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Abstract: There are huge differences in the layouts and numbers of sensors in different smart home 
environments. Daily activities performed by residents trigger a variety of sensor event streams. Solving 
the problem of sensor mapping is an important prerequisite for the transfer of activity features in smart 
homes. However, it is common practice among most of the existing approaches that only sensor profile 
information or the ontological relationship between sensor location and furniture attachment are used 
for sensor mapping. The rough mapping seriously restricts the performance of daily activity 
recognition. This paper presents a mapping approach based on the optimal search for sensors. To begin 
with, a source smart home that is similar to the target one is selected. Thereafter, sensors in both source 
and target smart homes are grouped by sensor profile information. In addition, sensor mapping space 
is built. Furthermore, a small amount of data collected from the target smart home is used to evaluate 
each instance in sensor mapping space. In conclusion, Deep Adversarial Transfer Network is employed 
to perform daily activity recognition among heterogeneous smart homes. Testing is conducted using 
the public CASAC data set. The results have revealed that the proposed approach achieves a 7–10% 
improvement in accuracy, 5–11% improvement in precision, and 6–11% improvement in F1 score, 
compared with the existing methods. 
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1. Introduction 

Smart homes are designed to maintain personal independence and enhance their sense of well-
being for residents. It is one of the basic functions of smart homes to recognize daily activities, e.g., 
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sleeping, cooking. To recognize daily activities, smart homes are equipped with ambient sensors [1]. 
These sensors are activated continuously when daily activities are carried out [2]. It is a challenging 
subject to recognize daily activities from activated sensor events. Thus, daily activity recognition has 
been discussed widely. 

Approaches for daily activity recognition can be divided into two categories: data-driven 
approaches and knowledge-driven approaches. Data-driven approaches include supervised and 
unsupervised learning approaches. Supervised learning methods require a large amount of labeled 
data [3]. Labeling data is a time-consuming and error-prone task [4]. The goal of the research gradually 
shifted to reducing data labeling and maximizing the use of knowledge to solve similar problems [5]. 
To save these problems, transferring trained models of daily activity recognition from one smart home 
to another becomes a promising study [6]. 

Sensors are important features for daily activity recognition, whether based on wearable sensor 
environments or smart home environments [7]. Sensor flow is closely related to activity features [8]. 
On the one hand, recent studies based on activity recognition for wearable sensors has shown an 
emphasis on sensor data. Tang et al. increased the expressiveness of sensor features to recognize 
activity by using the idea of hierarchical-split (HS) [9]. Meanwhile, Huang et al. improved the method 
of normalizing mixed sensor features by proposing a method called Channel Equalization. They used 
the execution of whitening or de-correlation operations to reactivate these channels that were 
suppressed by normalization [10]. In addition, Cheng et al. used conditionally parametrized 
convolution for real-time HAR on mobile and wearable devices to improve the efficiency of computing 
sensor features [11]. On the other hand, sensor features are also important for the field of activity 
recognition in smart homes. There are different house configurations and sensor equipment in different 
smart homes [12]. Sensor equipment in the same house can be altered over time. Therefore, it is one 
of the primary tasks to map sensors in heterogeneous smart homes. After this, transfer learning methods 
can be used to recognize and transfer the features of daily activities between different residents [13]. 
However, it is common practice among most of existing approaches that only sensor profile 
information or the ontological relationship between sensor location and furniture attachment are used 
for sensor mapping. The rough mapping seriously restricts the performance of daily activity 
recognition. Intuitively, superior sensor mapping brings more promising results of daily activity 
recognition in heterogeneous smart homes. To achieve superior existing sensor mapping, this paper 
presents an optimal search based on a sensor mapping strategy. 

The study of sensor mapping methods is often neglected in more existing approaches, and most 
of them use the sensor profile information, or the ontological relationship between sensor location and 
furniture attachment to calculate its similarity, then obtain a rough mapping. 

The main contributions of this paper can be summarized as follows. 
1) In order to find the most similar one from multiple sources of the smart homes, we propose a 

similarity algorithm for solving the similarity between smart homes. 
2) We propose a sensor mapping algorithm to achieve superior sensor mapping. 
3) We employ DANN to transfer the trained daily activity recognition model. 
4) We evaluate the proposed approach on public datasets. 
The rest of this paper is organized as follows: Section 2 summarizes the knowledge-driven and 

data-driven activity recognition methods based on heterogeneous environments. Section 3 displays the 
concrete implementation of the method. Section 4 analyzes the experimental setup, evaluation methods 
and results. Section 5 is a summary of the article. 
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2. Related work 

There are two categories of approaches for daily activity recognition in heterogeneous smart 
homes. The first is the knowledge-driven approach. For the knowledge-driven approach, reasoning is 
performed to recognize daily activities based on a shared knowledge model (e.g., ontology). The other 
is the data-driven approach, which adjusts learned model by the sensor events stream collected from 
the source smart homes to recognize daily activities in target smart homes. Transfer learning is widely 
used for daily activity model evolution. 

