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Abstract: We consider the following chemotaxis-growth system with an acceleration assumption,
ut = ∆u − ∇ · (uw) + γ (u − uα) , x ∈ Ω, t > 0,
vt = ∆v − v + u, x ∈ Ω, t > 0,
wt = ∆w − w + χ∇v, x ∈ Ω, t > 0,

under the homogeneous Neumann boundary condition for u, v and the homogeneous Dirichlet bound-
ary condition for w in a smooth bounded domain Ω ⊂ Rn (n ≥ 1) with given parameters χ > 0,
γ ≥ 0 and α > 1. It is proved that for reasonable initial data with either n ≤ 3, γ ≥ 0, α > 1 or
n ≥ 4, γ > 0, α > 1

2 +
n
4 , the system admits global bounded solutions, which significantly differs from

the classical chemotaxis model that may have blow-up solutions in two and three dimensions. For
given γ and α, the obtained global bounded solutions are shown to convergence exponentially to the
spatially homogeneous steady state (m,m, 0) in the large time limit for appropriately small χ, where
m = 1

|Ω|

∫
Ω

u0(x) if γ = 0 and m = 1 if γ > 0. Outside the stable parameter regime, we conduct linear
analysis to specify possible patterning regimes. In weakly nonlinear parameter regimes, with a stan-
dard perturbation expansion approach, we show that the above asymmetric model can generate pitch-
fork bifurcations which occur generically in symmetric systems. Moreover, our numerical simulations
demonstrate that the model can generate rich aggregation patterns, including stationary, single merging
aggregation, merging and emerging chaotic, and spatially inhomogeneous time-periodic. Some open
questions for further research are discussed.
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1. Introduction

This study considers the system
ut = ∆u − ∇ · (uw) + γ (u − uα) , x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,

τ0wt = ∆w − w + χ∇v, x ∈ Ω, t > 0,
(1.1)

in a bounded domain Ω ⊂ Rn (n ≥ 1) with smooth boundary, where the parameters χ > 0, α > 1, γ ≥ 0
and τ0 ∈ {0, 1}. The functions u(x, t) and v(x, t) denote the organism density and the concentration of the
signal emitted by the organism itself respectively, the vector function w(x, t) = (w1,w2, · · · ,wn)(x, t)
represents the velocity of u. The system (1.1) is a generalized version of the classical Keller-Segel
model (cf. [1])  ut = ∆u − ∇ · (u∇v),

τ0vt = ∆v − v + u,

which was used to describe the aggregation movement of cells. For half a century, this model and its
variants have attracted a lot of attention and yielded rich results. (cf. the surveys [2–5] for instance).

In the classical chemotaxis model or other models containing taxis mechanisms such as the prey-
taxis model (cf. [6]), it is generally assumed that the advective velocity of the organism is proportional
to the concentration gradient of the stimulus/resource. However, this kind of assumption would ne-
glect some details of the movement and is sometimes inappropriate to describe some observations,
such as schooling fish (cf. [7, 8]), swarms of flying insects (cf. [9]) and flea-beetles (cf. [10]), where
the advective velocity variation (i.e., acceleration) rather than the velocity itself of the organism is
supposed to be proportional to the gradient of stimuli/resources. This acceleration assumption was
used in mathematical modeling of some predator-prey models, such as [11, 12], where the model ad-
mits Spatio-temporal patterns consistent with experimental observations, while classical predator-prey
models can not (cf. [13,14]). By introducing the acceleration assumption into chemotaxis models, [15]
considered (1.1) with τ0 = γ = 0 under the boundary condition

∂u
∂n
=
∂v
∂n
= w · n = 0, ∂nw × n = 0, x ∈ ∂Ω,

where n is the outward normal vector on ∂Ω and ∂nw := (∂nw1, ∂nw2, · · · , ∂nwn). It is proved
in [15] that for reasonable initial data, the system (1.1) with the above boundary condition admits
global bounded solutions for n ≤ 3. This result is significantly different from classical parabolic-
parabolic/parabolic-elliptic chemotaxis models, which have the well-known critical mass phenomenon
in the two-dimensional case (cf. [16–20]) and admits blow-up solutions in three-dimensional case
(cf. [18, 21]). For critical mass phenomena in generalized versions of chemotaxis models, we refer the
reader to [22–33] and the references therein.

Our main purpose is to study whether the fully parabolic (τ0 = 1) system (1.1) can preclude blow-up
solutions (and has no critical mass phenomena for n ≤ 3) under the boundary condition

∂u
∂n
=
∂v
∂n
= 0, w = 0, x ∈ ∂Ω. (1.2)
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Specifically, we shall consider two cases: with/without the logistic source term. In the case of γ = 0,
the main task focuses on whether there exist global bounded solutions for all reasonable initial data
in two/three dimensions. When γ > 0, motivated by the works of the classical chemotaxis growth
system (see Remark 1.1), our goal is to find the condition on α such that the model precludes blow-up
solutions in high dimensions (n ≥ 4). Moreover, for global bounded solutions, we shall investigate the
large time behavior.

We assume that initial data (u0, v0,w0)(x) := (u, v,w)(x, 0) conforms to

0 ≤ u0 ∈ C0(Ω), 0 ≤ v0 ∈ W1,∞(Ω), w0 ∈ W1,∞(Ω;Rn) and u0, v0 . 0. (1.3)

The first result is about the global boundedness of solutions, as follows.

Theorem 1.1. Suppose that τ0 = 1 and (1.3) holds with

either (H1) : n ≤ 3, γ ≥ 0, α > 1, or (H2) : n ≥ 4, γ > 0, α >
1
2
+

n
4
,

then the system (1.1)-(1.2) possesses a unique classical solution (u, v,w) satisfying

u, v ∈ C0(Ω × [0,∞)) ∩C2,1(Ω × (0,∞)), w ∈ C0(Ω × [0,∞);Rn) ∩C2,1(Ω × (0,∞);Rn),

and u, v > 0 in Ω × (0,∞). Moreover, the solution is uniformly bounded in time, i.e.,

sup
t∈[0,∞)

(
∥u(·, t)∥L∞(Ω) + ∥v(·, t)∥W1,∞(Ω) + ∥w(·, t)∥W1,∞(Ω)

)
< C (1 + χ)β , (1.4)

where β > 1 and C > 0 are two constants independent of χ and t.

Remark 1.1. Recall the classical chemotaxis growth system ut = ∆u − χ∇ · (u∇v) + hu − µuα, x ∈ Ω, t > 0,

τ0vt = ∆v − v + u, x ∈ Ω, t > 0,
(1.5)

with the homogeneous Neumann boundary condition and reasonable initial data. The parameters
h ∈ R, χ, α > 0 and τ0 ∈ {0, 1}, and Ω ⊂ Rn is a smooth bounded domain. In the case of α = 2, (1.5)
admits global bounded solutions for any µ > 0 if n = 2 and for µ > µ0(Ω) with some positive number
µ0(Ω) if n ≥ 3 (cf. [34–38]). In the case of τ0 = 0, it is proved in [39] that there exist initial data such
that solutions blow up in finite time if

α <

 7
6 if n ∈ {3, 4},
1 + 1

2(n−1) if n ≥ 5.

From this point of view, Theorem 1.1 shows that the introduction of the acceleration assumption into
chemotaxis models can improve the condition for α in some sense, such as (1.1) admits global bounded
solutions for α > 1 (or γ = 0) in three dimensions. Indeed, the condition for α in Theorem 1.1 is more
correlated with that in the indirect chemotaxis model, see Remark 1.2 for a detailed reason.
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Remark 1.2. Assume τ0 = 1. Now we consider a special case: w is a conservative vector field
with w = χ∇ϕ for some scalar potential function ϕ ∈ C1(Ω). Then the system (1.1) is related to the
chemotaxis model with indirect signal production

ut = ∆u − χ∇ · (u∇ϕ) + γ (u − uα) , x ∈ Ω, t > 0,

ϕt = ∆ϕ − ϕ + v, x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0.

