prediction. In this research, we design an end-to-end branch network by sharing the
backbone parallel to simplify the process.

2.2. CAM

Generating the CAM [24] using the CNN classification model plays a vital role in computer vision.
Grad-CAM [25] extends CAM and can be applied to any CNN-based classification model. Grad-CAM
technology has been widely applied in other weakly supervised vision tasks, such as localization [26],
detection [27], and segmentation [28]. Grad-CAM uses the gradient mean of channels obtained in
backpropagation as the channel weight, and the generated CAM has a similar effect.

CAM is usually used as a visualization technique in image classification tasks but is rarely used to
provide feedback information into the network during training. The top-down attention method based
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on CAM is proposed to locate the most discriminative object regions in the image. Then, the mined
areas are erased from the original image, and the erased image is retrained to another classification
network to locate other object regions. This process is repeated to train until the network does not
converge well on the erased image. Finally, the erased areas are integrated as the mined object
regions [21]. Wang et al. [28] introduced a pixel correlation module (PCM), which exploits context
appearance information and refines the prediction of current pixels by its similar neighbors, leading to
further improvement in CAMs consistency. These methods depend on complex network structures
and have high computational costs. In contrast, in our research, inspired by the idea of CNN erasing
to see more, CAM based on gradient propagation (Grad-CAM [25]) is used to generate attention
masks. Then the original image is erased and sent to the attention mining branch for loss calculation,
equivalent to complementary supervision with the attention mechanism used in reverse, which has the
advantage of focusing on the whole rather than the most discriminative regions.

3. Proposed method

3.1. Overview

The overall framework is shown in Figure 2. Our method is named lesion region mining (LRM),
including the attention mining branch and segmentation branch. The former uses image-level
annotation to generate pseudo-pixel-level masks, and the latter generates semantic segmentation
results. Specifically, the attention map generated by the CAM based on gradient propagation
(Grad-CAM [25]) is first used as the original seed region. Then the foreground pixel of the seed
region is expanded by the ACM, and the CRF operation [29] constrains the background pixels of the
seed region to generate the pseudo-pixel-level masks. Finally, these pseudo labels are fed into the
segmentation branch for training. The joint loss function and the standard backpropagation algorithm
jointly optimize the segmentation model in an end-to-end way.

Figure 2. The network framework for segmentation of dental diseases based on weakly
supervised learning.
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3.2. Attention mining branch: generating pseudo labels

The attention mining branch aims to generate reliable and high-confidence pseudo-pixel-level labels
using image-level annotations. The original CAM can highlight the most discriminative regions of the
object but still contains some non-target regions, that is, mislabeled pixels. Therefore, after obtaining
the original CAM regions, we expand foreground pixels and suppress background pixels through our
ACM combined with dense CRF post-processing. Finally, high-quality pseudo-pixel-level labels are
generated for training and inferring the segmentation branch.

3.2.1. Original CAM

In multi-label scenarios (such as target = [dental calculus, decayed tooth, gingivitis]), it is easy to
have an extreme imbalance in the number of positive and negative samples for a single category. In
this case, the effect of BCELoss for multi-label classification will be poor. Therefore, in the attention
mining branch, our CL-Loss uses the sigmoid function combined with the BCELoss function to
perform multi-label classification. It supports the mixed segmentation task with a sample containing
multiple labels. The specific expression is shown in Eq (3.1).

LCL =
1

1 + e−x + LBCE (3.1)

LBCE = −
1
C

(
∑

i

(yi ∗ lnxi + (1 − yi) ∗ ln (1 − xi))) (3.2)

where xi is the label predicted by the model, its shape is (N,C), N represents the batch size, and C is
the number of classifications. yi is the ground truth label.

We update the network by backpropagation, calculate the contribution value of each pixel space in
the original region, and generate the original attention map combined with the CAM technology.

3.2.2. ACM

The ACM uses the information predicted by the network to generate CAM-Mask for erasing. The
erased images are retrained by loss calculation. The leading mind of this mechanism is that the original
image obtains a higher classification score, and the erasing action tries to mask the valuable features.
Hence, the erased image achieves the lower classification score as much as possible. Finally, the model
is guided by the ACM, and all foreground regions that contribute to the classification decision will be
included in the attention of the network. Overlabeled foreground pixels will be suppressed by CRF
validation, making the attention map more accurate.