2.1. Knowledge-driven approaches 

Ye et al. proposed a knowledge-driven ensemble learning technique called Slearn [14]. It is based 
on semantic mapping to migrate knowledge between multiple datasets. Then, they improved on it and 
proposed the method named XLearn [15]. Firstly, ontologies are used to perform sensor space and 
daily activity space mapping. Then, a part of daily activities are identified based on clustering, and the 
remaining daily activities are recognized based on ensemble learning. Ye et al. also proposed a 
knowledge model to represent shared daily activities in smart homes [16]. The knowledge model is 
applied to achieve computationally efficient feature space remapping and uncertainty inference, which 
leads to an effective classifier fusion and further improves activity recognition accuracy. Marjan et al. 
proposed a framework called E-care@home [17]. Semantic interpretation of events and context 
awareness are achieved by integrating measurement data collected from heterogeneous smart homes 
into an ontology. Stream inference is performed based on an incremental answer set solver to recognize 
daily activities. Wemlinger and Holder proposed a method called SCEAR [18]. Firstly, an initial 
common ontology of semantic feature space is established. Then, the raw sensor data is transformed 
into common conceptual features to revise the initial ontology. The reasoning is conducted to recognize 
daily activities based on smart home ontology. 

2.2. Data-driven approaches 

A feature-based knowledge transfer framework was proposed by Chiang et al. [19]. The 
framework uses transfer learning to mitigate the constraint that training, and testing datasets are 
required to be highly similar in distribution. The framework can outperform non-transfer learning 
models by 8% in terms of accuracy, and greatly reduces the task of labeling the target domain. In 
addition, Chiang and Hsu used sensor profiles to encode activities and further measured the feature 
similarity between datasets [20]. Graph matching algorithm is applied to automatically compute the 
appropriate mapping of features based on similarity measures. Zhen et al. used web search to access 
similarity functions that are used to evaluate the similarity between the daily activities of the source 
smart home and the target smart home [21]. By the learned similarity metric, the collected data from a 
smart home are interpreted as the data in another smart home with a different confidence level. Feuz 
and Cook proposed a novel heterogeneous transfer learning technique named Feature Space 
Remapping (FSR) [22]. The features of the source and target domains are linked by constructing meta-
features and using integrated learning for activity classification. And they also proposed a 
heterogeneous transfer learning for AR based on heuristic search techniques [23]. Azkune et al. 
proposed two data-driven daily activity recognition systems, SEMINAR-u and SEMINAR-s, to 
address the two cases of the presence of labeled and unlabeled daily activities in the source domain 
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respectively [24]. Word embeddings were used to establish a common semantic feature domain for 
different domain sensors and daily activities mapping. Hu et al. supposed that the feature space of 
sensors is the same among smart homes [25]. Initially, keywords related to daily activities are retrieved 
using a web search engine. Then, being used as the weight of daily activity feature in the source domain, 
the similarity between daily activities is solved by applying the maximum mean difference (MMD). 
Finally, pseudo-training datasets are of the target domain. The feature mapping from the source domain 
to the target domain is completed. Hu and Yang proposed a transfer learning framework [26]. This 
framework transforms the sensor readings into the same feature space by KL-divergence and Dynamic 
Time Warping. Daily activity labels of the source domain are used to label the daily activities of the 
target domain by the sensor distribution. After that, the Google similarity distance metric is applied to 
find labels of target domain that are the most similar to the labels of the source domain. Myagmar et 
al. proposed a novel heterogeneous transfer learning algorithm called Heterogeneous Daily Living 
Activity Learning (HDLAL) [27]. HDLAL processes data from two domains into a derivation space 
on account of the maximum mean difference. Then, domain-invariant feature representation space 
from the cross-domain data distribution is derived. An ensemble classification algorithm is operated 
to train a multi-label classifier in a new feature space. Finally, the projection data is used to predict the 
labels of the target domain. In unsupervised domain adaptation, Sanabria et al. integrated bidirectional 
generative adversarial networks (Bi-GAN) and kernel mean matching (KMM) to identify feature 
transfer between two heterogeneous domains for daily activity recognition [28]. 