(1.6)

If γ = 0, [40] shows that n = 4 is the critical dimension for (1.6) with the homogeneous Neumann
boundary condition or a mixed boundary condition: no blow-up occurs if

∫
Ω

u0 <
(8π2)
χ

(the radially
symmetric setting is needed if the boundary condition is of the Neumann type). When n ≥ 2, γ > 0
and α > 1

2 +
n
4 , [41] proved that (1.6) admits global bounded solutions which convergence to (1, 1, 1)

in L∞(Ω) under the homogeneous Neumann boundary condition. For the system (1.1)-(1.2), Theorem
1.1 has the same restriction for α when n ≥ 4, but when n = 2, 3, the restriction can be improved to
α > 1 (or γ = 0). When ignore the random diffusion of v in (1.6) (i.e., the third equation turns into
vt = −v + u), assuming n ≥ 2 and α > n

2 , [42] obtained global bounded solutions to (1.6) under the
boundary condition ∂u

∂n =
∂ϕ

∂n = 0 on ∂Ω.

The global boundedness of solutions is given in Theorem 1.1. Next, we are dedicated to investigat-
ing the large time behavior of the obtained solution. The system (1.1)-(1.2) has a non-trivial constant
equilibrium (m,m, 0) with

m :=

 1
|Ω|

∫
Ω

u0(x) > 0, if γ = 0,
1, if γ > 0.

(1.7)

We have the following asymptotic dynamics of the system (1.1)-(1.2).

Theorem 1.2. Suppose that the conditions in Theorem 1.1 hold, then there exists a number χ̃ > 0 such
that for all χ ∈ (0, χ̃), the solution (u, v,w) of the system (1.1)-(1.2) obtained in Theorem 1.1 satisfies

∥u(·, t) − m∥W1,∞(Ω) + ∥v(·, t) − m∥W1,∞(Ω) + ∥w(·, t)∥W1,∞(Ω) ≤ Ce−σt as t → ∞, (1.8)

where C, σ are two positive constants independent of t. Moreover, if γ > 0 and α ≥ 2, then we can
take χ̃ =

√
γ.

The above theorem gives the global stability of the equilibrium (m,m, 0) under the condition that
χ is small. However, outside the stable parameter regime, the behavior of solutions is unknown. It is
well-known that the one-dimensional classical chemotaxis growth model can generate rich patterns,
such as stationary, periodic, and chaotic (cf. [43]). To investigate whether the system (1.1)-(1.2) can
generate similar patterns, we shall conduct linear analysis, weakly nonlinear analysis, and perform
numerical simulations to see possible patterns.

Remark 1.3. The weakly nonlinear analysis in Sect. 4.2 shows that the asymmetric system (1.1)-(1.2)
admits pitchfork bifurcations (which occur generically in symmetric systems).

Notations. For brevity, we shall use C or Ci (i = 1, 2, 3, · · · ) denote a generic positive constant
which may vary from line to line in the context, and use CP to denote the well-known Poincaré constant

CP :=
{
inf
C>0

C
∣∣∣∥φ∥L2(Ω) ≤ C∥∇φ∥L2(Ω) for all φ ∈ W1,2(Ω) with φ |∂Ω= 0

}
. (1.9)

Mathematical Biosciences and Engineering Volume 20, Issue 2, 2011–2038.



2015

The rest of this paper is organized as follows. Sect. 2 is devoted to establishing global bounded
solutions to (1.1) and the proof of Theorem 1.1. By constructing appropriate Lyapunov functionals,
the global stability stated in Theorem 1.2 is proved in Sect. 3. Outside the stable parameters regime,
in Sect. 4, we first conduct linear analysis to specify the condition on parameters that allow pattern
formation, then use a standard perturbation expansion approach (cf. [44, Sect. 6]) to conduct weakly
nonlinear analysis to show pitchfork bifurcations, and finally perform numerical simulations for fully
nonlinear parameter regimes to show that stationary patterns, spatially inhomogeneous time-periodic
patterns, merging and emerging chaotic patterns are all possible. Moreover, we discussed some open
questions for further research.

2. Global boundedness

This section contributes to the proof of Theorem 1.1. To begin with, we give the existence of local
solutions.

Lemma 2.1. Suppose that the conditions in Theorem 1.1 hold. Then there exists Tmax ∈ (0,∞] such
that the system (1.1) has a unique classical solution (u, v,w) satisfying u, v ∈ C0(Ω × [0,Tmax)) ∩C2,1(Ω × (0,Tmax)),

w ∈ C0(Ω × [0,Tmax);Rn) ∩C2,1(Ω × (0,Tmax);Rn),

and u, v > 0 in Ω × (0,Tmax). Moreover,

if Tmax < ∞, then lim
t→Tmax

∥u(·, t)∥L∞(Ω) = ∞.

Proof. This proof is based on standard arguments involving the contraction mapping principle. We
omit the detailed proof here and refer the reader to [15] (the main difference here is that w satisfies a
parabolic equation, however, the homogeneous Dirichlet boundary for w will provide sufficient regu-
larities in the proof, see Lemma 2.4 below). □

The following facts are basic but crucial.

Lemma 2.2. Suppose that the conditions in Theorem 1.1 hold. If γ = 0,

∥u(·, t)∥L1(Ω) = ∥u0∥L1(Ω) for all t ∈ (0,Tmax). (2.1)

If γ > 0,
∥u(·, t)∥L1(Ω) ≤ max

{
∥u0∥L1(Ω), |Ω|

}
for all t ∈ (0,Tmax) (2.2)

and ∫ t+s

t

∫
Ω

uα ≤ C for all t ∈ (0,Tmax − s), (2.3)

where s := min
{
1, Tmax

2

}
.
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Proof. Integrating the first equation of (1.1) with respect to x ∈ Ω, one has

d
dt

∫
Ω

u = γ
∫
Ω

(u − uα) . (2.4)

If γ = 0, (2.1) follows immediately. If γ > 0, by Hölder’s inequality ∥u∥L1(Ω) ≤ |Ω|
1− 1

α ∥u∥Lα(Ω) thanks to
α > 1, we obtain

d
dt
∥u∥L1(Ω) ≤ γ∥u∥αL1(Ω)

(
∥u∥1−αL1(Ω) − |Ω|

1−α
)
,

which proves (2.2). Integrating (2.4) in time and using (2.2), one has (2.3). □

To derive a priori estimates for v, we shall need the following property (cf. [46, Lemma 4.1] and [49,
Lemma 1]), which is derived based on smooth properties of the Neumann heat semigroup.

Lemma 2.3. Let Ω be a bounded domain in Rn, n ≥ 1, with smooth boundary. Let T ∈ (0,∞] and
suppose that z ∈ C0(Ω × [0,T )) ∩C2,1(Ω × (0,T )) is a solution of zt = ∆z − z + g, x ∈ Ω, t ∈ (0,T ),

∂z
∂n = 0, x ∈ ∂Ω, t ∈ (0,T ),

where g ∈ L∞ ((0,T ); Lq(Ω)) with some q ≥ 1. Then there exists a constant C > 0 such that

∥z(·, t)∥W1,r(Ω) ≤ C with r ∈

 [1, nq
n−q ) if q ≤ n,

[1,∞] if q > n.

In addition to the well-known smooth properties of the Neumann heat semigroup [63, Lemma 1.3],
we will use the Lp-Lq-estimates of the Dirichlet heat semigroup (cf. [55, Lemma 2.4 (i)], where the
proof is based on [58, Proposition 48.4*, 48.5 and 48.7*] and similar arguments as in the proof of [63,
Lemma 1.3]).