CAM-Mask: We used CAM based on gradient propagation to simplify the generation of the
attention map. In the attention mining branch, for a given image I, let fl.k represents the activation
function of unit K in the l-th layer. For each class c from the ground truth label, we calculate the
gradient of the score yc corresponding to class c by deriving the activation map of fl.k. These gradients
will be fed back through a global average pooling layer to obtain important neuron weights as defined
in Eq (3.3).

wc
l,k = GAP

(
∂yc

∂ fl.k

)
(3.3)

where GAP represents the global average pooling layer operation.
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We do not directly update the network parameters in the training process after wc
l,k is obtained

by backpropagation. Since wc
l,k represents the importance of the activation map for the prediction

of class c, we use the weight matrix wc as the convolution kernel and apply 2D convolution on the
activation map matrix fl to integrate all the activation maps. Then a ReLU operation follows to obtain
the attention map Ac with Eq (3.4). The attention map is trained online, and the constraint of Ac will
affect the network’s learning.

Ac = ReLU (Conv( fl,wc)) (3.4)

where l is the representation from the highest convolution layer, which has a good balance between
high-level semantics and detailed spatial information [30]. Considering the attention map has the same
size as the convolution feature map, we directly use the trainable attention map Ac to binarize and
generate an attention mask (CAM-Mask), which is used as an image mask to erase valuable features
of the original image. The erasing method is shown in Eq (3.5). Ic is the erased image using the
CAM-Mask.

Ic = I − (T (Ac) ⊙ I) (3.5)

where c is the category, I is the original image, and T (Ac) is the threshold binarization operation. ⊙
represents cell multiplication, multiplied pixel-wise. To make it derivable, we use the sigmoid function
as an approximation, as shown in Eq (3.6).

T (Ac) =
1

1 + e−ωAc+σ
(3.6)

where σ is a threshold matrix whose elements are all equal to σ. ω is a scale parameter, ensuring that
T (Ac)i, j are approximately equal to 1 when larger than σ, or to 0 otherwise.

Attention mining loss: The CAM-Mask acts on the original image to generate Ic, fed into the
baseline network for training to obtain class prediction scores. Since our goal is to guide the network
to focus on all the target regions of interest, and Ic is the erased image without the most discriminative
regions. We should ensure that Ic contains as few features as possible belonging to the target class. In
the ideal case, other regions should not include a single pixel triggering the class c except the high-
responding region on the attention map. From the perspective of the loss function, an attempt should
be made to minimize the prediction score of Ic for class c. Therefore, we design a loss function named
attention mining loss, as shown in Eq (3.7).

LAM =
1
N

(
∑

c

ycIc) (3.7)

where ycIc is the prediction score of Ic for class c. N is the number of class labels for image I.
Through AM-Loss, we can perform online complementary learning on the erased image Ic. If

the Ic image still contains some pixels triggering class c objects, the prediction information can be
compensated by minimizing the attention mining loss function (AM-Loss).

3.2.3. CRF

The original CAM can highlight the most distinctive regions of the object, but they still contain
some non-target pixels mislabeled. Therefore, after obtaining the original CAM region, CRF is needed
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for some post-processing. The first step is to normalize the CAM score to obtain the classification
probability of each foreground pixel in image I, as shown in Eq (3.8).

Pc
f g =

Ic
CAM

max(Ic
CAM)

(3.8)

The background score is calculated using a similar way as in Eq (3.9).

Pc
bg = (1 − max

1<x<100
(Pc

f g(i)))γ, γ > 1 (3.9)

where i is the pixel position index, γ is the decay rate factor that suppresses background labels. The
overall probability map, namely P f g,bg, is obtained by concatenating foreground and background
probabilities Pc

f g and Pc
bg.