3. The proposed approach 

In this section, we will illustrate how to select a source domain that is similar to the target one, 
and how to find the optimal mapping of sensors in different smart home environments. 

3.1. Source smart home selection 

To demonstrate the process of selecting the similar source domains, necessary definitions are 
given below. 

Definition 1. Let SH = {sh1, sh2, , shn} be a set of smart homes. For any sh  SH, let sh.FA be 
set of function areas of sh and let sh.SC be set of sensor categories of sh. SH.FS = sh1.FA  sh2.FA  
  shn.FA  sh1.SC  sh2.SC    shn.SC is said to be feature space of SH. 

Definition 2. Let SS = {ss1, ss2, , ssj}, TS = {ts1, ts2, , tsm} be a set of sensors of a source 
smart home and a target smart home, respectively. ssk denotes the k-th sensor in the source domain, 1 
≤ k ≤ j. And tsh denotes the h-th sensor in the target domain, 1 ≤ h ≤ m. 

Since sensors are activated continuously when daily activities are carried out, they are regarded 
as important space features of daily activity. Location, category and number of sensors vary from one 
smart home to another. For instance, there are 20 pressure sensors and 10 light sensors in a smart home 
sh1. Whereas there are 10 pressure sensors and 8 light sensors in smart home sh2. Some pressure 
sensors are installed in the bedroom and others are installed in the living room in sh1. All pressure 
sensors are installed in the shower room in sh2. When the same daily activity is carried out in two smart 
home sh1 and sh2, two corresponding sensor streams ss1 and ss2 are generated. Intuitively, the more 
similar in location, category and number of sensors of the two smart homes are, the more similar the 
activated sensor events streams are. Thus, ss1 can be used approximately to recognize the daily activity, 
which is carried out in sh2, and vice versa. From the perspective of daily activity recognition, two smart 
homes are shown to be similar if locations, categories and number of them are similar to each other. 
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Hence, it is an important premise for cross-environment daily activity recognition to find the most 
similar one from multiple source smart homes. 

Algorithm 1 is used to find the source smart home which is the most similar to the target one. 
Given a set of source smart homes SH = {sh1, sh2, …, shn} and a target smart home sh*, divide sensors 
of each smart home into several classes by feature space of SH  {sh*}. Count the number q of sensors 
which belong to same class for each smart home. And sh.L denotes a feature vector consisting of the 
numbers of sensors under all categories in a given smart home environment. Solve similarities between 
each sh  SH and sh* and select the source smart home sh# , which is most similar to sh*. A source 
domain’s similarity is the number of classifiers that select this source domain. And th is the maximum 
similarity. Figure 1 shows a sample. 

 

Figure 1. A sample of source smart home selection. 

Algorithm 1. 
Input: SH = {sh1, sh2, …, shn}, set of source smart homes 
      sh*, target smart home 
Output: sh#  SH, most similar to sh* 
1. sh#   
2. for each sh in SH  {sh*} 
3.   sh.L   
4.   for each f in SH  {sh*}. FS 
5.      q  get Quantity (sh, f) 
6.      sh.L  sh.L  {(f, q)} 
7.   end for 
8. end for 
9. th  0 
10. for each sh in SH 
11.   if max (similarity (sh.L, sh*

.L)) then 
12.      Th  similarity (sh.L, sh*.L) 
13.      sh#  sh 
14.   end if 
15. end for 
16. return sh# 
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3.2. Sensors division 

Firstly, sensors of selected source smart and target smart home are merged. Then, merged sensors 
are divided into different parts by certain category (e.g., motion) of sensors and function area (e.g., 
bedroom) in which they located. Values of “category” and “function area” are used as label of part. 
Figure 2 shows a sample of the sensors division. There are 7 sensors in the selected source smart and 
target smart home, respectively. c_fa1, c_fa2 and c_fa3 are three different values of “category” and 
“function area”. All sensors are divided into three parts ({ss1, ss2}, {ts1, ts2}), ({ss3, ss4}, {ts3, ts4, ts5}) 
and ({ss5, ss6, ss7}, {ts6, ts7}). 