Lemma 2.4 ( [55, Lemma 2.4 (i)]). Let et∆ be the Dirichlet heat semigroup in Ω ⊂ Rn (n ≥ 1),
λ1 > 0 denote the first nonzero eigenvalue of −∆ in Ω under the Dirichlet boundary condition. If
1 ≤ q ≤ p ≤ ∞, then for any z ∈ Lq(Ω), it holds that

∥et∆z∥Lp(Ω) ≤ C(1 + t−
n
2 ( 1

q−
1
p ))e−λ1t∥z∥Lq(Ω) for all t > 0,

and

∥∇et∆z∥Lp(Ω) ≤ C
(
1 + t−

1
2−

n
2 ( 1

q−
1
p )
)

e−λ1t∥z∥Lq(Ω) for all t > 0.

We are in a position to derive the following boundedness criterion.

Lemma 2.5. Suppose that n ≥ 1, γ ≥ 0 and α > 1. If there exists p > n such that

sup
t∈(0,Tmax)

∥w(·, t)∥Lp ≤ c0 (2.5)

for some positive constant c0, then there exist two constants β > 1 and C > 0 independent of χ and t
such that

∥u(·, t)∥L∞(Ω) + ∥v(·, t)∥W1,∞(Ω) + ∥w(·, t)∥W1,∞(Ω) ≤ C (1 + χ)β (2.6)

for all t ∈ (0,Tmax).
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Proof. This proof can follow similar arguments developed in [59, Lemma 4.2] (see also [2, Lemma
3.2], [47, Lemma 3.1] and [48, Lemma 3.2] for instance). However, in order to give a clear dependency
between the boundedness of supt∈(0,Tmax) ∥u(·, t)∥L∞ and χ, we shall sketch the proof here. Now for each
T ∈ (0,Tmax), define

M(T ) := sup
t∈(0,T )

∥u(·, t)∥L∞ ,

which is finite thanks to the local existence results in Lemma 2.1. Since p > n, for any q ∈ (n, p), it
holds that

p
p + 1

< 1 ≤ n < q and δ := 1 −
p − q

pq
∈ (0, 1). (2.7)

Then by Hölder’s inequality, the interpolation inequality, Lemma 2.2, (2.5) and (2.7), we have

∥u(·, t)w(·, t)∥Lq(Ω) ≤ ∥u(·, t)∥
L

pq
p−q (Ω)
∥w(·, t)∥Lp(Ω)

≤ c0(1 + χ)∥u(·, t)∥δL∞(Ω)∥u(·, t)∥1−δL1(Ω)

≤ C1(1 + χ)Mδ(T ) for all t ∈ (0,T ).

For t0 := (t − 1)+ and each t ∈ (0,T ), the variation-of-constants formula for u(·, t) gives

u(·, t) = e(t−t0)∆u(·, t0) +
∫ t

t0
e(t−s)∆∇ · (u(·, s)w(·, s)) +

∫ t

t0
e(t−s)∆γ (u(·, s) − uα(·, s)) . (2.8)

Since α > 1, we have γ (u − uα) ≤ γ, then using (2.8), the maximum principle, Lp-Lq estimates of the
Neumann heat semigroup (cf. [63, Lemma 1.3]) and 1

2 +
n

2q < 1, one has

∥u(·, t)∥L∞(Ω) ≤ ∥u0∥L∞(Ω) +

∫ t

t0
∥e(t−s)∆∇ · (u(·, s)w(·, s))∥L∞(Ω)ds

+

∫ t

t0
∥e(t−s)∆γ∥L∞(Ω)ds

≤ C2 +C2

∫ t

0
(1 + (t − s))−

1
2−

n
2q e−λ2(t−s)∥u(·, s)w(·, s)∥Lq(Ω)ds + γ(t − t0)

≤ C3(1 + χ)
(
Mδ(T ) + 1

)
for all t ∈ (0,T ), (2.9)

where (et∆)t≥0 is the Neumann heat semigroup in Ω and λ2 denotes the first nonzero eigenvalue of −∆
in Ω under the homogeneous Neumann boundary condition. In view of (2.9), we arrived at

M(T ) ≤ C3(1 + χ)
(
Mδ(T ) + 1

)
for all T ∈ (0,Tmax),

which along with δ ∈ (0, 1) gives

M(T ) ≤ max
{
1, (2C3(1 + χ))

1
1−δ

}
for all T ∈ (0,Tmax).

Since the above Ci (i = 1, 2, 3) is independent of T , we have

∥u(·, t)∥L∞(Ω) ≤ max
{
1, (2C3(1 + χ))

1
1−δ

}
for all t ∈ (0,Tmax). (2.10)
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With (2.10), we can apply Lemma 2.3 to prove

∥v(·, t)∥W1,∞(Ω) ≤ C4 (1 + χ)
1

1−δ for all t ∈ (0,Tmax), (2.11)

which together with Lemma 2.4 shows that

∥w(·, t)∥W1,∞(Ω) ≤ C5 (1 + χ)
1

1−δ for all t ∈ (0,Tmax). (2.12)

The combination of (2.10)–(2.12) proves (2.6) by letting β = 1
1−δ . □

The following conclusion follows from Lemma 2.2 and Lemma 2.5 immediately.

Corollary 2.6. If (H1) holds, then there exist two constants β > 1 and C > 0 independent of χ and t
such that (2.6) holds.

Proof. It holds that n
n−1 ≥

3
2 thanks to n ≤ 3. This along with Lemma 2.2 and Lemma 2.3 indicates that

∥v∥
W1, 32 (Ω)

≤ C1 for all t ∈ (0,Tmax). (2.13)

The variation-of-constants formula for w yields

w(·, t) = et(∆−1)w0 + χ

∫ t

0
e(t−s)(∆−1)∇v(·, s)ds for all t ∈ (0,Tmax), (2.14)

where (et∆)t≥0 is the Dirichlet heat semigroup in Ω. Using Lemma 2.4, (2.13) and the fact that
n
2

(
2
3 −

1
4

)
< 1 for n ≤ 3, for all t ∈ (0,Tmax), we have

∥w(·, t)∥L4(Ω) ≤ C2 +C2χ

∫ t

0

(
1 + (t − s)−

n
2 ( 2

3−
1
4 )) e−λ1t∥∇v∥

L
3
2 (Ω)
≤ C3(1 + χ). (2.15)

In view of Lemma 2.5 and n ≤ 3 < 4, the proof is obtained immediately from (2.15). □

Lemma 2.7. Suppose that n ≥ 2, γ > 0, α > 1
2 +

n
4 , then there exist two constants β > 1 and C > 0

independent of χ and t such that (2.6) holds.

Proof. For ε > 0, multiplying (2.4) by eεt yields

d
dt

(
eεt

∫
Ω

u(·, t)
)
+ γeεt

∫
Ω

uα(·, t) = (ε + γ)eεt
∫
Ω

u(·, t) for all t ∈ (0,Tmax).

For t0 ∈ (0,Tmax), integrating the above equation in time and using (2.2), we have

γ

∫ t

t0
eεs

∫
Ω

uα(·, s)ds ≤ max
{
∥u0∥L1(Ω), |Ω|

} (
1 +

γ

ε

) (
eεt − eεt0) + eεt0

∫
Ω

u(·, t0)

≤ max
{
∥u0∥L1(Ω), |Ω|

} (
1 +

γ

ε

)
eεt for all t ∈ (t0,Tmax) ,

which implies that∫ t

t0
e−ε(t−s)

∫
Ω

uα(·, s)ds ≤ max
{
∥u0∥L1(Ω), |Ω|

} (1
ε
+

1
γ

)
for all t ∈ (t0,Tmax) . (2.16)
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Based on (2.16) and the smoothing properties of the Neumann heat semigroup, we can use similar
arguments as in [41, Lemma 3.4] to find some ρ1 >

n
2 with α > (n+2)ρ1

n+2ρ1
such that

∥v∥Lρ1 (Ω) ≤ C for all t ∈ (0,Tmax). (2.17)

Letting ρ2 := nρ1
(n−ρ1)+

> n, then using (2.14), (2.17) and Lemma 2.4, we have

∥w(·, t)∥Lρ2 (Ω) ≤ C∥w0∥L∞(Ω) +Cχ
∫ t

0

(
1 + (t − s)−

1
2−

n
2 ( 1

ρ1
− 1
ρ2

)
)

e−λ1(t−s)∥v∥Lρ1 (Ω)ds

≤ C (1 + χ) for all t ∈ (0,Tmax).

