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Abstract: This work focuses on an HIV infection model with intracellular delay and immune response
delay, in which the former delay refers to the time it takes for healthy cells to become infectious
after infection, and the latter delay refers to the time when immune cells are activated and induced
by infected cells. By investigating the properties of the associated characteristic equation, we derive
sufficient criteria for the asymptotic stability of the equilibria and the existence of Hopf bifurcation to
the delayed model. Based on normal form theory and center manifold theorem, the stability and the
direction of the Hopf bifurcating periodic solutions are studied. The results reveal that the intracellular
delay cannot affect the stability of the immunity-present equilibrium, but the immune response delay
can destabilize the stable immunity-present equilibrium through the Hopf bifurcation. Numerical
simulations are provided to support the theoretical results.

Keywords: HIV infection model; intracellular delay; immune response delay; stability analysis; Hopf
bifurcation

1. Introduction

It is all known that acquired immunodeficiency syndrome (AIDS), an incurable chronic infectious
disease, is caused by the human immunodeficiency virus (HIV). The dynamics of HIV in a host can
be broadly divided into three stages [1]. First of all, after the human body infection with HIV, CD4+T
cells in the body decrease dramatically and the viral load reaches a sharp peak, which is called the
acute stage. Secondly, the body is subjected to a prolonged asymptomatic phase in which the viral load
slowly increases as the body’s immune system works normally. Finally, the body’s immune system is
disrupted by HIV, resulting in death from various illnesses. In order to gain a clearer understanding
of the disease and develop various drug treatments against it, several HIV models have been proposed
[1, 2]. The classical model of viral infection includes the interaction between four variables, namely
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x, y, v and z, which stand for the density of healthy target cells, infected cells, free virus particles, and
cytotoxic T lymphocyte (CTL), respectively [3–5]. The specific ordinary differential equations form is
as follows 

ẋ(t) = Λ − αx(t)v(t) − dx(t),
ẏ(t) = αx(t)v(t) − ay(t) − py(t)z(t),
v̇(t) = ky(t) − uv(t),
ż(t) = f (x, y, z) − bz(t),

(1.1)

where new target cells are produced at a constant rate Λ and die at a rate d. And α indicates the
transmission rate of viral infection. The mortality of infected cells is a. CTLs fight against infection at
a rate p. k denotes the rate at which infected cell produces virus particles. u is the rate at which virus
particles are removed. f (x, y, z) describes the rate of immune response activated, and b is the decay
rate of the specific CTL.

Based on the biological phenomenon that the average lifetime of virus particles is usually
significantly shorter than that of infected cells, Arnaout et al. [6] gave a quasi-steady-state hypothesis.
The assumption shows that the viral load reaches a quasi-equilibrium level relatively quickly
compared to the slow change in the level of infected cells. According to the third equation v̇(t) = 0 in
the model (1.1), v(t) = ky(t)/u holds, that is, the concentration of free virus is simply proportional to
the concentration of infected cells. Thus, model (1.1) can be modified to

ẋ(t) = Λ − βx(t)y(t) − dx(t),
ẏ(t) = βx(t)y(t) − ay(t) − py(t)z(t),
ż(t) = f (x, y, z) − bz(t),

(1.2)

where the rates of cell infection and viral multiplication are both denoted by β = αk/u. Model (1.2) is
also considered an HIV infection model involving cell-to-cell transmission [7, 8]. Due to the
complexity of the human immune system [3, 9–13], several types of proliferation of the immune
response function f (x, y, z) have been proposed: (i) f (x, y, z) = cy(t), CTLs are generated only by the
stimulation of the levels of infected cells; (ii) f (x, y, z) = cy(t)z(t), the proliferation of CTLs is caused
by the interaction between infected cells and their own cells; (iii) f (x, y, z) = cx(t)y(t)z(t), the
activation and proliferation of CTLs are dependent on the levels of the three cells mentioned above,
i.e., CTLs, infected cells and healthy CD4+T target cells. Here when HIV invades the body, it targets
the CD4+T cells, often referred to as “helper” T cells. These cells can be considered “messengers”, or
the command centers of the immune system. They signal other immune cells that an invader is to be
fought [14–17]. Taking form (iii) and assuming that HIV evolves toward higher replication rates,
Huang et al. [18] proposed and discussed a possible mechanism that enables HIV to escape immune
control. Therefore, an HIV infection model with form (iii) may lead to more meaningful and realistic
results.

Indeed, when HIV invades the body, it takes time for both the infection and the immune response
to occur. Time delays are often used to explain various biological transitions. The intracellular delay
describes the latent period between the time when target cells are infected. Since the complexity and
uncertainty of the principle by which CTLs are activated by infected cells, the immune response delay
is introduced. Mathematical models of HIV infection accounting for time delays have been
extensively explored [18–26]. Combining data from clinical experiments, Herz et al. [9] first used
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intracellular delay to describe the time between the initial viral entry into a target cell and subsequent
viral production. Wang et al. [27] analyzed the dynamic properties of a three-dimensional delay
differential equation by choosing f = cy(t − τ). Huang et al. [20] discussed CTLs immune response
delay in two different situations f = cy(t − τ)z(t) and f = cy(t − τ)z(t − τ). Extending to a
four-dimensional system, Zhu et al. [17] took f = cx(t − τ)y(t − τ)z(t − τ) as an example to study the
influence of time delay on the system.

Motivated by the works in [17, 20, 21], we suppose that the specific CTL proliferates at a rate cxyz.
Then two-time delays are considered in the model (1.2). To be specific, the first delay τ1 characterizes
the intracellular latency for cell-to-cell infection and the second delay τ2 describes the time lag in the
activation of CTLs induced by infected cells. The following delay differential equations are
investigated. 

ẋ(t) = Λ − βx(t)y(t) − dx(t),
ẏ(t) = βx(t − τ1)y(t − τ1) − ay(t) − py(t)z(t),
ż(t) = cx(t)y(t − τ2)z(t) − bz(t).

(1.3)

The dynamics of the delay-induced system convey more intricate scenarios than the dynamics
portrayed in the ODE system without delay. This paper aims to discuss the effects of time delays on
the local dynamics of model (1.3), such as the effects of time delay on the steady-state and the
periodic solution.