Sensors of selected
smart home

Sensors of target
smart home

{ss1, ss2, ss3, ss4, ss5, ss6, ss7}

{ts1, ts2, ts3, ts4, ts5, ts6, ts7}

Sensors of selected
smart home

Sensors of target
smart home

{ss1, ss2}       {ss3, ss4} { ss5, ss6, ss7}

{ts1, ts2}     {ts3, ts4, ts5}      {ts6, ts7}

       c_fa1            c_fa2        c_fa3  

 

Figure 2. A sample of sensors division. 

3.3. Sensors mapping 

To show the process of sensors mapping, necessary terms are defined as follow. 
Definition 3. Let SP = {(SS#, TS#) | SS#  SS, TS#  TS} be sensors division for SS and TS. For a 

part p  SP, CMp = {(ss, ts) | ss  SS#  ts  TS#} is said to be a candidate mapping of p if  (ss1, ts), 
(ss2, ts)  CMp, ss1 = ss2 holds. 

Definition 4. se = (d, t, sn, sv, ar) is called a sensor event, where sn is the sensor name, d is the 
date when sn was activated, t is the time when sn was activated, sv is the value of sn when sn was 
activated, and ar is the daily activity occurring when sn was activated. 

Definition 5. Given n sensor events se1, se2, …, sen, < se1, se2, …, sen > is said to be a sensor 
events stream. If 1 ≤ i ≤ n-1, sei+1 is always followed by sei in chronological order. 

Table 1 shows a fragment of sensor events stream which is activated by daily activity “Relax”. 
For a part pSP, there is usually more than one candidate mapping. Algorithm 2 is used to find 

optimal sensors mapping from all candidate mappings for each part of SP. To begin with, a handful of 
sensors event stream TD* which is collected from target smart home TD are extracted as samples to 
evaluate performance of sensor mapping. For each candidate mapping CMp of p, sensors of all sensor 
events of TD* are replaced with the sensors used in source smart home by the mapping relations of 
CMp. Table 2 shows an instance of sensors mapping with the assumption of CMp = {(M008, M003), 
(M009, M004), (LS004, LS002), (LS008, LS005), (LS008, LS006)}. A handful of sensor event 
streams are collected from the target smart home which is activated by daily activity “Sleep”. Sensor 
names of column sn* are generated after the column sn are replaced. Next, sensors event stream 
collected from selected source smart home SD is used as training set, and TD* is used as test set. A 
classifier is employed to evaluate the performance of the sensors mapping based on accuracy. The 
candidate sensors mapping with the best metrics are selected as the final sensors mapping. 
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Table 1. A fragment of sensor events stream. 

 
Algorithm 2. 
Input: SP, sensors division for SS and TS 
      SD, sensors event stream collected from selected source smart home 
      TD, sensors event stream collected from target smart home 
Output: SM, optimal sensors mapping 
1. TD*  handful (TD) // Extract a handful of sensor events stream from TD. 
2. for each p in SP 
3.   optq  0 
4.   optCM   
5.   for each CMp in p 
6.      for each (ss, ts) in CMp  
7.         replace (ss, ts, TD) // Replace ts of TD with ss. 
8.      end for 
9.      q  evaluate (SD, TD*) // Use some classifier to solve performance of CMp on SD and TD*.
10.      if (q > optq) then 
11.        optq  q 
12.        optCM  CMp 
13.      end if 
14.   end for 
15.   SM  SM  {optCM} 
16. end for 
17. return SM 

Table 2. A handful of sensor events stream collected from target smart home. 

Continued on next page 

d t sn sv ar 
2012/8/25 15/01 M008 OFF Relax 
2012/8/25 15/01 M009 ON 
2012/8/25 15/01 M008 OFF 
2012/8/25 15/02 M009 ON 
2012/8/25 15/03 LS008 25 
2012/8/25 15/05 LS004 31 
2012/8/25 15/06 LS003 3 
2012/8/25 15/07 LS016 8 
2012/8/25 15/07 LS004 8 
2012/8/25 15/09 LS008 24 
2012/8/25 15/09 M008 OFF 

d t sn sn* sv ar 
2012/9/5 13/07 M004 M009 OFF Sleep 
2012/9/5 13/08 M003 M008 ON 
2012/9/5 13/08 M004 M009 ON 
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4. Results and evaluation 