This alongside Lemma 2.5 completes the proof. □

Proof of Theorem 1.1. If (H1) holds, then by Corollary 2.6 we arrive at (2.6). If (H2) holds, then an
application of Lemma 2.7 also gives (2.6). In view of Lemma 2.1 and (2.6), we obtain Tmax = ∞. Then
(1.4) follows from (2.6) immediately, which completes the proof. □

3. Global stability

In this section, we shall construct appropriate Lyapunov functionals to prove the large time behavior
of solutions stated in Theorem 1.2. In the following, we suppose that the conditions in Theorem 1.1
hold and (u, v,w) is the solution of the system (1.1)-(1.2) obtained in Theorem 1.1. The proof of
Theorem 1.2 is mainly divided into two cases: with/without the logistic source term. We first give the
following higher order regularities of the solution.

Lemma 3.1. For any θ ∈ (0, 1), there exists a positive constant C(θ) depending on θ such that

∥u∥
C2+θ,1+ θ2

(
Ω×[1,∞)

) + ∥v∥
C2+θ,1+ θ2

(
Ω×[1,∞)

) + ∥w∥
C2+θ,1+ θ2

(
Ω×[1,∞)

) ≤ C(θ).

Proof. The conclusion can be proved by standard bootstrap arguments based on (1.4), the Lp estimate
and the Schauder estimate (cf. [51]). We omit the details here for brevity and refer the reader to [60,
Theorem 2.1] for instance. □

The following auxiliary lemma will be used to prove global stability.

Lemma 3.2. ( [61, Lemma 1.1]) Let a ≥ 0 and b > 0 be two constants, F(t) ≥ 0,
∫ ∞

a
H(t)dt < ∞.

Assume that E ∈ C1([a,∞)), E is bounded from below and satisfies

E′(t) ≤ −bF(t) + H(t) in [a,∞).

If either F ∈ C1([a,∞)) and F′(t) ≤ k in [a,∞) for some k > 0, or F ∈ Cθ([a,∞)) and ∥F∥Cθ([a,∞)) ≤ k
for some constants 0 < θ < 1 and k > 0, then

lim
t→∞

F(t) = 0.

With the aid of the Poincaré inequality (1.9), we can construct the following Lyapunov functional
in the case of γ = 0.
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Lemma 3.3. Suppose that (H1) holds with γ = 0, then there exists a positive constant χ̃1 > 0 such that
for all χ ∈ (0, χ̃1), the function

E1(t) := CP

∫
Ω

(u − m)2 +

∫
Ω

(v − m)2 +
1
χ2

∫
Ω

|w|2 for all t > 0

satisfies
d
dt
E1(t) ≤ −η1E1(t) for all t > 0, (3.1)

where η1 := min
{

1
3CP

, 1
2

}
, m and CP are given by (1.7) and (1.9) respectively.

Proof. Integrating the equations in (1.1) by parts, using (1.9) and Young’s inequality, for all t > 0, we
obtain

d
dt

∫
Ω

(u − m)2 = −2
∫
Ω

|∇u|2 + 2
∫
Ω

uw · ∇u

≤ −
1
2

∫
Ω

|∇u|2 −
1

CP

∫
Ω

(u − m)2 + 2
∫
Ω

u2|w|2 (3.2)

and

d
dt

∫
Ω

(v − m)2 = −2
∫
Ω

|∇v|2 + 2
∫
Ω

(u − m)(v − m) − 2
∫
Ω

(v − m)2

≤ −2
∫
Ω

|∇v|2 +
2
3

∫
Ω

(u − m)2
−

1
2

∫
Ω

(v − m)2, (3.3)

as well as

d
dt

∫
Ω

|w|2 = −2
n∑

i=1

∫
Ω

|∇wi|
2 − 2

∫
Ω

|w|2 + 2χ
∫
Ω

w · ∇v ≤ −
∫
Ω

|w|2 + χ2
∫
Ω

|∇v|2. (3.4)

The combination of (3.2)–(3.4) implies that

d
dt
E1(t) ≤ −

1
3

∫
Ω

(u − m)2
−

1
2

∫
Ω

(v − m)2 −

∫
Ω

(
1
χ2 − 2CPu2

)
|w|2 for all t > 0.

According to (1.4), we know there exists χ̃1 > 0 such that

1
χ2 − 2CPu2 ≥

1
2χ2 +

1
2χ̃2

1

− 2CPu2 >
1

2χ2 for all χ ∈ (0, χ̃1),

which indicates that

d
dt
E1(t) ≤ −

1
3

∫
Ω

(u − m)2
−

1
2

∫
Ω

(v − m)2 −
1

2χ2

∫
Ω

|w|2 for all t > 0.

This proves (3.1). □

In the presence of logistics sources, i.e., γ > 0, we can construct the following Lyapunov functional.
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Lemma 3.4. Suppose that γ > 0 and either (H1) or (H2) holds, then there exists a positive constant
χ̃2 > 0 such that for all χ ∈ (0, χ̃2), the function

E2(t) :=
∫
Ω

(u − 1 − ln u) + χ2
∫
Ω

(v − 1)2 +

∫
Ω

|w|2 for all t > 0

satisfies
d
dt
E2(t) ≤ −min

{
χ2

3
,

1
2

}
F (t) for all t > 0, (3.5)

where

F (t) :=
∫
Ω

(u − 1)2 +

∫
Ω

(v − 1)2 +

∫
Ω

|w|2 for all t > 0.

Proof. Multiplying the first equation in (1.1) by 1− 1
u , integrating the result by parts and using Young’s

inequality, for all t > 0, we obtain

d
dt

∫
Ω

(u − 1 − ln u) = −
∫
Ω

|∇u|2

u2 +

∫
Ω

w ·
|∇u|

u
− γ

∫
Ω

(uα−1 − 1)(u − 1)

≤ −
1
2

∫
Ω

|∇u|2

u2 +
1
2

∫
Ω

|w|2 − γ
∫
Ω

φ(u, α)(u − 1)2, (3.6)

where φ(s, α) := sα−1−1
s−1 for s ≥ 0 and α > 1 with φ(1, α) := lims→1 φ(s, α) = α − 1. Similarly, as in

deriving (3.3), we have

d
dt

∫
Ω

(v − 1)2 ≤ −2
∫
Ω

|∇v|2 +
2
3

∫
Ω

(u − 1)2 −
1
2

∫
Ω

(v − 1)2 for all t > 0. (3.7)

For all t > 0, the combination of (3.4), (3.6) and (3.7) implies that

d
dt
E2(t) ≤ −

∫
Ω

(
γφ(u, α) −

2
3
χ2

)
(u − 1)2

−
χ2

2

∫
Ω

(v − 1)2 −
1
2

∫
Ω

|w|2. (3.8)

Case1: 1 < α < 2. It holds that φ(u, α) = (α − 1)sα−2
0 with some s0 between u and 1. By (1.4)

we know that there exists a constant C1 > 1 independent of χ ∈ (0, 1) such that u(x, t) < C1 for all
(x, t) ∈ Ω × (0,∞). Therefore, if we take χ̃2 = min