The article is arranged as follows: In Section 2, the positivity of the solution and equilibria of the
model (1.3) are performed. In Section 3, we give the local stability analysis and Hopf bifurcation
results. In Section 4, the normal form near the Hopf bifurcation is derived by a series of calculations.
We exemplify the obtained analytical results by numerical simulations in Section 5. In Section 6, we
conclude with the obtained analysis results.

2. Positivity of solution and equilibrium

From a biological model with practical implications, the non-negative initial conditions of model
(1.3) need satisfy

x(θ) = φ1(θ), y(θ) = φ2(θ), z(θ) = φ3(θ), θ ∈ [−τ, 0], (2.1)

where τ = max{τ1, τ2}, φ = (φ1, φ2, φ3)> ∈ C and C is the Banach space C([−τ, 0],R3
+) of all continuous

functions that map from [−τ, 0] into R3
+. By the fundamental mathematical theory [28], the uniqueness

and existence of the solution on [0,+∞) of model (1.3) with conditions (2.1) hold. In addition, we
reach the following conclusion.

Theorem 2.1. Let S (t, φ) = (x(t, φ), y(t, φ), z(t, φ))> be a solution of model (1.3) satisfying the initial
conditions (2.1). Then S (t, φ) is non-negative.

Proof. Using the method in [29, 30], we can rewrite model (1.3) as

Ṡ (t) = F (S t),
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where S t(θ) = S (t + θ) for θ ∈ [−τ, 0] and

F (φ) =


Λ − βφ1(0)φ2(0) − dφ1(0)

βφ1(−τ1)φ2(−τ1) − aφ2(0) − pφ2(0)φ3(0)
cφ1(0)φ2(−τ2)φ3(0) − bφ3(0)


for φ = (φ1, φ2, φ3)> ∈ C. Clearly for any φ ∈ C, φi(0) = 0, i = 1, 2, 3, we can prove Fi(φ) ≥ 0. Then,
on the basis of Theorem 2.1 in [29], it can be deduced that S (t, φ) ≥ 0 for all t ≥ 0.

For the convenience of discussion, we apply the following notation in [18] to model (1.3)

R0 =
Λβ

ad
, Q0 =

cΛ

bβ
R0 − 1

R0
.

Here, R0 and Q0 are denoted as the basic reproduction number of infected cells and immune
response. The dynamic properties of model (1.3) without time delays are mainly determined by these
two threshold parameters, such as the existence and stability of equilibria. Below we give the results
already discussed in [18].

Lemma 2.1. For model (1.3) with τ1 = 0 and τ2 = 0.
(i) There is always an infection-free equilibrium E0 = (x0, y0, z0), where

x0 =
Λ

d
, y0 = z0 = 0.

When R0 < 1, E0 is the unique equilibrium and stable.
(ii) When R0 > 1, the system also has an immunity-absent equilibrium E1 = (x1, y1, z1), which is stable
if Q0 < 1, where

x1 =
a
β
, y1 =

d
β

(R0 − 1), z1 = 0.

(iii) When Q0 > 1, an immunity-present equilibrium E∗ = (x∗, y∗, z∗) exists and is stable, where

x∗ =
cΛ − bβ

cd
=

bβ
cd

(
Q0 − 1 +

Q0

R0 − 1

)
,

y∗ =
b

cx∗
=

bd
cΛ − bβ

=
d
β

(
Q0 − 1 +

Q0

R0 − 1

)−1

,

z∗ =
bβ2

cdp
(Q0 − 1).

3. Local stability and Hopf bifurcation

This section mainly focuses on the effects of time delays on the local stability of the model (1.3) at
the equilibrium. By linearizing model (1.3), we obtain the characteristic equation at the equilibrium
E∗(x∗, y∗, z∗). The corresponding characteristic equation is as follows

det


λ + d + βy∗ βx∗ 0
−βy∗e−λτ1 λ − βx∗e−λτ1 + a + pz∗ py∗
−cy∗z∗ −cx∗z∗e−λτ2 λ − cx∗y∗ + b

 = 0. (3.1)

From the above expression (3.1), the stability results for equilibria E0 and E1 can be given as
follows.

Mathematical Biosciences and Engineering Volume 20, Issue 2, 1938–1959.



1942

Theorem 3.1. Consider model (1.3) for any τ1 ≥ 0 and τ2 ≥ 0.
(i) The infection-free equilibrium E0 is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.
When R0 = 1, model (1.3) undergoes a fold bifurcation at E0.
(ii) When the immunity-absent equilibrium E1 exists, it is locally asymptotically stable if Q0 < 1 and
unstable if Q0 > 1.

Proof. (i) At E0 = (x0, y0, z0), the characteristic equation (3.1) turns into

(λ + b)(λ + d)(λ + a − βx0e−λτ1) = 0, (3.2)

and it has roots λ = −b < 0, λ = −d < 0 and remaining root will be executed from

λ + a = βx0e−λτ1 . (3.3)

We assume that λ has non-negative real parts, then take the modulus of both sides of Eq (3.3) so
that the left-hand side becomes

|λ + a| ≥ a,

but the right-hand side of Eq (3.3) when R0 < 1 becomes

|βx0e−λτ1 | ≤ βx0 < a.

There is a contradiction. Hence λ has no non-negative real parts. Since λ = 0 is not the root of
Eq (3.3) when R0 < 1, then all the roots of the characteristic equation of E0 have negative real parts.
Therefore, E0 is locally asymptotically stable if R0 < 1. When R0 = 1, the characteristic equation (3.2)
has a zero root λ = 0, and

dλ
dβ

∣∣∣∣∣
R0=1

=
x0e−λτ1

1 + βx0τ1e−λτ1
> 0.

Therefore, model (1.3) undergoes a fold bifurcation at E0. Besides, Eq (3.3) is equivalent to

h(λ) = λ + a − βx0e−λτ1 = 0.

Thus, h(0) = a − βx0 < 0 when R0 > 1, and lim
λ→+∞

h(λ) = +∞. This yields that Eq (3.3) has at least
one positive root, which implies that E0 is unstable if R0 > 1.

(ii) At E1 = (x1, y1, z1), the characteristic equation (3.1) turns into

(λ − cx1y1 + b)((λ + a)(λ + d + βy1) − βx1(λ + d)e−λτ1) = 0.