After that, we introduce the dense CRF as post-processing to remove some mislabeled pixels, and
the CRF pixel label map is:

Icr f = CRF(I, [P f g, Pbg]) (3.10)

The learned reliable CAM label is:

Icam(i) =

max
c∈C

(Pc
f g,bg(i)), max

c∈C
(Pc

f g,bg(i)) > α

255, other
(3.11)

where C={c0,c1,...,cN} contains all classes and the background (c0). 255 indicates the class label is not
decided yet. max

c∈C
(Pc

f g,bg(i)) > α means the selection of high confidence region. The final pixel label
input to the segmentation branch is:

I f (i) =

Icam(i), Icam(i) = Icr f (i)
255, other

(3.12)

where Icam(i) = Icr f (i) considers the CRF constraints. Taking this strategy, highly reliable regions, as
well as ground truth labels, can be obtained. The regions detonated as 255 are regarded as
unreliable regions.

Figure 3 shows an example of our approach. It is observed that the original CAM label (Figure 3(c))
only contains foreground pixels of the most discriminative regions, while the improved CAM label
(Figure 3(d)) contains overall foreground pixels but introduces many background pixels as foreground.
The CRF label (Figure 3(e)) can get an accurate boundary, but at the same time, some foreground
pixels are regarded as background. In other words, the CAM label can provide reliable background
pixels, and the CRF label can provide reliable foreground pixels. Combining the CAM label and
CRF label map using our method (Figure 3(f)) removes some wrong pixel-level labels but still retains
reliable regions.
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Figure 3. An example of generating reliable pixel labels.

3.3. Semantic segmentation branch : Prediction

After obtaining reliable pseudo-pixel-level labels, input them into the semantic segmentation branch
for training. Our segmentation network is optimized by the joint loss function, including CE-Loss and
EN-Loss. CE-Loss focuses on labeled regions, while EN-Loss considers both labeled and unlabeled
regions. The joint loss is expressed as :

LJoint = Lce + Len (3.13)

where Lce and Len represent the CE-Loss and EN-Loss, respectively. The CE-Loss is expressed as :

Lce = −
∑

c∈C,i∈Φ

Bc(i)log(Pc(i)) (3.14)

where Bc(i) is the binary indicator, which equals to 1 if the label of pixel i is c and otherwise 0; Φ
denotes the labeled region, Φ = {i|I(i) , 255} ; Pc means the output probability of the training network.

Since CE-Loss is designed for supervised learning, in our work, all pixel labels are not 100%
reliable, which means using CE-Loss may introduce some errors. Therefore, the soft filter S(i) is
designed for pixel i to alleviate the error introduced by CE-Loss.

S (i) =

1 − maxc∈C(Pc(i)), i ∈ Φ

1, other
(3.15)

We first define the energy formulation between pixel i and j based on [31]:

E(i, j) =
∑

ca ,cb∈C
ca,cb

G(i, j)Pca(i)Pcb( j) = G(i, j)
∑
c∈C

Pc(i)(1 − Pc( j)) (3.16)

where G(i,j) is a Gaussian kernel filter, which is expressed as follows :

G(i, j) =
1
W

e
−(
∥Di−D j∥

2

2σ2
1
+
∥Ii−I j∥

2

2σ2
2

)
(3.17)
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where 1
W is the normalized weight, D is the pixel spatial position of image I. σ1 and σ2 are the

hyperparameters that control the scale of Gaussian kernels.
The final EN-Loss can be written as :

Len =

N∑
i=0

N∑
j=0
j,i

S (i)E(i, j) (3.18)

According to what is described above, the implementation process and steps of our proposed LRM
approach are shown in Table 1 by pseudo-code.

Table 1. Algorithm flow of our proposed approach.

Input: Images I with our image-level class labels CN;
Output: The trained end-to-end network, LRM;

1: while iteration is true do
2: Use the CAM to get the attention map as original seed;
3: Binarize the attention map to generate the CAM-Mask;
4: Perform mask erasing on the original image;
5: Retrain the erased image using the AM-Loss

to expand the foreground pixel of the seed region;
6: Use (3.8) and (3.9) to get foreground probability P f g and background probability Pbg;
7: Get the overall CAM probability map P f g,bg by combining P f g and Pbg;
8: Calculate reliable CAM label Icam and CRF label Icr f ;
9: Get the reliable regions and label I f as pseudo labels from Icam and Icr f using (3.11)(3.12);
10: Train and update the whole network using loss function LJoint = Lce + Len;
11: Produce predictions;
12: end while