{
1, (γ(α − 1)Cα−2

1 )
1
2

}
, then

γφ(u, α) −
2
3
χ2 ≥ γ(α − 1)Cα−2

1 − χ̃2
2 +

χ2

3
≥
χ2

3
for all χ ∈ (0, χ̃2),

which along with (3.8) proves (3.5).
Case2: α ≥ 2. We first note that φ(0, α) = 1 and φ(1, α) = α − 1 ≥ 1. Since d

dαφ(s, α) = sα−1 ln s
s−1 > 0

for s , 0, 1, we have

φ(s, α) ≥ φ(s, 2) = 1 for all s ≥ 0 and α ≥ 2. (3.9)

Let χ̃2 =
√
γ, then

γφ(u, α) −
2
3
χ2 ≥ γ −

2
3
χ2 ≥

χ2

3
for all χ ∈ (0, χ̃2), (3.10)

which alongside (3.8) also arrives at (3.5). □
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We are now in a position to prove the convergence rate of solutions stated in Theorem 1.2.
Proof of Theorem 1.2. If (H1) holds with γ = 0, then it follows from Lemma 3.3 that (3.1) holds for
0 < χ < χ̃ := χ̃1, hence we have

E1(t) ≤ E1(0)e−η1t for all t > 0. (3.11)

We have from (3.11) that

∥u(·, t) − m∥L2(Ω) + ∥v(·, t) − m∥L2(Ω) + ∥w∥L2(Ω) ≤ Ce−η1t for all t > 0,

which along with Lemma 3.1 and the Gagliardo-Nirenberg inequality

∥ϕ∥W1,∞(Ω) ≤ C ∥ϕ∥
n+2
n+4

W2,∞(Ω) ∥ϕ∥
2

n+4

L2(Ω) for all ϕ ∈ W2,∞(Ω)

proves (1.8) with σ := 2η1
n+4 .

We next assume that γ > 0 and either (H1) or (H2) holds, then Lemma 3.4 indicates that (3.5) holds
for 0 < χ < χ̃ := χ̃2. Noting that E2(t) ≥ 0 for all t > 0 due to s − 1 − ln s ≥ 0 for s ≥ 0. Using Lemma
3.2, Lemma 3.1 and Lemma 3.4, we obtain F (t)→ 0 as t → ∞, which implies that

∥u(·, t) − 1∥L2(Ω) + ∥v(·, t) − 1∥L2(Ω) + ∥w(·, t)∥L2(Ω) → 0 as t → ∞.

The L’Hôpital’s rule shows that lim
u→1

u−1−ln u
(u−1)2 = lim

u→1

1
2u =

1
2 , hence we can find t1 > 1 such that

1
4

∫
Ω

(u − 1)2
≤

∫
Ω

(u − 1 − ln u) ≤
∫
Ω

(u − 1)2 for all t > t1.

This together with Lemma 3.4 shows that there exists a constant η2 > 0 such that

d
dt
E2(t) ≤ −η2E2 for all t > t1.

We are now at the same position as in (3.11), which also proves (1.8) with σ := 2η2
n+4 . Moreover, the

proof of Lemma (3.4) (see (3.9) and (3.10)) implies that if γ > 0 and α ≥ 2, then χ̃ can be taken as
χ̃ =
√
γ. □

4. Linear stability analysis and spatio-temporal patterns

A variety of patterns (including stationary, periodic, and chaotic) are observed in the one-
dimensional classical Keller-Segel model with the logistic term (cf. [43]). Theorem 1.2 shows that
the equilibrium (m,m, 0) of (1.1) is globally asymptotic stable for appropriately small χ > 0. This
raises a natural question, whether the considered system (1.1) with the acceleration assumption can
generate aggregated patterns for large χ? To this end, we shall first conduct linear analysis outside the
stable parameters regime to specify the condition on parameters such that the equilibrium (m,m, 0) is
linearly unstable, and then perform numerical simulations to see possible patterns. Throughout this
section, we assume that n = 1, Ω = (0, L) is an interval of length L > 0 and τ0 = 1 in (1.1).
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4.1. Linear stability analysis

It is well known that the Neumann and Dirichlet eigenvalue problems∆φ + ρ
(N)φ = 0, in (0, L),

∂φ

∂n = 0, on {0, L} ,
and

∆ψ + ρ
(D)ψ = 0, in (0, L),

ψ = 0, on {0, L} ,

have eigenvalues 0 = ρ(N)
0 < ρ(N)

1 ≤ ρ(N)
2 ≤ · · · ≤ ρ(N)

k ≤ · · · and 0 < ρ(D)
1 ≤ ρ(D)

2 ≤ · · · ≤ ρ(D)
k ≤ · · ·

with corresponding eigenvectors {φk}
∞
k=0 and {ψk}

∞
k=0 respectively, where {φk}

∞
k=0 and {ψk}

∞
k=1 respectively

form an orthonormal basis of L2(Ω), and φ0 =

√
1
L . Moreover,


φk(x) =

√
2
L cos(ωkx),

ψk(x) =
√

2
L sin(ωkx),

and ρ(N)
k = ρ

(D)
k = ω

2
k for all k ∈ N+,

where ωk := kπ
L for all k ∈ N. Then a solution of (1.1)-(1.2) can be written as

u(x, t)

v(x, t)

w(x, t)

 =


m

m

0

 +
∞∑

k=0


ak(t)φk(x)

bk(t)φk(x)

dk(t)ψk(x)

 , (4.1)

where m is given by (1.7), and we have supplemented the definition

ψ0(x) := sin(ω0x) ≡ 0 for all x ∈ (0, L) (4.2)

so that the forms of three component solutions are uniform (noting that
∑∞

k=0 dk(t)ψk(x) =∑∞
k=1 dk(t)ψk(x) for any function d0(t) of t).
For linear stability, we assume |ak|, |bk|, |dk+1| ≪ 1 for each mode k ∈ N to represent (u, v,w) has

a small perturbation to the equilibrium (m,m, 0) and substitute (4.1) into (1.1) to obtain the following
ODE

d
dt


ak(t)

bk(t)

dk(t)

 = Jk


ak(t)

bk(t)

dk(t)

 + O
(
∥u − m∥L2(Ω) + ∥v − m∥L2(Ω) + ∥w∥L2(Ω)

)
,

where

Jk :=


−ω2

k − I1 0 −mωk

1 −ω2
k − 1 0

0 −χωk −ω2
k − 1

 with I1 := γ(αmα−1 − 1) ≥ 0. (4.3)

Clearly, by (1.7) we have

I1 = 0 if γ = 0 and I1 > 0 if γ > 0. (4.4)
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The matrix Jk has three eigenvalues, denoted by λk (i = 1, 2, 3), then

λ3
k + D2λ

2
k + D1λk + D0 = 0, k ∈ N,

where Di = Di(k2), i = 0, 1, 2, are given by
D2(k2) := 3ω2

k + 2 + I1,

D1(k2) := 3ω4
k + 2 (2 + I1)ω2

k + 2I1 + 1,

D0(k2) := ω6
k + (I1 + 2)ω4

k + (2I1 − mχ + 1)ω2
k + I1,

k ∈ N. (4.5)

Define

D3(k2) := D1D2 − D0 = 8ω6
k + 8(I1 + 2)ω4

k +
(
2I2

1 + 12I1 + mχ + 10
)
ω2

k + 2(I1 + 1)2, k ∈ N. (4.6)

If the real parts Re(λk) < 0 for all k ∈ N, then the equilibrium (m,m, 0) is linearly stable. It follows
from (4.4) that I1 ≥ 0, which alongside (4.5) and (4.6) implies that

Di(k2
0) > 0 for i ∈ {1, 2, 3} , k ∈ N. (4.7)

Therefore, by the Routh-Hurwitz criterion (cf. [56, Appendix B]) we know that (m,m, 0) is linearly
stable if and only if D0(k2) > 0 for all k ∈ N. If there exist some k0 ∈ N such that D0(k2

0) < 0, then
(m,m, 0) is linearly unstable. Specifically, we have the following linear stability.