Obviously, it has an eigenvalue λ = cx1y1 − b = b(Q0 − 1). If Q0 > 1, λ > 0 holds which indicates
that E1 is unstable. If Q0 < 1, we have λ < 0. Next, we analyze the transcendental equation

(λ + a)(λ + d + βy1) = βx1(λ + d)e−λτ1 . (3.4)

Clearly, λ = 0 is not the root of Eq (3.4). Using the same method as above, suppose the real part of
λ is positive. Then

|(λ + a)(λ + d + βy1)| > |λ + a||λ + d| > a|λ + d|,

however,
|βx1(λ + d)e−λτ1 | ≤ βx1|λ + d| = a|λ + d|.

The occurrence of the contradiction illustrates that the real parts of λ is negative. Thus, E1 is locally
asymptotically stable when R0 > 1 and Q0 < 1.
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In the following contents, the effect of τ1 and τ2 on the existence of local Hopf bifurcation of model
(1.3) in the immunity-present equilibrium E∗ will be described in detail. To simplify the analysis, let
X = x(t) − x∗, Y = y(t) − y∗, Z = z(t) − z∗, model (1.3) turns into

Ẋ(t) = a11X(t) + a12Y(t) + F1,

Ẏ(t) = a22Y(t) + a23Z(t) + b21X(t − τ1) + b22Y(t − τ1) + F2,

Ż(t) = a31X(t) + c32Y(t − τ2) + F3.

where

a11 = −d − βy∗, a12 = −βx∗, a22 = −a − pz∗, a23 = −py∗, a31 = cy∗z∗,

b21 = βy∗, b22 = βx∗, c32 = cx∗z∗,

F1 = −βX(t)Y(t),
F2 = −pY(t)Z(t) + βX(t − τ1)Y(t − τ1),
F3 = cy∗X(t)Z(t) + cz∗X(t)Y(t − τ2) + cx∗Y(t − τ2)Z(t) + cX(t)Y(t − τ2)Z(t).

The linearized part is given separately,
Ẋ(t) = a11X(t) + a12Y(t),
Ẏ(t) = a22Y(t) + a23Z(t) + b21X(t − τ1) + b22Y(t − τ1),
Ż(t) = a31X(t) + c32Y(t − τ2).

(3.5)

Then, related characteristic equation of model (3.5) can be expressed as

λ3 + A1λ
2 + A2λ + A3 + (B1λ

2 + B2λ)e−λτ1 + (C1λ + C2)e−λτ2 = 0, (3.6)

where A1 = −a11 − a22, A2 = a11a22, A3 = −a12a23a31, B1 = −b22, B2 = a11b22 − a12b21, C1 = −a23c32,
C2 = a11a23c32. For τ1, τ2 ≥ 0, we will classify four cases to discuss the stability of E∗ respectively.

Case I: τ1 = τ2 = 0.
Equation (3.6) becomes

λ3 + A11λ
2 + A12λ + A13 = 0, (3.7)

where A11 = d + βy∗ > 0, A12 = β2x∗y∗ + bpz∗ > 0, A13 = bdpz∗ > 0. Since A11A12 − A13 =

dβ2x∗y∗+βy∗(β2x∗y∗+bpz∗) > 0 holds, it is proved that the real parts of all roots of Eq (3.7) are positive
by the Routh-Hurwitz criterion. Then the immunity-present equilibrium E∗ is locally asymptotically
stable.

Case II: τ1 > 0 and τ2 = 0.
Equation (3.6) becomes

λ3 + A21λ
2 + A22λ + A23 + (B1λ

2 + B2λ)e−λτ1 = 0, (3.8)

where A21 = A1, A22 = A2 + C1, A23 = A3 + C2. The stability of equilibrium may be broken by
time delay [31]. We study how the stability of E∗ varies from bifurcation parameter τ1 and results in
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oscillation. Suppose Eq (3.8) has a pair of pure imaginary roots λ = ±iω1 (ω1 > 0). Solving Eq (3.8)
with λ = iω1 and separating the real and imaginary parts, we getB1ω

2
1cos(ω1τ1) − B2ω1sin(ω1τ1) = A23 − A21ω

2
1,

B1ω
2
1sin(ω1τ1) + B2ω1cos(ω1τ1) = ω3

1 − A22ω1.
(3.9)

Squaring the two equations of (3.9) and then adding them together gives

ω6
1 + D21ω

4
1 + D22ω

2
1 + D23 = 0,

where D21 = A2
21 − B2

1 − 2A22, D22 = A2
22 − 2A21A23 − B2

2, D23 = A2
23. Let h1 = ω2

1, then

f1(h1) = h3
1 + D21h2

1 + D22h1 + D23 = 0

and
f ′1(h1) = 3h2

1 + 2D21h1 + D22.

Then, the roots of f ′1(h1) = 0 is

h11 =
−D21 −

√
D2

21 − 3D22

3
, h12 =

−D21 +

√
D2

21 − 3D22

3
.

Because of D23 = A2
23 > 0, we understand that f ′1(h1) = 0 has no positive roots when ∆ = D2

21 −

3D22 < 0. If hypothesis (H1)

D2
21 − 3D22 > 0, h12 > 0, f1(h12) ≤ 0

holds, then f1(ω2
1) = 0 has two positive roots ω2

11 and ω2
12. Let ω2

11 < ω2
12 and then f ′1(ω2

11) < 0 and
f ′1(ω2

12) > 0 (see [32]). From Eqs (3.9), we can deduce

τ
j
1k =

1
ω1k

arccos
(
(B2 − A21B1)ω2

1k + A23B1 − A22B2

B2
1ω

2
1k + B2

2

)
+

2 jπ
ω1k

, ( j = 0, 1, 2, ...; k = 1, 2).

Let τ10 = mink=1,2{τ
(0)
1k }. Differentiating both sides of characteristic equation (3.8) with respect to τ1,

we obtain [
dλ(τ1)

dτ1

]−1

=
3λ2 + 2A21λ + A22

λ(B1λ2 + B2λ)e−λτ1
+

2B1λ + B2

λ(B1λ2 + B2λ)
−
τ1

λ

= −
3λ2 + 2A21λ + A22

λ(λ3 + A21λ2 + A22λ + A23)
+

2B1λ + B2

λ(B1λ2 + B2λ)
−
τ1

λ
.