4.1. Smart homes and collected datasets 

Center for Advanced Studies in Adaptive Systems (CASAS) of Washington State University is 
well-known for their research on the daily activity recognition in smart homes. CASAS published 
multiple collected datasets from different smart homes [29]. In this paper, four smart homes HH101, 
HH105, HH109 and HH110 and corresponding collected datasets are employed to evaluate the 
proposed approach. Room layouts and sensor locations of these smart homes are shown in Table 3. 
Every smart home is divided into seven parts. They are the Kitchen, Dining, Parlor, Porch, Toilet, 
Bedroom and Porch_toilet, respectively. Installed sensors can be divided into six categories, the 
“temperature sensor (T)”, “infrared motion sensor (M)”, “wide area infrared motion sensor (MA)”, 
“light sensor (LS)”, “Light Switch Sensor (L)” and “Door Switch Sensor (D)”, respectively. LS and T 
will output real values when triggered, and the M, MA, D and L will output boolean when triggered. 
In Table 3, each data item denotes the number of sensors which belong to some categories and are 
installed in some parts for some sensor categories in different smart homes. For the underlined data 
item 4, 3, 2, 2, these numbers mean that there are 4, 3, 2, 2 sensors which belong to M category and 
are installed in Kitchen of HH101, HH105, HH109 and HH110, respectively. Ten categories of daily 
activity, the “Bed_Toilet_Transition”, “Cook”, “Dress”, “Eat”, “Med”, “Personal_Hygiene”, “Relax”, 
“Sleep”, “Sleep_Out_Of_Bed”, “Toilet”, are used to evaluate the proposed approach. Please note that 
“Cook_Lunch”, “Cook_Breakfast” and “Cook_Dinner” are merged into one daily activity, “Cook”. 
And “Eat”, “Eat_Lunch”, “Eat_Breakfast” and “Eat_Dinner” are merged into the “Eat”. In addition, 
“Take_Medicine”, “Morning_Meds” and “Evening_Meds” are merged into the “Med”. 

Table 3. Sensor layouts of selected smart homes. 

  Kitchen Dining Parlor Porch Toilet Bedroom Porch_t-
oilet 

HH101, 
HH105, 
HH109, 
HH110 

M 4, 3, 2, 2 1, 2, 1, 1 3, 2, 4, 4 1, 1, 1, 1 0, 0, 0, 0 2, 3, 3, 2 1, 2, 2, 1 
MA 1, 1, 1, 1 0, 1, 0, 0 1, 1, 1, 1 0, 0, 0, 0 1, 1, 1, 1 1, 1, 1, 1 0, 0, 0, 0 
D 0, 2, 0, 2 0, 0, 0, 0 1, 1, 1, 1 1, 1, 1, 1 1, 1, 1, 1 0, 0, 0, 0 0, 0, 0, 0 
T 0, 1, 0, 1 0, 0, 0, 0 3, 1, 1, 1 1, 1, 1, 1 1, 2, 1, 1 0, 0, 0, 0 0, 0, 0, 0 
L 0, 2, 0, 2 0, 0, 0, 1 0, 1, 0, 1 0, 0, 0, 1 0, 2, 0, 0 0, 1, 0, 1 0, 0, 0, 0 
LS 5, 4, 3, 3 1, 3, 1, 1 4, 3, 5, 5 1, 1, 1, 1 1, 1, 1, 1 3, 4, 4, 3 1, 2, 2, 1 

d t sn sn* sv ar 
2012/9/5 13/12 M003 M008 OFF Sleep 
2012/9/5 13/13 LS006 LS008 5 
2012/9/5 13/15 LS002 LS004 42 
2012/9/5 13/15 LS005 LS008 62 
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4.2. Metrics 

Daily activity recognition is a classification task. Hence, the evaluation metrics used are accuracy, 
precision and F1-score, which are shown in Eqs (1)–(3), respectively. The recall is shown in Eq (4). TP 
is the number of the true positives which are correctly classified based on the proposed approach, 
whereas FP is the number of false positives which are incorrectly classified based on the approach. 
TN is the number of correctly classified true negatives based on the proposed method, while FN is the 
number of false negatives which are incorrectly classified. 

 Accuracy ൌ TP ൅ TN/ሺTP ൅ TN ൅ FP ൅ FNሻ (1) 

 Precision ൌ TP/ሺTP ൅ FPሻ (2) 

 F1 െ score ൌ 2 ∗ Precision ∗ Recall/ሺPrecision ൅ Recallሻ (3) 

 Recall ൌ TP/ሺTP ൅ FNሻ (4) 

4.3. Results 

4.3.1. Similarities between source smart homes and target smart home 

HH109 is used as target smart home and HH101, HH105 and HH110 are used as source smart 
homes. The similarity between source smart home and target smart home is solved as a classification 
task. K-Nearest Neighbor (KNN), Random forest (RF), Decision Tree (DT) and Naive Bayes (NB) are 
used for similarity solution. The results are shown in Table 4. Since HH101 is the most similar to 
HH109 on KNN, RF and DT, it is selected as most similar source smart home. 