4. Experiments

4.1. Dataset description

4.1.1. Dataset

For the proposed dental disease segmentation work, the data comes from oral images of patients
collected from a dental institution’s long-term free clinic. The research object is oral images of
patients aged between 18 and 70 taken using oral endoscopy A3S-X. With the help of dentists and
experts, the acquired images were labeled by pixel-level classification using the Labelme tool. Among
them, The red area is the lesion region of the decayed tooth, the green represents the lesion region of
dental calculus, and the yellow is the lesion region of gingivitis. Our dental dataset includes four class
annotations: three foreground objects and the background. In 3696 oral images, 2580 were used in the
training set, 739 were kept in the validation set, and the remaining 377 were used as the test set. The
dataset labeling process is shown in Figure 4. The label mask, output in this process, consists of three
color-coded labeled images of the same size as the input oral images, showing the shapes of the three
features of interest (decayed tooth, calculus, and gingivitis). It is worth noting that only the
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image-level classification labels are used in the training process to learn each feature of interest, while
the manually labeled ground truth labels are used as the validation and test sets.

Figure 4. Illustration of the data labeling process. The ground truth labels with red for
decayed tooth, green for dental calculus and yellow for gingivitis.

4.1.2. Evaluation metrics

In the evaluation phase, pixel-level labels manually labeled by experts are used as ground truth
labels. The trained network takes an invisible test set and outputs a predicted label mask that contains
any lesion region in the image for caries, dental calculus, and gingivitis. The segmentation performance
is evaluated by comparing the MIoU score of the predicted label mask and the corresponding ground
truth label mask.

4.2. Experimental settings

4.2.1. Image preprocessing

We resize the image to 448 × 768. For the problem of sparse and unbalanced datasets, we follow the
work [32] and use automatic enhancement technology to increase the size and diversity of the dataset
during training.

4.2.2. Implementation details

Baseline setting: We use ResNet [10] with 38 convolutional layers as the baseline network and
fine-tune it to adapt to the current dental dataset. We remove all fully connected layers of the original
network and perform dilated convolution for the last three resnet blocks (a resnet block is a set of
residual units with the same output size), setting the dilated rate to 2 for the last third layer and 4 for the
last two layers. For the semantic segmentation branch, we add two dilation convolution layers [33] of
the same configuration after the backbone, with a kernel size of 3, a dilated rate of 12, and the padding
size of 12. CE-Loss is computed for background and foreground individually. In the EN-Loss, σ1 and
σ2 are set to 15 and 100 respectively.

Training strategy: We use Pytorch to implement our model. We train the network using SGD and
terminate after 30 epochs with a batch size of 8. To address the tendency of early overfitting and
instability training on the few-shot dataset, we use cosine [34] with warmup [35] to optimize SGD.
The initial learning rate of warmup is set to 10−5, and the maximum learning rate of 10−2 is reached
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after 2000 warmup iterations, followed by decaying with cosine, which can overcome the overfitting
phenomenon and maintain the deep stability of the model. For the segmentation framework, we use
DeepLab [36] to retrain the pseudo-pixel-level labels generated by the attention mining branch to
finally achieve the segmentation prediction of dental lesions.

To generate reliable pseudo labels, the decay rate factor γ used to suppress background pixels in
Eq (3.9) is set to 4 for P f g,bg. The CRF parameter in Eq (3.10) follows the setting in [31]. In (3.11),
when we select the high confidence region, the α value is set to 0.45. That is, 45% of the pixels are
selected as the labeled pixels for each category. During validation and testing, dense CRF is used as a
post-processing method to improve the accuracy of the segmentation boundaries, and the parameters
are set as the default values given in [23]. During training, both two branches update the backbone
network. During testing, only the segmentation branch is used to produce the predictions.