So we know[
dReλ(τ1)

dτ1

]−1

λ=iω10

= Re
[
dλ(τ1)

dτ1

]−1

λ=iω10

=
3ω4

10 +
(
2A2

21 − 4A22

)
ω2

10 + A2
22 − 2A21A23

(ω3
10 − A22ω10)2 + (A23 − A21ω

2
10)2

−
2B2

1ω
2
10 + B2

2

B2
1ω

4
10 + B2

2ω
2
10

=
f ′1(ω2

10)

B2
1ω

4
10 + B2

2ω
2
10

.
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Therefore, we assume (H2)

sign
[
dReλ(τ1)

dτ1

]
= sign

[
dReλ(τ1)

dτ1

]−1

= sign f ′1(ω2
10) , 0.

Theorem 3.2. For model (1.3), when τ1 > 0 and τ2 = 0, the following conclusions hold:
(i) if ∆ < 0, then E∗ is locally asymptotically stable for all τ1,
(ii) if hypothesis (H1,H2) are true, E∗ is locally asymptotically stable for τ1 ∈ [0, τ10), Hopf bifurcation
occurs when τ1 = τ10.

Case III: τ1 = 0 and τ2 > 0.
Equation (3.6) becomes

λ3 + A31λ
2 + A32λ + A33 + (C1λ + C2)e−λτ2 = 0, (3.10)

where A31 = A1 + B1, A32 = A2 + B2, A33 = A3. We do a similar analysis with Case II. Defining a
purely imaginary root of Eq (3.10) as λ = iω2(ω2 > 0) and substitute it into Eq (3.10), by conventional
calculation we get

ω6
2 + D31ω

4
2 + D32ω

2
2 + D33 = 0,

where D31 = A2
31 − 2A32, D32 = A2

32 − 2A31A33 −C2
1, D33 = A2

33 −C2
2. Let h2 = ω2

2, then

f2(h2) = h3
2 + D31h2

2 + D32h2 + D33 = 0. (3.11)

Notice that D33 = A2
3 −C2

2 < 0, which shows that Eq (3.11) has at least one positive root.
In general, suppose that h21 , h22 and h23 are the positive roots of (3.11), thenω2k =

√
h2k, k = 1, 2, 3.

In the same way, we obtain

τ
( j)
2k =

1
ω2k

arccos
(
C1ω

4
2k + (A31C2 − A32C1)ω2

2k − A33C2

C2
1ω

2
2k + C2

2

)
+

2 jπ
ω2k

, ( j = 0, 1, 2, ...; k = 1, 2, 3).

Let τ20 = mink=1,2,3{τ
(0)
2k }, we have[

dλ(τ2)
dτ2

]−1

=
3λ2 + 2A31λ + A32

λ(C1λ + C2)e−λτ2
+

C1

λ(C1λ + C2)
−
τ2

λ

= −
3λ2 + 2A31λ + A32

λ(λ3 + A31λ2 + A32λ + A33)
+

C1

λ(C1λ + C2)
−
τ2

λ
.

So [
dReλ(τ2)

dτ2

]−1

λ=iω20

= Re
[
dλ(τ2)

dτ2

]−1

λ=iω20

=
3ω4

20 +
(
2A2

31 − 4A32

)
ω2

20 + A2
32 − 2A31A33

(ω3
20 − A32ω20)2 + (A33 − A31ω

2
20)2

−
C2

1

C2
1ω

2
20 + C2

2

=
f ′2(ω2

20)

C2
1ω

2
20 + C2

2

.

Thus, making the hypothesis (H3)[
dReλ(τ2)

dτ2

]
λ=iω20

= sign
[
dReλ(τ2)

dτ2

]−1

λ=iω20

= sign f ′2(ω2
20) , 0.
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Theorem 3.3. For model (1.3), when τ1 = 0 and τ2 > 0, if hypothesis (H3) is true, E∗ is locally
asymptotically stable for τ2 ∈ [0, τ20), Hopf bifurcation occurs when τ2 = τ20.

Case IV: τ1 > 0 and τ2 > 0.
Choosing τ2 as the bifurcation parameter, we take the root of Eq (3.6) to be λ = iω∗2(ω∗2 > 0).

According to the same computing process, it is easy to get C1ω
∗
2sin(ω∗2τ2) + C2cos(ω∗2τ2) = A1ω

∗
2

2 − A3 + B1ω
∗
2

2cos(ω∗2τ1) − B2ω
∗
2sin(ω∗2τ1),

C1ω
∗
2cos(ω∗2τ2) −C2sin(ω∗2τ2) = ω∗2

3 − A2ω
∗
2 − B1ω

∗
2

2sin(ω∗2τ1) − B2ω
∗
2cos(ω∗2τ1).

Based on the sum of squares of above equations, we have

D41(ω∗2) + D42(ω∗2)sin(ω∗2τ1) + D43(ω∗2)cos(ω∗2τ1) = 0, (3.12)

where

D41(ω∗2) = ω∗2
6

+ (A2
1 + B2

1 − 2A2)ω∗2
4

+ (A2
2 + B2

2 −C2
1 − 2A1A3)ω∗2

2
+ A2

3 −C2
2,

D42(ω∗2) = −2B1ω
∗
2

5
− 2A1B2ω

∗
2

3
+ 2A2B1ω

∗
2

3
+ 2A3B2ω

∗
2,

D43(ω∗2) = 2A1B1ω
∗
2

4
− 2B2ω

∗
2

4
− 2A3B1ω

∗
2

2
+ 2A2B2ω

∗
2

2.

(H4): there are finite positive roots ω∗2k, k = 1, 2, ..., l1 for Eq (3.12). Then the critical value is shown
as

τ∗2k
( j)

=
1
ω∗2k

arccos
F41C2 + F42C1ω

∗
2k

C2
1ω
∗
2k

2 + C2
2

 +
2 jπ
ω∗2k

,

where

F41 = A1ω
∗
2

2
− A3 + B1ω

∗
2

2cos(ω∗2τ1) − B2ω
∗
2sin(ω∗2τ1),

F42 = ω∗2
3
− A2ω

∗
2 − B1ω

∗
2

2sin(ω∗2τ1) − B2ω
∗
2cos(ω∗2τ1).