Lemma 4.1. For the system (1.1)-(1.2) with χ > 0, γ ≥ 0, α > 1 and m given by (1.7), the constant
solution (m,m, 0) is linearly unstable if and only if

χ > χ∗ := inf
k∈N+

χ∗k with χ∗k :=

(
ω2

k + 1
)2 (

I1 + ω
2
k

)
mω2

k

, (4.8)

where I1 is given by (4.3).

Proof. By (4.7) and the Routh-Hurwitz criterion, we see that (m,m, 0) is linearly unstable if and only
if D0(k2) < 0 for some k ∈ N+ (noting that D0(k2) |k=0= I1 ≥ 0). The proof is completed by noting that
D0(k2) < 0 if and only if χ > χ∗k for k ∈ N+. □

4.2. Weakly nonlinear analysis

In this subsection, we assume that

γ = 1, α = 2, m = 1, χ = χ∗ + ε (4.9)

with 0 < ε ≪ 1 (the simpler case γ = 0 can be discussed similarly), then the system (1.1) becomes

ut = ∆u − ∇ · (uw) + u − u2, x ∈ (0, L), t > 0,

vt = ∆v − v + u, x ∈ (0, L), t > 0,

wt = ∆w − w + χ∇v, x ∈ (0, L), t > 0,
∂u
∂n =

∂v
∂n = w = 0, x ∈ {0, L} .

(4.10)
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Our goal is to perform nonlinear analysis in a weak sense under the condition 0 < ε ≪ 1. In this
respect, we shall derive the amplitude equations for (4.10) by following a standard perturbation expan-
sion approach (cf. [44, Sect. 6]), see also [50, Sect. 3.2] for an application in a symmetric two-species
competition chemotaxis model).

We have from (4.3) and Lemma 4.1 that I1 = 1 and hence (4.8) gives χ∗ = infk∈N+
(ω2

k+1)3

ω2
k

. Since

φ1(s) := (s2+1)3

s2 is a convex function in s > 0, and min
s>0

φ1(s) = φ1(
√

2
2 ) = 27

4 . Therefore, for any L > 0,
χ∗ = inf

k∈N+
χ∗k attains its infimum at either one or two modes. Without loss of generality, we assume there

is only one mode k∗ ∈ N+ such that χ∗ = χ∗k∗ = inf
k∈N+

χ∗k. Furthermore, for brevity (see Remark 4.2), we
assume

L <
√

2π, (4.11)

then kπ
L >

√
2

2 for all k ∈ N+, which indicates that k∗ = 1 and

χ∗ =

(
ω2

1 + 1
)3

ω2
1

. (4.12)

Moreover, the following result is a direct consequence of Lemma 4.1.

Corollary 4.2. J∗k is invertible with three eigenvalues have negative real parts for all k ∈ N except at
k = 1, where J∗1 has an eigenvalue 0 with the corresponding eigenvector

ξ = (ξ1, ξ2, ξ3)T :=
(
−

ω1

1 + ω2
1

,−
ω1

(1 + ω2
1)2
, 1

)T

. (4.13)

Proof. Using (4.3) with k = 1, χ = χ∗ and (4.9), one can obtain three eigenvalues of J∗1 : 0 and

−

√
3(1+ω2

1)(
√

3±i)
2 , and the corresponding eigenvector of the eigenvalue 0 is ξ given by (4.13). The rest

of the proof follows from the proof of Lemma 4.1 immediately. □

For 0 < ε ≪ 1 and χ = χ∗ + ε, we define the slow time variable τ := εt and (U,V,W)(x, τ) :=
(u, v,w)(x, t), then by (4.10) we know that (U,V,W)(x, τ) satisfies

ε∂τU = ∂xxU − ∂x(UW) + U − U2, x ∈ (0, L), τ > 0,

ε∂τV = ∂xxV − V + U, x ∈ (0, L), τ > 0,

ε∂τW = ∂xxW −W + (χ∗ + ε)∂xV, x ∈ (0, L), τ > 0,

∂xU = ∂xV = W = 0, x ∈ {0, L} .

(4.14)

We shall use the following asymptotic expansions of (U,V,W) for 0 < ε ≪ 1:
U(x, τ)

V(x, τ)

W(x, τ)

 =


1

1

0

 +
∞∑
j=1

ε
j
2


U ( j)(x, τ)

V ( j)(x, τ)

W ( j)(x, τ)

 . (4.15)

The reason the expansion to be powers of ε
1
2 is that a pitchfork bifurcation can be expected although

there is no symmetry of the system, see Remark 4.1 for a detailed reason.
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Remark 4.1. Pitchfork bifurcations occur generally for symmetric models, such as symmetric chemo-
taxis models as in [50, 52]. Here, for the asymmetric system (4.14), a pitchfork bifurcation may also
occur at ε = 0. To see this, we denote

L


U

V

W

 :=


L1(U,W)

∂xxV − V + U

∂xxW −W + (χ∗ + ε)∂xV


with L1(U,W) := ∂xxU −∂x(UW)+U −U2, and assume that for small 0 < ε ≪ 1, there exists a steady
state which can be appropriately expressed as (U f ,Vg,Wh) := (1+ f (x), 1+ g(x), h(x)) for some small
f , g, h, i.e., L

(
(U f ,Vg,Wh)T

)
= (O(ε),O(ε),O(ε)). We claim that if

− f ′′(x) + f (x) + h′(x) = 0, (4.16)

then

L
(
(U f ,Vg,Wh)T

)
= L

(
(U− f ,V−g,W−h)T

)
,

which suggests a pitchfork bifurcation. By linearity we only need to verify L1(U f ,Wh) =
L1(U− f ,W−h). In fact, it follows from (4.16) that

L1(U f ,Wh) − L1(U− f ,W−h) = −2
(
− f ′′(x) + f (x) + h′(x)

)
= 0,

which confirms our claim. There is ( f (x), g(x), h(x)) satisfies (4.16), for example,

( f (x), g(x), h(x)) := εp0 p1

(
−

p2 p3

1 + p2
3

cos(p3x), p4 cos(p3x), p2 sin(p3x)
)

(4.17)

with positive constants p j, j = 0, 1, 2, 3, 4. The above analysis suggests the possible existence of a
pitchfork bifurcation, and we shall see that it indeed exists (see (4.37)).

As in deriving (4.1), we have the extension
U ( j)(x, τ)

V ( j)(x, τ)

W ( j)(x, τ)

 =
∞∑

k=0

Mk


a( j)

k (τ)

b( j)
k (τ)

d( j)
k (τ)

 for j ∈ N+, (4.18)

where

Mk :=


cosωkx 0 0

0 cosωkx 0
0 0 sinωkx

 for k ∈ N. (4.19)

Noting that there is no need to specify d( j)
0 (τ) for all j ∈ N+ due to (4.2). Substituting (4.18) into (4.14),

then we can collect the terms of order ε
j
2 for j ∈ N+ (noting that there are no terms of order ε0). To

begin with, we consider the case of j = 1.
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• Order ε 1
2 terms: collecting the terms of order ε

1
2 , one has

0 = ∂xxU (1) − ∂xW (1) − U (1),

0 = ∂xxV (1) − V (1) + U (1),

0 = ∂xxW (1) −W (1) + χ∗∂xV (1).