4.3. Experimental analysis and comparison

4.3.1. Comparison with previous approaches

Comparison with other networks dedicated to segmenting dental diseases. To highlight the strengths
of our method, we compared it with the dental disease segmentation network based on improved U-
Net [37]. Table 2 shows that our LRM method obtains a higher MIoU score, and the segmentation
performance is improved by 11.18%. Some qualitative segmentation results are presented in Figure 5,
which clearly shows that our LRM method (d) is closer to ground truth than the improved U-Net [37].
It also can be seen from Figure 5(I) that the segmentation network based on U-Net only identifies
the most recognizable regions (c). In comparison, our LRM method captures the lesion area of the
occlusal surface and the tiny lesion area inside the posterior alveolar teeth (d). This is attributed to
the fact that our network shields regions of interest by CAM-Mask, forcing the network to focus on
extracting more comprehensive features and semantic representations. Thus, our LRM method has a
high capture ability for coarse-grained and fine-grained features.

Table 2. Segmentation performance comparisons with the dental disease segmentation
network based on improved U-Net [37].

Method baseline dental calculus decayed tooth gingivitis MIoU
Improved U-Net [37] VGG16 62.68% 48.89% 43.42% 51.66%
Ours-LRM VGG16 60.72% 64.68% 59.21% 61.54%
Ours-LRM ResNet38 63.08% 64.34% 61.09% 62.84%

Furthermore, our segmentation results are compared with a CNN-based automated segmentation
network for gingival disease [6]. Figure 6 shows that our segmentation results (d) cover more accurate
target pixels. Especially in Figure 6(I), the automated segmentation network of gingival disease [6]
carries a large number of error pixels in the tooth tissue area (c), which is because the label data limit
their network during training. It is easy to learn a model with low generalization under the imbalance
of the dataset, and the area with reddish color is mistakenly identified as gingivitis. While Our network
learns in a weakly supervised way, explicitly modeling attention as part of training rather than passively
using trained network attention offline. The advantage of this is that we can guide attention by using
self-supervised and complementary learning attention mechanisms and generate reliable label masks,
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effectively improving the model’s generalization ability.

Figure 5. Dental disease segmentation results compared with the improved U-Net [37].

Figure 6. Gingival disease segmentation results compared with CNN-based network [6].

Comparison with other state-of-the-art weakly supervised semantic segmentation (WSSS)
networks. Since there are no public datasets in the field of dentistry, research work is performed on
private datasets. Establishing an objective comparison scale for research work between different
datasets is difficult. Therefore, we feed our dataset into other WSSS networks (AdvErasing [21],
SEAM [28], RCA [38]) with image-level labels for training and prediction. Table 3 shows the MIoU
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score of each class on the validation set. Compared to other weakly supervised semantic segmentation
methods using different network structures, our LRM significantly presents a superior performance.
The performance of our LRM based on ResNet38 [39] network is 2.71% higher than the SEAM [28]
using the same baseline network and outperforms the RCA [38] using a deeper residual network. We
also verify our LRM method on the VGG16 [40] network with a performance of 61.54%, which
is 9.12% better than the AdvErasing [21] based on the VGG19 [40] network. It can be concluded that
the performance improvement of our LRM method does not come from a deeper or larger network.

Figure 7. Qualitative segmentation results on validation set.

Considering most people’s limited oral health knowledge, we further visualize segmentation
results on the original image in combination with the segmentation mask, which can help people
understand the segmentation results more intuitively. Figure 7 shows some qualitative results of
semantic segmentation compared with the state-of-the-art SEAM [28]. We can observe that our LRM
method help to discover more integral and accurate areas of the object. In addition, our segmentation
result is more sensitive to the pixels at the boundary and presents a finer and smoother contour shape
than the ground truth. However, it still carries little wrong backgrounds and foreground pixels
compared to ground truth. In future research, we will attempt to inject a small amount of pixel-level
supervision based on semi-supervised learning, closing the gap with the ground truth.
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Table 3. Category performance comparisons with other state-of-the-art WSSS methods on
validation set.