Let τ∗20 = min{τ∗2k
(0)}, differentiate equation (3.6) concerning τ2,[

dλ
dτ2

]−1

=
3λ2 + 2A1λ + A2

λ(C1λ + C2)e−λτ2
+

(−τ1B1λ
2 + 2B1λ − τ1B2λ + B2)e−λτ1

λ(C1λ + C2)e−λτ2
+

C1

λ(C1λ + C2)
−
τ2

λ
.

So [
dReλ
dτ2

]−1

λ=iω∗20

= Re
[

dλ
dτ2

]−1

λ=iω∗20

=
I41 + I42 + I43

C2
1ω
∗
20

4 + C2
2ω
∗
20

2 ,

where

I41 = ((2A1C1 − 3C2)ω∗20
3

+ A2C2ω
∗
20)sin(ω∗20τ2) + (3C1ω

∗
20

4
+ (2A1C2 − A2C1)ω∗20

2)cos(ω∗20τ2),

I42 = ((τ1B1C2 − τ1B2C1 + 2B1C1)ω∗20
3

+ B2C2ω
∗
20)sin(ω∗20τ2 − ω

∗
20τ1)

− (τ1B1C1ω
∗
20

4
+ (τ1B2C2 − 2B1C2 + B2C1)ω∗20

2)cos(ω∗20τ2 − ω
∗
20τ1),

I43 = −C2
1ω
∗
20

2.

Thus, there exists a hypothesis (H5)

sign
[
dReλ
dτ2

]
λ=iω∗20

= sign
[
dReλ
dτ2

]−1

λ=iω∗20

= sign(I41 + I42 + I43) , 0.

Theorem 3.4. For model (1.3), when τ1 > 0 , τ2 > 0, if the hypothesis (H4,H5) are true, then E∗ is
locally asymptotically stable for τ2 ∈ [0, τ∗20), Hopf bifurcation occurs when τ2 = τ∗20.
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4. Direction and stability of Hopf bifurcation

From the analysis in Section 3, sufficient conditions for model (1.3) to undergo Hopf bifurcation at
E∗ have been obtained. Then we will study the bifurcation properties when τ1 > 0 and τ2 = τ∗20 by
using the normal form method and center manifold theorem [33].

For the sake of discussion, suppose τ1 < τ∗20, where τ2 ∈ [0, τ∗20). Rescaling the time by t = sτ2, let
τ2 = τ∗20 + µ, X(sτ2) = X̄(s), Y(sτ2) = Ȳ(s), Z(sτ2) = Z̄(s). In general, redefining X̄(s), Ȳ(s), Z̄(s) as
X(t),Y(t),Z(t) and rewriting model (1.3), we get a FDE in C([−1, 0],R3)

u̇(t) = Lµ(ut) + f (µ, ut), (4.1)

where u(t) = (X(t),Y(t),Z(t))> ∈ R3. Lµ(φ) : C→ R3 and f (µ, ut) are described respectively as

Lµ(φ) =
(
τ∗20 + µ

) (
Aφ(0) + Bφ

(
−

τ1

τ∗20 + µ

)
+ Cφ(−1)

)
,

where

A =


a11 a12 0
0 a22 a23

a31 0 0

 , B =


0 0 0

b21 b22 0
0 0 0

 , C =


0 0 0
0 0 0
0 c32 0

 ,
and

f (µ, φ) =
(
τ∗20 + µ

) 
F1

F2

F3

 ,
where

F1 = −βφ1(0)φ2(0),

F2 = −pφ2(0)φ3(0) + βφ1(−
τ1

τ∗20
)φ2(−

τ1

τ∗20
),

F3 = cy∗φ1(0)φ3(0) + cz∗φ1(0)φ2(−1) + cx∗φ2(−1)φ3(0) + cφ1(0)φ2(−1)φ3(0).

By the Riesz representation theorem, there exists a function η(θ, µ) of bounded variation for θ ∈
[−1, 0] such that

Lµ(φ) =

∫ 0

−1
dη(θ, µ)φ(θ),

for φ ∈ C
(
[−1, 0],R3

)
. In fact, we can choose

η(θ, µ) =



(
τ∗20 + µ

)
(A + B + C), θ = 0(

τ∗20 + µ
)

(B + C), θ ∈
[
−

τ1
τ∗20+µ

, 0
)

(
τ∗20 + µ

)
C, θ ∈

(
−1,− τ1

τ∗20+µ

)
0. θ = −1.
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For φ ∈ C
(
[−1, 0],R3

)
, define

A(µ)φ(θ) =

 dφ(θ)
dθ , θ ∈ [−1, 0),∫ 0

−1
dη(s, µ)φ(s), θ = 0.

and

R(µ)φ(θ) =

0, θ ∈ [−1, 0),
f (µ, φ), θ = 0.

Then Eq (4.1) turns into
u̇t = A(µ)ut + R(µ)ut.

For θ ∈ [−1, 0], ψ ∈ C1
(
[−1, 0], (R3)∗

)
, define a operator

A∗ψ(s) =

 −dψ(s)
ds , s ∈ (0, 1],∫ 0

−1
dη>(t, 0)ψ(−t), s = 0,

and a bilinear inner product

〈ψ(s), φ(θ)〉 = ψ̄(0)φ(0) −
∫ 0

−1

∫ θ

ξ=0
ψ̄(ξ − θ)dη(θ)φ(ξ)dξ,

where η(θ) = η(θ, 0), A(0) and A∗ are adjoint operators. The eigenvalues of A(0) are known to be
±iω∗20τ

∗
20 by previous discussion which are also eigenvalues of A∗. Assume that the eigenvectors of

A(0) and A∗ corresponding to the eigenvalues iω∗20τ
∗
20 and −iω∗20τ

∗
20 are q(θ) = (1, q2, q3)>eiω∗20τ

∗
20θ, θ ∈

[−1, 0] and q∗(s) = D(1, q∗2, q
∗
3)>eiω∗20τ

∗
20 s, s ∈ [0, 1], respectively, such that

A(0)q(θ) = iω∗20τ
∗
20q(θ),

A∗q∗(s) = −iω∗20τ
∗
20q∗(s).