Table 4. Similarities between HH109 and HH101, HH105, HH110. 

Target Smart Home Source Smart Homes KNN RF DT NB 
HH109 HH101 √ √ √  

HH105    √ 
HH110     

4.3.2. Optimal mapping of sensors 

Data collected from HH109 in six different dates are independently used for the sensor mapping. 
DANN is employed to evaluate candidate sensors mappings. Parameters of DANN are shown in Table 5. 
Sensors installed in HH101 and HH109 are divided into 23 parts which are shown in Table 6. Accuracy 
obtained from DANN is used as the evaluation criterion for each part. The one with the highest 
accuracy is selected as the optimal sensor mapping, as shown in Table 7. 

Table 5. Parameters of the DANN network. 

Learning_rate Momentum_rate Batch_size Epoch Optimizer 
0.001 0.9 64 100 Momentum optimizer
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Table 6. Division for sensors from HH101 and HH109. 

 HH101 HH109 
Part1 LS011 LS016, LS011 
Part2 M011 M016, M011 
Part3 LS005, LS008, LS010, 

LS013 
LS002, LS003, LS004, LS005, 
LS006 

Part4 M009, M012 M012, M014, M015 
Part5 LS015 LS017 
Part6 MA016 MA009 
Part7 MA015 MA017 
Part8 M001 M001 
Part9 T102 T102 
Part10 LS009, LS012, LS014 LS012, LS013, LS014, LS015 
Part11 D001 D001 
Part12 T101, T104, T105 T101 
Part13 MA014 MA013 
Part14 M005, M008, M010 M002, M003, M004, M006 
Part15 LS002, LS003, LS006, 

LS007, LS016 
LS008, LS010, LS009 

Part16 T103 T103 
Part17 D003 D003 
Part18 D002 D002 
Part19 LS001 LS001 
Part20 LS004 LS007 
Part21 MA013 MA005 
Part22 M002, M003, M006, M007 M008, M010 
Part23 M004 M007 

4.3.3. Data pre-processing 

For each activated sensor s of an instance of daily activity, s is represented in pattern of FA_C_N, 
where FA is the name of function area in which s is installed, C is the category of s, N is the sensor 
serial number at this area and category. For example of the sensor event “2012/8/25 15/01 M008 OFF” 
shown in Table 1, sensor M008 of is represented in bedroom_M_2, where M008 is installed in 
bedroom. Further, sensor events stream corresponding to an instance of daily activity is represented as 
a string vector. The string vector is transformed into a digital vector using word2vec algorithm. After 
the sensor events streams of all instances of daily activity are represented in digital vectors, these 
digital vectors from source smart home are used to train DANN. The results are shown in Table 8. And 
iteration processes for each date are shown in Figures 3–5. It is shown that no matter which date is 
selected, a favorable performance of daily activity recognition has been achieved.
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Table 7. Optimal mapping for each division in different samples space. 

D* Date 1 Date 2 Date 3 Date 4 Date 5 Date 6 

Part1 {(LS011, LS016),  

(LS011, LS011)} 

{(LS011, LS016),  

(LS011, LS011)} 

{(LS011, LS016),  

(LS011, LS011)} 

{(LS011, LS016),  

(LS011, LS011)} 

{(LS011, LS016),  

(LS011, LS011)} 

{(LS011, LS016),  

(LS011, LS011)} 

Part2 {(M011, M016),  

(M011, M011)} 

{(M011, M016),  

(M011, M011)} 

{(M011, M016),  

(M011, M011)} 

{(M011, M016),  

(M011, M011)} 

{(M011, M016),  

(M011, M011)} 

{(M011, M016),  

(M011, M011)} 

Part3 {(LS008, LS002),  

(LS010, LS003),  

(LS008, LS004),  

(LS010, LS005) 

(LS013, LS006)} 

{(LS013, LS002),  

(LS008, LS003),  

(LS013, LS004),  

(LS010, LS005) 

(LS005, LS006)} 

{(LS010, LS002),  

(LS008, LS003),  

(LS008, LS004),  

(LS010, LS005) 