Method Baseline Dental calculus Decayed tooth Gingivitis MIoU
AdvErasing [21] VGG19 53.80% 54.64% 48.83% 52.42%
RCA [38] ResNet50 57.20% 57.92% 52.45% 55.87%
SEAM [28] ResNet38 61.28% 61.92% 57.18% 60.13%
Ours-LRM VGG16 60.72% 64.68% 59.21% 61.54%
Ours-LRM ResNet38 63.08% 64.34% 61.09% 62.84%

The above results show that our approach works well on single-label and multi-label tasks using
only image-level labels. The reasons behind the performance improvement could be the combined
effect of ACM and joint loss function instead of larger or deeper network structures. Specifically,
more complete foreground regions are mined under the complementary learning mode of the ACM in
the attention mining branch, which is because other finer feature regions can be mined by masking
the most discriminative areas. The mined foreground regions are post-processed by CRF validation to
effectively suppress the redundant background noise, generating better pseudo-pixel-level labels for the
segmentation branch. The CE-Loss joined with the EN-Loss improves the segmentation performance
in the semantic segmentation branch, which could be attributed to the fact that the Gaussian kernel
filter in EN-Loss performs unlabeled or mislabeled pixels to alleviate the errors introduced by CE-
Loss. Subsequently, we further confirmed this through ablation experiments in Section 4.3.2.

4.3.2. Ablation study

Our LRM consists of an attention mining branch and a segmentation branch. Pseudo-pixel-level
labels with high confidence are generated using the attention compensation module (ACM) and CRF
operations in the attention mining branch. The pixel-level segmentation prediction of dental lesions is
performed by training and inferring through the joint loss function in the segmentation branch. We use
ablation studies to illustrate their individual and joint effectiveness. In addition, we confirm the effect
of different hyperparameter settings on segmentation performance by ablation experiments.

Hyperparameter: The process of model training is to minimize the loss function. During the training
process, we set the batch size to 8 according to the number of samples and our hardware capacity. The
model is tuned for the best performance by setting different hyperparameters. Figure 8(a) displays
the results presented during the training process using different learning strategies. When the initial
learning rate of warmup is set to 10−5, and the maximum learning rate is set to 10−2, the convergence
is more stable, and the loss is minimized to 1.31%. Compared to the LinearLR adjustment strategy
without the warmup, the loss is reduced by 13.53%. Because at the beginning of training, each data
point is new to the model, and the model will quickly correct the data distribution. A large learning
rate is likely to lead to overfitting of the data. After a period of training (2000 iterations), the model has
some correct priors for the current mini-batch, and adopting a larger learning rate is less likely to skew
the model. The distribution of the model has been relatively fixed in the later stage of training, and less
new knowledge can be learned. We perform cosine decay learning after warmup to keep the stability of
the model. It is concluded that the learning rate adjustment strategy with Cosine Warmup helps to slow
down the early over-fitting of the mini-batch and maintain the deep stability of the model. Figure 8(b)
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shows the effect of three different epochs on segmentation performance. Performance is optimal when
the epoch is 30. This is because the model has converged stably after 30 epochs of iteration. While too
small an epoch is easy to underfit, too large is easy to overfit.

Figure 8. Results of ablation experiments with hyperparameters.

In addition, Table 4 shows the effect of the regularization factor γ defined in Eq (3.9) and the
choice of different background scores α in Eq (3.11). The γ in Eq (3.9) is set to 4, which can
effectively suppress the background pixels and exert a positive regularizing effect. Setting 45% for α
is a good choice to yield optimal performance. Since a smaller pseudo-mask size means that the
region labeled for the segmentation branch has higher confidence, the segmentation network lacks
sufficient information to learn, which will not achieve satisfactory performance. A larger size means
that the labeled pixels have lower confidence, meaning that more incorrect labels are used, which
corresponds to noise during training.

Table 4. Performance on our validation set based on different pseudo mask sizes. Ratio
means the proportion of reliable regions which is mined by our method to the whole pixels.