Thus, we can figure out

q2 =
iω∗20 − a11

a12
, q3 =

a31 + c32q2e−iω∗20τ
∗
20

iω∗20
, q∗2 =

ia11ω
∗
20 − ω

∗
20

2

a23a31 − ib21ω
∗
20eiω∗20τ1

, q∗3 = −
a23q∗2
iω∗20

.

From 〈q∗(s), q(θ)〉 = 1, 〈q∗(s), q̄(θ)〉 = 0, we have

〈q∗(s), q(θ)〉 = q̄∗(0) · q(0) −
∫ 0

−1

∫ θ

ξ=0
q̄∗>(ξ − θ)dη(θ)q(ξ)dξ

= D̄
(
1, q̄∗2, q̄

∗
3
)

(1, q2, q3)> −
∫ 0

−1

∫ θ

ξ=0
D̄

(
1, q̄∗2, q̄

∗
3
)

e−iω∗20τ
∗
20(ξ−θ)dη(θ)


1
q2

q3

 eiω∗20τ
∗
20ξdξ

= D̄
(
1 + q2q̄∗2 + q3q̄∗3

)
− q̄∗>(0)

∫ 0

−1

∫ θ

ξ=0
eiω∗20τ

∗
20θdξdη(θ)q(0)

= D̄
(
1 + q2q̄∗2 + q3q̄∗3 + q̄∗2(b21 + b22q2)τ1e−iω∗20τ1 + c32q2q̄∗3τ

∗
20e−iω∗20τ

∗
20

)
.
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Hence, D̄−1 = 1 + q2q̄∗2 + q3q̄∗3 + q̄∗2(b21 + b22q2)τ1e−iω∗20τ1 + c32q2q̄∗3τ
∗
20e−iω∗20τ

∗
20 .

Next, we compute the center manifold C0 at µ = 0. Let ut be the solution of Eq (4.1), define

m(t) = 〈q∗, ut〉 ,

W(t, θ) = ut(θ) − m(t)q(θ) − m̄(t)q̄(θ) = ut(θ) − 2 Re(m(t)q(θ)).

On the center manifold C0, we have

W(t, θ) = W(m, m̄, θ) = W20(θ)
m2

2
+ W11(θ)mm̄ + W02(θ)

m̄2

2
+ · · · , (4.2)

where m, m̄ are local coordinates for center manifold C0 in the direction of q∗ and q̄∗. For the solution
ut ∈ C0 of (4.1), there exists 〈ψ,Aφ〉 = 〈A∗ψ, φ〉 when µ = 0, we get

ṁ(t) = 〈q∗,A(0)ut〉 + 〈q∗,R(0)ut〉

= 〈A∗q∗, ut〉 + 〈q∗, f (0,W(m, m̄, θ) + 2 Re(m(t)q(θ)))〉
= iω∗20τ

∗
20m(t) + q̄∗(0) f (0,W(m, m̄, θ) + 2 Re(m(t)q(0)))

=: iω∗20τ
∗
20m(t) + q̄∗(0) f0(m, m̄).

The above equation is equivalent to

ṁ(t) = iω∗20τ
∗
20m(t) + g(m, m̄),

where

g(m, m̄) = q̄∗(0) f0(m, m̄) = g20
m2

2
+ g11mm̄ + g02

m̄2

2
+ g21

m2m̄
2!

+ · · · , (4.3)

then

g(m, m̄) = q̄∗(0) f0(m, m̄) = D̄τ∗20
(
1, q̄∗2, q̄

∗
3
)

(F1, F2, F3)> . (4.4)

Defining

ut(θ) = (u1t(θ), u2t(θ), u3t(θ))> = W(t, θ) + mq(θ) + m̄q̄(θ),

q(θ) =
(
q(1)(θ), q(2)(θ), q(3)(θ)

)>
= (1, q2, q3)> eiω∗20τ

∗
20θ,

we have

u1t(0) = m + m̄ + W (1)
20 (0)

m2

2
+ W (1)

11 (0)mm̄ + W (1)
02 (0)

m̄2

2
+ O

(
|(m, m̄)|3

)
,

u2t(0) = q2m + q̄2m̄ + W (2)
20 (0)

m2

2
+ W (2)

11 (0)mm̄ + W (2)
02 (0)

m̄2

2
+ O

(
|(m, m̄)|3

)
,

u3t(0) = q3m + q̄3m̄ + W (3)
20 (0)

m2

2
+ W (3)

11 (0)mm̄ + W (3)
02 (0)

m̄2

2
+ O

(
|(m, m̄)|3

)
,

u1t

(
−
τ1

τ∗20

)
= me−iω∗20τ1 + m̄eiω∗20τ1 + W (1)

20

(
−
τ1

τ∗20

)
m2

2
+ W (1)

11

(
−
τ1

τ∗20

)
mm̄
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+ W (1)
02

(
−
τ1

τ∗20

)
m̄2

2
+ O

(
|(m, m̄)|3

)
,

u2t

(
−
τ1

τ∗20

)
= q2me−iω∗20τ1 + q̄2m̄eiω∗20τ1 + W (2)

20

(
−
τ1

τ∗20

)
m2

2
+ W (2)

11

(
−
τ1

τ∗20

)
mm̄

+ W (2)
02

(
−
τ1

τ∗20

)
m̄2

2
+ O

(
|(m, m̄)|3

)
,

u3t

(
−
τ1

τ∗20

)
= q3me−iω∗20τ1 + q̄3m̄eiω∗20τ1 + W (3)

20

(
−
τ1

τ∗20

)
m2

2
+ W (3)

11

(
−
τ1

τ∗20

)
mm̄

+ W (3)
02

(
−
τ1

τ∗20

)
m̄2

2
+ O

(
|(m, m̄)|3

)
,

u1t(−1) = me−iω∗20τ
∗
20 + m̄eiω∗20τ

∗
20 + W (1)

20 (−1)
m2

2
+ W (1)

11 (−1)mm̄ + W (1)
02 (−1)

m̄2

2
+ O

(
|(m, m̄)|3

)
,

u2t(−1) = q2me−iω∗20τ
∗
20 + q̄2m̄eiω∗20τ

∗
20 + W (2)

20 (−1)
m2

2
+ W (2)

11 (−1)mm̄ + W (2)
02 (−1)

m̄2

2
+ O

(
|(m, m̄)|3

)
u3t(−1) = q3me−iω∗20τ

∗
20 + q̄3m̄eiω∗20τ

∗
20 + W (3)

20 (−1)
m2

2
+ W (3)

11 (−1)mm̄ + W (3)
02 (−1)

m̄2

2
+ O

(
|(m, m̄)|3

)
.