(LS008, LS006)} 

{(LS005, LS002),  

(LS008, LS003),  

(LS008, LS004),  

(LS010, LS005) 

(LS013, LS006)} 

{(LS008, LS002),  

(LS010, LS003),  

(LS013, LS004),  

(LS010, LS005) 

(LS010, LS006)} 

{(LS008, LS002),  

(LS005, LS003),  

(LS010, LS004),  

(LS010, LS005) 

(LS010, LS006)} 

Part4 {(M012, M012),  

(M010, M014),  

(M012, M015)} 

{(M009, M012),  

(M009, M014),  

(M012, M015)} 

{(M012, M012),  

(M012, M014),  

(M012, M015)} 

{(M012, M012),  

(M009, M014),  

(M012, M015)} 

{(M012, M012),  

(M009, M014),  

(M012, M015)} 

{(M009, M012),  

(M009, M014),  

(M009, M015)} 

Part5 {(LS015, LS017)} {(LS015, LS017)} {(LS015, LS017)} {(LS015, LS017)} {(LS015, LS017)} {(LS015, LS017)} 

Part6 {(MA016, MA009)} {(MA016, MA009)} {(MA016, MA009)} {(MA016, MA009)} {(MA016, MA009)} {(MA016, MA009)} 

Part7 {(MA015, MA017)} {(MA015, MA017)} {(MA015, MA017)} {(MA015, MA017)} {(MA015, MA017)} {(MA015, MA017)} 

Part8 {(M001, M001)} {(M001, M001)} {(M001, M001)} {(M001, M001)} {(M001, M001)} {(M001, M001)} 

Part9 {(T102, T102)} {(T102, T102)} {(T102, T102)} {(T102, T102)} {(T102, T102)} {(T102, T102)} 

Part10 {(LS009, LS012),  

(LS009, LS013),  

(LS012, LS014),  

(LS014, LS015)} 

{(LS009, LS012),  

(LS009, LS013),  

(LS012, LS014),  

(LS014, LS015)} 

{(LS009, LS012),  

(LS012, LS013),  

(LS009, LS014),  

(LS014, LS015)} 

{(LS012, LS012),  

(LS014, LS013),  

(LS014, LS014),  

(LS014, LS015)} 

{(LS009, LS012),  

(LS009, LS013),  

(LS014, LS014),  

(LS012, LS015)} 

{(LS012, LS012),  

(LS014, LS013),  

(LS014, LS014),  

(LS012, LS015)} 

Part11 {(D001, D001)} {(D001, D001)} {(D001, D001)} {(D001, D001)} {(D001, D001)} {(D001, D001)} 

Part12 {(T105, T101)} {(T105, T101)} {(T105, T101)} {(T105, T101)} {(T101, T101)} {(T105, T101)} 

Part13 {(MA014, MA013)} {(MA014, MA013)} {(MA014, MA013)} {(MA014, MA013)} {(MA014, MA013)} {(MA014, MA013)} 

Continued on next page 
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D* Date 1 Date 2 Date 3 Date 4 Date 5 Date 6 