γ Ratio (α)
(decay rate factor) 0.2 0.45 0.5 0.55 0.6 0.8 1.0
3 57.12% 59.37% 60.83% 59.28% 58.76% 50.91% 43.74%
4 57.90% 62.84% 62.41% 62.03% 59.52% 48.24% 41.33%
5 55.63% 57.21% 57.90% 58.40% 59.07% 51.28% 45.31%

Comparison with baseline: Table 5 gives an ablation study of each module in our method. It shows
that the network using the attention compensation module (ACM) has a 9.17% improvement compared
to the baseline. We also test baseline CAM with dense CRF operations to refine predictions. The
results show that the CRF improves the MIoU score to 54.67%, which is lower than 58.90% using
ACM. The generated pseudo labels can further improve the performance up to 62.84% on our train set
after our LRM aggregating dense CRF as post-processing on the improved CAM using the attention
compensation module (ACM).
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Table 5. The ablation study for each part of LRM. ACM: attention compensation module.

baseline ACM CRF MIoU
√

49.73%
√ √

58.90%
√ √

54.67%
√ √ √

62.84%

Loss function: In Table 6, we demonstrate the effectiveness of introducing joint loss by comparing
the CE-Loss of baseline and joint loss of our LRM. The MIoU obtained using LRM with CE-loss is
lower in the absence of joint loss. This result is because when only CE-Loss is considered, the mined
reliable region with LRM cannot provide enough labels for segmentation model training, which will
introduce some errors. The Gaussian kernel filter in EN-Loss mainly acts on unlabeled or mislabeled
pixels to alleviate the errors introduced by CE-Loss. With the joint loss, the segmentation performance
is improved substantially, from 56.07 to 62.84%, an improvement of 6.77%.

Table 6. Category performance comparisons with the baseline CE-Loss on validation set,
where use top 45% pixels for α.

Loss dental calculus decayed tooth gingivitis MIoU
CE-Loss (Baseline) 56.43% 57.17% 54.63% 56.07%
Joint Loss (Ours) 63.08% 64.34% 61.09% 62.84%

Improved Localization Mechanism: We show qualitative results of attention maps generated by
different methods in Figure 9, where LRM covers complete and accurate areas of the class of interest
as well as fewer background areas around the class of interest compared with the baseline and SEAM.
Obviously, the attention map generated by the baseline only contains local foreground information
and carries some background noise (c). The attention map generated by SEAM has a little
improvement, but it still cannot capture small target pixels (IV) and carry a small amount of
background noise (d). In comparison, the attention map generated by our LRM method has less
over-activation and complete activation coverage (e). Its shape is closer to the ground truth
segmentation mask (b). This result is because the LRM network trains the entire network by
minimizing the original image’s classification loss while minimizing the class score of the image that
obscures the object to be recognized during the training process. The trained network can better focus
on the region to be recognized. Among them, the AM-Loss is used to compute the class activation
score of the erased image, ensuring that the erased region does not contain a pixel that can activate the
class. Under self-supervision of attention, the network will cover all important classification decision
regions, expanding the foreground pixels. The CRF, a post-processing operation of the attention map,
effectively suppresses excessive background noise.

Furthermore, Figure 9(IV) shows the decayed tooth of the lesion region in the posterior alveolar
teeth and the occlusal surface. The attention maps of baseline and SEAM only located the lesion area
of the occlusal surface without covering the target area inside the posterior alveolar teeth. However, the
attention maps generated by our LRM can identify the lesion area on the occlusal surface and locate the
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tiny lesion area inside the posterior alveolar teeth. This result indicates that our LRM network model
has strong generalization ability and robustness to dataset bias.

Figure 9. Qualitative results of attention maps.

5. Conclusions

We propose a framework for end-to-end semantic segmentation based on weakly supervised
learning. The attention mining branch of the framework uses image-level annotations under an ACM
and CRF operations to generate high-quality pseudo-pixel-level labels for the segmentation branch.
The segmentation branch is trained by a joint loss function to predict pixel-level classification results.
Our model effectively avoids the reliance on manual labeling and bridges the gap between pseudo
labels and ground truth. It improves the robustness and generalization performance of the model in
biased train sets. Applied to e-health systems and AI medical diagnosis systems, it solves the
diagnostic challenges of patients in remote mountainous areas at the early stages of diseases.
Moreover, it enables people to perform regular screening and early diagnosis of dental images taken
by intraoral imaging devices through the system at home.

In AI dentistry, OCT has been widely used in dental diagnosis as a real-time and non-invasive
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tomography technology. To improve the generalizability of our method, we will subsequently attempt
to make dental datasets based on OCT imaging and expand the scope of dental disease recognition of
the proposed approach to achieve visually optimal lesion segmentation by superpixel segmentation.
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