Combining (4.3) with (4.4), we obtain

g(m, m̄) = D̄τ∗20
(
1, q̄∗2, q̄3

∗) ×


J11m2 + J12mm̄ + J13m̄2 + J14m2m̄
J21m2 + J22mm̄ + J23m̄2 + J24m2m̄
J31m2 + J32mm̄ + J33m̄2 + J34m2m̄

 + · · · ,

where

J11 = −βq(2)(0),
J12 = −β(q(2)(0) + q̄(2)(0)),
J13 = −βq̄(2)(0),

J14 = −β

(
1
2

q̄(2)(0)W (1)
20 (0) + q(2)(0)W (1)

11 (0) +
1
2

W (2)
20 (0) + W (2)

11 (0)
)
,

J21 = −pq(2)(0)q(3)(0) + βq(1)(−
τ1

τ∗20
)q(2)(−

τ1

τ∗20
),

J22 = −p(q̄(2)(0)q(3)(0) + q(2)(0)q̄(3)(0)) + β(q̄(1)(−
τ1

τ∗20
)q(2)(−

τ1

τ∗20
) + q(1)(−

τ1

τ∗20
)q̄(2)(−

τ1

τ∗20
)),

J23 = −pq̄(2)(0)q̄(3)(0) + βq̄(1)(−
τ1

τ∗20
)q̄(2)(−

τ1

τ∗20
),

J24 = −p
(
1
2

q̄(2)(0)W (3)
20 (0) + q(2)(0)W (3)

11 (0) +
1
2

q̄(3)(0)W (2)
20 (0) + q(3)(0)W (2)

11 (0)
)

+ β

(
1
2

q̄(1)(−
τ1

τ∗20
)W (2)

20 (−
τ1

τ∗20
) + q(1)(−

τ1

τ∗20
)W (2)

11 (−
τ1

τ∗20
)
)

+ β

(
1
2

q̄(2)(−
τ1

τ∗20
)W (1)

20 (−
τ1

τ∗20
) + q(2)(−

τ1

τ∗20
)W (1)

11 (−
τ1

τ∗20
)
)
,
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J31 = cy∗q(3)(0) + cz∗q(2)(−1) + cx∗q(2)(−1)q(3)(0),
J32 = cy∗(q(3)(0) + q̄(3)(0)) + cz∗(q(2)(−1) + q̄(2)(−1)) + cx∗(q̄(2)(−1)q(3)(0) + q(2)(−1)q̄(3)(0)),
J33 = cy∗q̄(3)(0) + cz∗q̄(2)(−1) + cx∗q̄(2)(−1)q̄(3)(0),

J34 = cy∗
(
1
2

q̄(3)(0)W (1)
20 (0) + q(3)(0)W (1)

11 (0) +
1
2

W (3)
20 (0) + W (3)

11 (0)
)

+ cz∗
(
1
2

q̄(2)(−1)W (1)
20 (0) + q(2)(−1)W (1)

11 (0) +
1
2

W (2)
20 (−1) + W (2)

11 (−1)
)

+ cx∗
(
1
2

q̄(2)(−1)W (3)
20 (0) + q(2)(−1)W (3)

11 (0) +
1
2

q̄(3)(0)W (2)
20 (−1) + q(3)(0)W (2)

11 (−1)
)

+ c
(
q̄(2)(−1)q(3)(0) + q(2)(−1)(q(3)(0) + q̄(3)(0))

)
.

Comparing the coefficient with Eq (4.3), we have

g20 = 2τ∗20D̄
(
J11 + q̄∗2J21 + q̄∗3J31

)
,

g11 = τ∗20D̄
(
J12 + q̄∗2J22 + q̄∗3J32

)
,

g02 = 2τ∗20D̄
(
J13 + q̄∗2J23 + q̄∗3J33

)
,

g21 = 2τ∗20D̄
(
J14 + q̄∗2J24 + q̄∗3J34

)
,

(4.5)

with

W20(θ) =
ig20

w∗20τ
∗
20

q(0)eiθw∗20τ
∗
20 +

iḡ02

3w∗20τ
∗
20

q̄(0)e−iθw∗20τ
∗
20 + G1e2iθw∗20τ

∗
20 ,

W11(θ) = −
ig11

w∗20τ
∗
20

q(0)eiθw∗20τ
∗
20 +

iḡ11

w∗20τ
∗
20

q̄(0)e−iθw∗20τ
∗
20 + G2,

where G1 and G2 are governed by
2iw∗20 − a11 −a12 0
−b21e−2iw∗20τ1 2iw∗20 − a22 − b22e−2iw∗20τ1 −a23

−a31 −c32e−2iw∗20τ
∗
20 2iw∗20

G1 = 2


J11

J12

J13

 ,
and 

a11 a12 0
b21 a22 + b22 a23

a31 c32 0

G2 = −


J12

J22

J32

 .
After the above analysis, the explicit expression of Eq (4.5) can be evaluated. Then, it is easy to

acquire the following critical values:

C1(0) =
i

2τ∗20w∗20

(
g11g20 − 2 |g11|

2
−
|g02|

2

3

)
+

g21

2
,

µ2 = −
Re (C1(0))

Re
(
λ′

(
τ∗20

)) ,
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β2 = 2 Re (C1(0)) ,

T2 = −
Im C1(0) + µ2 Im λ′

(
τ∗20

)
w∗20τ

∗
20

.

By the classical bifurcation theorem [33], we can state the following theorem:

Theorem 4.1. (i) µ2 determines the direction of Hopf bifurcation, if µ2 > 0(< 0), then Hopf bifurcation
is supercritical (subcritical), and the bifurcating periodic orbits of model (1.3) at E∗ exist for τ2 > τ

∗
20,

(ii) β2 determines the stability of the bifurcating periodic orbits, if β2 < 0(> 0), then the bifurcating
periodic orbits are stable (unstable) ,
(iii) T2 determines the period of bifurcating periodic solution, if T2 > 0(< 0), the period of bifurcating
periodic solution increases (decreases).