(4.20)

Substituting (4.18) with j = 1 into (4.20), one has

∞∑
k=0

J∗kMk


a(1)

k (τ)

b(1)
k (τ)

d(1)
k (τ)

 =


0

0

0

 , (4.21)

where Mk is defined by (4.19) and J∗k := Jk |χ=χ∗ in (4.3) with χ∗ given by (4.12). It follows from
Corollary 4.2 and the orthogonality of sine and cosine series that

a(1)
i (τ) ≡ b(1)

i (τ) ≡ d(1)
j (τ) ≡ 0 for all i ∈ N/ {1} , j ∈ N+/ {1} . (4.22)

For k = 1, (a(1)
1 (τ), b(1)

1 (τ), d(1)
1 (τ))T is a multiple of ξ given in (4.13), this along with (4.2), (4.18) and

(4.22) indicates that 
U (1)

V (1)

W (1)

 = P(τ)M1ξ = P(τ)


cos(ω1x)ξ1

cos(ω1x)ξ2

sin(ω1x)ξ3

 , (4.23)

where P(τ) is the unknown amplitude function of τ. Our goal is to find the differential equation that
P(τ) satisfies. To this end, we shall derive the equations that higher order ε terms satisfy.

• Order ε terms: the order ε terms satisfy the following equations
0 = ∂xxU (2) − ∂xW (2) − U (2) − ∂x(U (1)W (1)) − (U (1))2,

0 = ∂xxV (2) − V (2) + U (2),

0 = ∂xxW (2) −W (2) + χ∗∂xV (2).

(4.24)

As in deriving (4.21), substituting (4.18) with j = 2 into (4.24) and using (4.23), we have

∞∑
k=0

J∗kMk


a(2)

k (τ)

b(2)
k (τ)

d(2)
k (τ)

 =

∂x(U (1)W (1)) + (U (1))2

0

0

 = −P(τ)2


c1 cos(2ω1x) − ξ2

1
2

0

0

 , (4.25)

where (ξ1, ξ2, ξ3) is given by (4.13) and

c1 := −
ξ1(2ξ3ω1 + ξ1)

2
=
ω2

1(1 + 2ω2
1)

2(1 + ω2
1)2

> 0.
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Again by Corollary 4.2 and the orthogonality of sine and cosine series, one has (a(2)
1 (τ), b(2)

1 (τ), d(2)
1 (τ))T = Q(τ)ξ,

a(2)
i (τ) ≡ b(2)

i (τ) ≡ d(2)
j (τ) ≡ 0 for all i ∈ N/ {0, 1, 2} , j ∈ N+/ {1, 2} ,

(4.26)

where Q(τ) is some unknown function. For k = 0 and k = 2, (4.25) turns into the following two
equations

J∗0


a(2)

0 (τ)

b(2)
0 (τ)

0

 =
ξ2

1

2
P(τ)2


1

0

0

 and J∗2


a(2)

2 (τ)

b(2)
2 (τ)

d(2)
2 (τ)

 = −c1P(τ)2


1

0

0

 , (4.27)

respectively. Using (4.3) with χ = χ∗ given in (4.12), one can easily obtain (J∗0 )−1 and (J∗2 )−1, which
alongside (4.2), (4.18), (4.26) and (4.27) gives

U (2)

V (2)

W (2)

 = P(τ)2


ξ2

1

2


−1

−1

0

 − c1M2η

 + Q(τ)M1ξ, (4.28)

where ξ andMk (k ∈ N) are given by (4.13) and (4.19) respectively, and

η :=


η1

η2

η3

 = (J∗2 )−1


1

0

0

 = 1
ω6

2 + 3ω4
2 − ω

2
2(χ∗ − 3) + 1


−

(
ω2

2 + 1
)2

−
(
ω2

2 + 1
)

ω2χ
∗

 . (4.29)

• Order ε 3
2 terms: we are now in a position to collect the terms of order ε

3
2 which provides d

dτP(τ)
and allows us to establish an ODE for P(τ). As before, we have

∂τU (1) = ∂xxU (3) − ∂xW (3) − U (3) − 2U (1)U (2) − ∂x(U (2)W (1) + U (1)W (2)),

∂τV (1) = ∂xxV (3) − V (3) + U (3),

∂τW (1) = ∂xxW (3) −W (3) + χ∗∂xV (3) + ∂xV (1),

which along with similar procedures as in deriving (4.21) and (4.25) implies

P′(τ)M1ξ =
∞∑

k=0

J∗kMk


a(3)

k (τ)

b(3)
k (τ)

d(3)
k (τ)

 +

−2U (1)U (2) − ∂x(U (2)W (1) + U (1)W (2))

0

∂xV (1)

 . (4.30)

Substituting the expressions (4.23) and (4.28) for the lower oder terms into the above equation, and
using ω2 = 2ω1 and the orthogonality of sine and cosine series, we can collect the cos(ω1x) terms for
the first two components of (4.30) and the sin(ω1x) terms for the third component of (4.30) to arrive at

P′(τ)ξ = J∗1M1


a(3)

1 (τ)

b(3)
1 (τ)

d(3)
1 (τ)

 + P(τ)3


c2

0

0

 + P(τ)


0

0

−ω1ξ2

 , (4.31)
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where

c2 :=
c1(−η1ω1ξ3 + 2η1ξ1 + η3ω1ξ1) + ξ2

1(ω1ξ3 + 2ξ1)
2

,

and ξ, η are given by (4.13) and (4.29) respectively. Let

β := (β1, β2, β3) =

−L
π
−
π

L
,−

(
L2 + π2

)2

πL3 , 1

 ,
then β is in the left kernel of J∗1 . Multiplying (4.31) from left by β and using β · ξ = 3, one has

P′(τ) = c3P(τ)3 + c4P(τ) (4.32)

with 
c3 := β1c2

3 =
π2(7L8+15π2L6+16π4L4+66π6L2+148π8)

36(L2+π2)2(L6−12π4L2−20π6)
< 0,

c4 := −ω1ξ2β3
3 = π2L2

3(L2+π2)2 > 0,
(4.33)

where c3 < 0 use the fact that L6 − 12π4L2 − 20π6 < 0 due to (4.11).
By introducing A(t) = ε

1
2 P(τ), (4.32) leads to

d
dt

A(t) = εc4A(t) + c3A(t)3, (4.34)

where c3, c4 are given by (4.33). Since c3 < 0 and c4 > 0, we know that (4.34) has a supercritical
pitchfork bifurcation at ε = 0 and (4.34) has three steady states:

0 (unstable) and ±ε
1
2

√
c4

−c3
(stable). (4.35)

Now plugging (4.23) into (4.15) and using A(t) = ε
1
2 P(τ), we can obtain the appropriated solution for

0 < ε ≪ 1: 
U(x, τ)

V(x, τ)

W(x, τ)

 =


1

1

0

 + A(t)


cos(ω1x)ξ1

cos(ω1x)ξ2

sin(ω1x)ξ3

 + O(ε), (4.36)

where A(t) solves (4.34). For 0 < ε ≪ 1, we have from lim
t→+∞

τ = +∞ (due to τ = εt), (4.35) and (4.36)
that besides the unstable equilibrium (1, 1, 0), the system (4.10) also has two other stable steady states
with very small amplitude in the form of

us(x)

vs(x)

ws(x)

 =


1

1

0

 ± ε 1
2

√
c4

−c3


cos(ω1x)ξ1

cos(ω1x)ξ2

sin(ω1x)ξ3

 + O(ε). (4.37)

This shows that a pitchfork bifurcation indeed occurs for the asymmetric (4.10) at ε = 0. Moreover, it
is easy to verify that (4.17) is satisfied thanks to

ξ3ω1

1 + ω2
1

=
ω1

1 + ω2
1

= −ξ1.
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Remark 4.2. In this subsection, we have only discussed the case L <
√

2π in (4.11) which is devoted
to letting k∗ = 1 and giving a brevity discussion. For a general L > 0, χ∗ in (4.12) is instead by

χ∗ =
(ω2

k∗+1)3

ω2
k∗

for some k∗ ∈ N+ (which can be specified according to the given L > 0). Then the rest of
the discussion is similar to the above.