Part14 {(M008, M002),  

(M005, M003),  

(M010, M004),  

(M005, M006)} 

{(M010, M002),  

(M010, M003),  

(M010, M004),  

(M008, M006)} 

{(M005, M002),  

(M005, M003),  

(M010, M004),  

(M005, M006)} 

{(M010, M002),  

(M010, M003),  

(M010, M004),  

(M010, M006)} 

{(M005, M002),  

(M010, M003),  

(M008, M004),  

(M008, M006)} 

{(M008, M002),  

(M008, M003),  

(M005, M004),  

(M008, M006)} 

Part15 {(LS003, LS008),  

(LS006, LS010),  

(LS007, LS009)} 

{(LS007, LS008),  

(LS006, LS010),  

(LS003, LS009)} 

{(LS003, LS008),  

(LS016, LS010),  

(LS008, LS009)} 

{(LS003, LS008),  

(LS006, LS010),  

(LS007, LS009)} 

{(LS003, LS008),  

(LS002, LS010),  

(LS007, LS009)} 

{(LS002, LS008),  

(LS016, LS010),  

(LS006, LS009)} 

Part16 {(T103, T103)} {(T103, T103)} {(T103, T103)} {(T103, T103)} {(T103, T103)} {(T103, T103)} 

Part17 {(D003, D003)} {(D003, D003)} {(D003, D003)} {(D003, D003)} {(D003, D003)} {(D003, D003)} 

Part18 {(D002, D002)} {(D002, D002)} {(D002, D002)} {(D002, D002)} {(D002, D002)} {(D002, D002)} 

Part19 {(LS001, LS001)} {(LS001, LS001)} {(LS001, LS001)} {(LS001, LS001)} {(LS001, LS001)} {(LS001, LS001)} 

Part20 {(LS004, LS007)} {(LS004, LS007)} {(LS004, LS007)} {(LS004, LS007)} {(LS004, LS007)} {(LS004, LS007)} 

Part21 {(MA013, MA005)} {(MA013, MA005)} {(MA013, MA005)} {(MA013, MA005)} {(MA013, MA005)} {(MA013, MA005)} 

Part22 {(M006, M008),  

(M007, M010)} 

{(M003, M008),  

(M007, M010)} 

{(M002, M008),  

(M007, M010)} 

{(M003, M008),  

(M002, M010)} 

{(M002, M008),  

(M006, M010)} 

{(M003, M008),  

(M007, M010)} 

Part23 {(M004, M007)} {(M004, M007)} {(M004, M007)} {(M004, M007)} {(M004, M007)} {(M004, M007)} 

Table 8. Results of daily activity recognition. 

D* Accuracy Precision F1-score 
Date 1 83.89% 78.14% 80.47% 
Date 2 81.70% 76.88% 76.31% 
Date 3 83.56% 77.88% 79.65% 
Date 4 80.31% 68.83% 73.57% 
Date 5 81.02% 78.58% 78.87% 
Date 6 80.40% 69.07% 73.56% 
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Figure 3. The accuracy of daily activity recognition which vary from 1st epoch to 100th 
epoch based on six dates. 

 

Figure 4. The precision of daily activity recognition which vary from 1st epoch to 100th 
epoch based on six dates. 
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Figure 5. The F1-score of daily activity recognition which vary from 1st epoch to 100th 
epoch based on six dates. 

4.4. Evaluation 

4.4.1. Performance comparison among different source smart homes 

Among HH101, HH105 and HH110, HH101 is most similar to HH109. We employ DANN to 
evaluate the performances of daily activity recognition using HH101 and HH105 as training sets, 
respectively. As shown in Figures 6–8, the performance of daily activity recognition based on the data 
from HH101 as training set is better than that from HH105 as training set. The experiment results 
demonstrate the effectiveness of Algorithm 1. 

 

Figure 6. The accuracy of daily activity recognition using data collected from HH101 and 
HH105 as training set, respectively. 
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Figure 7. The precision of daily activity recognition using data collected from HH101 and 
HH105 as training set, respectively. 

 

Figure 8. The F1-score of daily activity recognition using data collected from HH101 and 
HH105 as training set, respectively. 

4.4.2. Performance comparison between the proposed method and state-of-the-art methods 

We compared the proposed method within two state-of-the-art methods, which are the ontology 
sensor mapping method and the word embedding mapping method [15,24]. The results are shown in 
Figures 9–11. The proposed method is superior to the word embedding mapping method and the 
ontology sensor mapping method. It is shown that the proposed method of the precise sensor mapping 
is more advantageous. 
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Figure 9. The accuracy of daily activity recognition using different sensor mapping methods. 

 

Figure 10. The precision of daily activity recognition using different sensor mapping methods. 
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Figure 11. The F1-score of daily activity recognition using different sensor mapping methods. 

4.4.3. Performance comparison between the proposed method and rough sensor mapping 

Rough sensor mapping consists of two sensors which are respectively installed in source smart 
home and target smart home, the two sensors are mapped when locations and categories of them are 
the same. The results are shown in Figures 12–14. Owing to precise sensor mapping, which generates 
more distinguished features of daily activity, the proposed method is also superior to rough sensor 
mapping. 

 

Figure 12. The accuracy of daily activity recognition using the proposed method and rough 
sensors mapping method. 
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Figure 13. The precision of daily activity recognition using the proposed method and 
rough sensors mapping method. 

 

Figure 14. The F1-score of daily activity recognition using the proposed method and rough 
sensors mapping method. 

5. Conclusions 

The performance of daily activity recognition in cross-environment mainly depends on the sensor 
mapping between heterogeneous smart homes. This paper presents a novel approach to discovering 
the optimal sensor mapping by iteratively evaluating each candidate sensor mapping between the most 
similar source smart home and target smart home. Two public datasets involving sensor data on ten 
daily activities are investigated to validate the proposed approach, and the results have proven its 
excellent performance. 
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