5. Numerical simulations

In this section, we perform some numerical simulations of model (1.3) to validate our analytical
results with some fixed parameters. For the set of parameter values: Λ = 1.35, β = 0.25, d = 0.25, a =

0.45, p = 0.02, c = 0.15, b = 0.45, we can calculate R0 = 3 > 1 and Q0 = 1.2 > 1. Then model (1.3)
has a unique equilibrium E∗ = (2.4, 1.25, 7.5).

Following the calculation process shown in [34, 35], we can denote Ω as the set with complex
conjugate roots. Then we establish

F(ω) = ||P0(iω)|2 + |P1(iω)|2 − |P2(iω)|2|2 − 4|P0(iω)P̄1(iω)|2,

where P0(λ) = λ3 + A1λ
2 + A2λ + A3, P1(λ) = B1λ

2 + B2λ, P2(λ) = C1λ + C2 and P̄1 is the conjugate
of P1. Through simulations, there exist two positive roots for F(ω) = 0, namely ω− ≈ 0.0527238
and ω+ ≈ 0.1435193 (see Figure 1(a)). Then, we obtain Ω = [0.0527238, 0.1435193]. Figure 1(b))
illustrates the stability switching curves T in the crossing set Ω.

(a) (b)

Figure 1. (a) Graph of F(ω), (b) Stability switching curves on τ1 − τ2 plane.
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In Case I, E∗ is locally asymptotically stable for τ1 = τ2 = 0 (see Figure 2).

Figure 2. The solution curves and phase plane of model (1.3) with τ1 = τ2 = 0.

In Case II, fixed τ2 = 0, then ∆ = −0.2739636 < 0, the condition that Hopf bifurcation appears is
not satisfied. As shown in Figure 1(b)), no curve intersects the horizontal axis, that is, the length of the
τ1 does not change the dynamical properties of the model (1.3) and E∗ is stable for all τ1 ≥ 0. Below,
we take τ1 = 10 and τ1 = 30 as examples respectively to give the solution curves of the model (1.3)
(see Figure 3).

(a) τ1 = 10 (b) τ1 = 30

Figure 3. The solution curves of model (1.3) with different τ1 and fixed τ2 = 0.
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In Case III, fixed τ1 = 0, we get ω20 = 0.0185994, τ20 = 6.3676306 and f ′2(ω2
20) = 0.0531887 > 0,

then the transversality condition for Hopf bifurcation is satisfied. Figure 4 illustrates when τ2 = 5 <

τ20, E∗ is locally asymptotically stable. Figure 5 illustrates when τ2 = 7 > τ20, Hopf bifurcation occurs
and period orbit bifurcated from E∗.

Figure 4. τ1 = 0, τ2 = 5 < τ20, E∗ is locally asymptotically stable.

Figure 5. τ1 = 0, τ2 = 7 > τ20, Hopf bifurcation occurs.

In Case IV, fixed τ1 = 6.2, the crucial values for Hopf bifurcation are ω∗20 = 0.0946198, τ∗20 =

6.3793047 and I41 + I42 + I43 = 0.0011718 > 0, then the transversality condition for Hopf bifurcation
is satisfied. So when τ2 = 5 < τ∗20, E∗ is locally asymptotically stable; when τ2 = 7 > τ∗20, Hopf
bifurcation occurs and period orbit bifurcated from E∗ (see Figures 6 and 7). Furthermore, we compute
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µ2 = −93.4286070 < 0, β2 = 1.6297392 > 0, T2 = −1.8245185 < 0. So the Hopf bifurcation
is subcritical, the bifurcating periodic solution is unstable and the period of the bifurcating periodic
solution decreases. Besides, Figure8 illustrates an irregular periodic oscillation of model (1.3) when
τ1 = 86.81 and τ2 = 6.9.

Figure 6. τ1 = 6.2, τ2 < τ
∗
20, E∗ is locally asymptotically stable.

Figure 7. τ1 = 6.2, τ2 > τ
∗
20, Hopf bifurcation occurs.
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Figure 8. τ1 = 86.81, τ2 = 6.9, the solution curves and phase plane of irregular periodic
oscillation in model (1.3).

6. Conclusions

In this paper, we have studied an HIV infection model with intracellular delay and immune response
delay. The intracellular delay τ1 describes the intracellular latency for cell-to-cell infection. Since the
antigenic stimulation generating CTLs may require a time lag, we assume that CTLs produced at time
t depends on the number of infected cells at time t − τ2 and uninfected cells and CTLs at time t. For
time delays τ1 ≥ 0 and τ2 ≥ 0, when R0 < 1, the infection-free equilibrium E0 is locally asymptotically
stable; when R0 > 1 and Q0 < 1, the immunity-absent equilibrium E1 is locally asymptotically stable.
That is, time delays τ1 and τ2 have no effect on the stability of the infection-free equilibrium E0 and
immunity-absent equilibrium E1. If Q0 > 1, model (1.3) has an immunity-present equilibrium E∗. In
Case I, we know that without time delays, E∗ is stable. In Case II, by numerical simulation, we find
that E∗ is locally asymptotically stable for τ1 > 0. In Case III, only one delay τ2 exists, when τ2 is
sufficiently small, E∗ is stable, but the periodic solution is bifurcated from E∗ when the delay crosses
the critical value. In Case IV, two delays coexist, restricting time delay τ1, we conclude that when τ2

is within a certain range, E∗ is stable, but the periodic solution is bifurcated from E∗ when the delay
crosses the critical value. The direction and stability are discussed by the center manifold and normal
form in Case IV. By comparing the four cases, it is concluded that only considering intracellular delay
τ1 will not change the dynamic behavior of the model (1.3), but introducing immune response delay τ2

will break the stability of the positive equilibrium of the model (1.3) and cause population oscillations.

In fact, depending on the biological phenomena, it is also very interesting to introduce spatial
heterogeneity in the model (1.3) or consider a nonautonomous model with drug therapy. Some recent
research work suggests that more complex or meaningful dynamical properties may arise for partial
differential equations [36–38]. Therefore, we will expand model (1.3) according to the actual
situation and leave it for our further research work.
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