4.3. Numerical simulations for the fully nonlinear regime

In this subsection, we shall perform numerical simulations to demonstrate possible patterns gener-
ated by the system (1.1)-(1.2) for large χ > χ∗. We shall consider two cases: with/without the logistic
source term. To begin with, we consider the case of γ = 0.
• Case 1: γ = 0. With Ω = (0, L), Lemma 4.1 shows that patterns can be expected for χ > χ∗ =

(1+ω2
1)

2

m with ω1 =
π
L . We let L = 50 and the initial data (u0, v0,w0) be a small random perturbation of

the equilibrium (m,m, 0) (without loss of generality, the species mass m is assumed to be 1):

(u0, v0,w0) = (m + R,m + R, 0) with m = 1, (4.38)

where R ∈ (−0.01, 0.01) is a random number generated by MATLAB, then we have from (4.8) that

χ∗ = χ∗1 =
(
k2 + 1

)2∣∣∣∣
k= π

50

≈ 1.008.

Figure 1. Spatio-temporal patterns generated by the system (1.1)-(1.2) in the interval Ω =
(0, 50) with γ = 0 and (a) χ = 2; (b) χ = 20. The initial data is given by (4.38).

We observe two kinds of patterns generating from the equilibrium (1, 1, 0) for χ > χ∗, as shown in
Figure 1, where (a) shows that stationary patterns appear for χ = 2 (not too large than χ∗ ≈ 1.008),
while single merging aggregation patterns appear for χ = 20. Moreover, the later kind of patterns
typically appear for large χ, such as χ = 50, we omit the pattern here since it is similar to Figure 1 (b)
(and the difference is that the larger χ is, the more aggregation of (u, v,w)). Similar stationary patterns
as shown in Figure 1 (a) are observed for (1.1) with τ0 = γ = 0 in one-dimensional case (cf. [15]).
Actually, these two kinds of patterns shown in Figure 1 have been also observed in classical chemotaxis
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models with/without the logistic source term such as [43,57,62], where the works indicate that besides
the above two kinds, more patterns will appear in the existence of the logistic source term. From this
point of view, we shall next consider the case γ = 1 and numerically investigate whether other types of
patterns (such as periodic and chaotic) can arise for the system (1.1)-(1.2).

Figure 2. Spatio-temporal patterns generated by the system (1.1)-(1.2) in the interval Ω =
(0, 50) with γ = 1, α = 2 and (a) χ = 8; (b) χ = 10; (c1) χ = 12; (d) χ = 30. The subplot
in (c2) shows the temporal profile of (u, v,w) at x = 25 for t ∈ [1000, 1500] corresponding to
the spatio-temporal patterns in (c1). The initial data is given by (4.38).

• Case 2: γ > 0. Without loss of generality, we take γ = m = 1 and α = 2 as in (4.9). We first take
L = 50, then we have from (4.12) that

χ∗ = χ∗11 ≈ 6.755.
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Figure 2 shows four kinds of patterns generated from (1, 1, 0) of the system (1.1)-(1.2) for χ =
8, 10, 12, 30 respectively. Figure 2 (a) shows stationary patterns for χ = 8, while the case of χ = 10
gives single merging aggregation patterns in Figure 2 (b). These two patterns are similar as that shown
in Figure 1 for the case of γ = 0. As χ goes on increasing, other kinds of patterns are observed as
desired. When χ = 12, Figure 2 (c1) shows the spatially inhomogeneous periodic patterns which are
“almost” strip patterns (as the strip patterns shown in Figure 2 (a)) with the eventual time periodicity
(at a fixed position x = 25) shown explicitly in Figure 2 (c2). Figure 2 (d) considers the case of χ = 30
and shows chaotic patterns corresponding to merging (two local maxima join together if they are close
to each other) and emerging (a new maximum form in the space between two local maxima separated
from each other, cf. [45]). The persistent pattern formation process (for large domain) of merging and
emerging as shown in Figure 2 (d) is called “coarsening process” in [34].

We then let L = 20, then (4.12) implies

χ∗ = χ∗5 ≈ 6.852.

In the supercritical case χ = 30, Figure 3 (a) shows a spatially inhomogeneous time-periodic pattern
which is more obvious than that shown in Figure 2 (c1). Although these patterns are spatially inhomo-
geneous, however, at a fixed time, say t = 600, we see that the organism u prefers to cluster in places
where the signal is highly concentrated, see Figure 3 (b). Furthermore, when x is fixed, e.g., x = 10, it
is clear that Figure 3 (c) shows that the solution is eventually periodic in time.

Figure 3. Spatially inhomogeneous time-periodic patterns generated by the system (1.1)-
(1.2) in the interval Ω = (0, 20) with γ = 1, α = 2 and χ = 30. The initial data is given by
(4.38).

Remark 4.3. The above numerical simulations show that for the chemotaxis system (1.1)-(1.2) which
is considered under acceleration assumption, large χ would not destroy the aggregation patterns (two
kinds of patterns shown in Figure 1) generated from the nontrivial constant steady state, and can also
not produce spatially inhomogeneous periodic patterns or chaotic patterns without the logistic source
term. While the introduction of the logistic source term can largely enrich the diversity of patterns
as shown in Figure 2 and Figure 3. These observations are consistent with the results on pattern
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formation for classical chemotaxis models with/without logistic source terms (or volume-filling effect),
see [43, 53, 54, 57, 62] for instance.

4.4. Discussion

The above numerical simulations show that a variety of patterns are observed for the system (1.1)-
(1.2). The rich dynamics of solutions leave many interesting questions to be explored, below we discuss
some of them.

1. Fully parabolic systems with nonclassical boundary conditions. This paper consider the fully
parabolic system (1.1) (for n ≥ 1) under the boundary condition (1.2), however, the global well-
posedness (for n ≤ 3) is unknown if the boundary condition instead by

∂u
∂n
=
∂v
∂n
= w · n = 0, ∂nw × n = 0, x ∈ ∂Ω.

This is also one of the unsolved questions proposed in [15], where the key is the lack of parabolic
regularity with the above boundary condition.

2. Stationary problems. Theorem 1.2 asserts that the constant equilibrium (m,m, 0) is exponen-
tially asymptotic stable for small χ > 0, and hence no patterns can be expected in this stable
parameter regime. In one-dimensional case Ω = (0, L) with given L > 0, for fixed γ ≥ 0, α > 1,
our linear analysis has specified the critical number χ∗ and patterns can possibly arise for the
supercritical case χ > χ∗. The numerical simulations suggest that the system (1.1)-(1.2) has non-
constant steady states whether or not γ = 0. The existence and stability of non-constant steady
states is an interesting and challenging question. In this paper, we only take a very small step in
this direction: still in the one-dimensional case, for the weakly nonlinear case χ = χ∗ + ε with
0 < ε ≪ 1, the solutions of the stable non-constant steady states are expressed approximately
and the occurrence of pitchfork bifurcations at ε = 0 are confirmed for the asymmetric system
(1.1)-(1.2). However, for the fully nonlinear case or for n ≥ 2, a rigorous analysis of the existence
and stability of non-constant steady states is blank.

3. Eventually periodic solutions. For χ∗ ≪ χ and γ > 0, the above numerical simulations indicate
that the dynamics of solutions will be more complex, the spatially inhomogeneous time-periodic
patterns and chaotic patterns corresponding to merging and emerging are both observed. For the
former case, how to give a comprehensive mathematical explanation of the spatially inhomoge-
neous time-periodic patterns (at least in the one-dimensional case) is a challenging problem.
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