
MBE, 20(2): 1903–1918.  

DOI: 10.3934/mbe.2023087 

Received: 04 September 2022 

Revised: 01 November 2022 

Accepted: 02 November 2022 

Published: 08 November 2022 

http://www.aimspress.com/journal/MBE 

 

Research article 

Multi-robot task allocation in e-commerce RMFS based on deep 

reinforcement learning 

Ruiping Yuan1,2, Jiangtao Dou1, Juntao Li1,2,*, Wei Wang1 and Yingfan Jiang1 

1 School of Information, Beijing Wuzi University, Beijing 101149, China 
2 Beijing Key Laboratory of Intelligent Logistics System, Beijing 101149, China 

* Correspondence: Email: ljtletter@126.com. 

Abstract: A Robotic Mobile Fulfillment System (RMFS) is a new type of parts-to-picker order 
fulfillment system where multiple robots coordinate to complete a large number of order picking tasks. 
The multi-robot task allocation (MRTA) problem in RMFS is complex and dynamic, and it cannot be 
well solved by traditional MRTA methods. This paper proposes a task allocation method for multiple 
mobile robots based on multi-agent deep reinforcement learning, which not only has the advantage of 
reinforcement learning in dealing with dynamic environment but also can solve the task allocation 
problem of large state space and high complexity utilizing deep learning. First, a multi-agent 
framework based on cooperative structure is proposed according to the characteristics of RMFS. Then, 
a multi agent task allocation model is constructed based on Markov Decision Process. In order to avoid 
inconsistent information among agents and improve the convergence speed of traditional Deep Q 
Network (DQN), an improved DQN algorithm based on a shared utilitarian selection mechanism and 
priority empirical sample sampling is proposed to solve the task allocation model. Simulation results 
show that the task allocation algorithm based on deep reinforcement learning is more efficient than 
that based on a market mechanism, and the convergence speed of the improved DQN algorithm is 
much faster than that of the original DQN algorithm. 

Keywords: multi robot task allocation; deep reinforcement learning; improved DQN algorithm; multi-
agent modeling; Markov Decision Process 
 



1904 

Mathematical Biosciences and Engineering  Volume 20, Issue 2, 1903-1918. 

1. Introduction  

The spread of Covid-19 promotes the demand for online shopping. According to the data of the 
National Bureau of Statistics, China's online retail sales reached 13.1 trillion yuan in 2021. A large 
amount of orders has brought great pressure to the distributions of e-commerce enterprises. In order to 
meet distribution time limits, e-commerce enterprises urgently need to improve order picking 
efficiency. A Robotic Mobile Fulfillment System (RMFS) is a new type of parts-to-picker order 
fulfillment system with the advantages of high picking efficiency, strong flexibility and scalability [1]. 
It is especially suitable for e-commerce order picking with large demand fluctuation and strong 
timeliness [2]. RMFS was brought into the market by Amazon in 2012 [3]. In recent years, Chinese e-
commerce enterprises such as JD, Ali and Suning have also begun to pilot RMFS. However, the 
system has not been applied on a large scale in China, mainly due to the difficulty of cooperative 
scheduling of large-scale robots. In large-scale RMFS, there are usually thousands of movable shelves 
and mobile robots, which have to coordinate to complete a large number of order picking tasks. So, 
the task allocation of robots in RMFS is a complex multi-robot task allocation (MRTA) problem in 
dynamic environment.  

Multi-robot Task Allocation (MRTA) is as follows: Given a multi-robot system, a task set and 
system performance evaluation indicators, find a suitable robot for each task to execute. When robots 
complete all tasks in the task set, it is guaranteed that the overall benefit achieved is maximized [4,5]. 
Most of the literature takes the minimum cost of robots to complete tasks, the maximum utilization 
rate or the maximum output rate as an optimization goal and uses behavior-based [6], emotion [7,8], 
market [9], clustering [10], simulation [11] and other methods to solve the MRTA problem. The MRTA 
method used in RMFS can be mainly divided into four classes. 

1) Methods based on market mechanism. Heap [12] designed a repetitive sequential single 
clustering auction algorithm for multi-robot dynamic task assignment. Zhao [13] proposed an 
improved market method suitable for task assignment in an unknown environment. Yuan [14] proposed 
a balanced heuristic auction algorithm to solve the task allocation problem in RMFS considering the 
picking time balance of picking stations and the load balance of robots. 

2) Methods based on Queuing theory. Zou [15] built a queuing network model to study the RMFS 
task allocation rules and designed a neighborhood search method to find the optimal allocation rules. 
The results showed that the allocation rules based on order processing speed are better than random 
allocation. On this basis, Roy [16] studied the robot allocation strategy of RMFS in multi-partition 
storage mode and constructed a two-stage queuing network stochastic model. The results show that 
the shortest queue allocation method is more efficient in multi-partition storage. Yuan [17] used a 
queuing network and sharing protocol to study the task sharing and distribution of RMFS robots. 

3) Heuristic rules and simulation methods. Ghassemi [18] used the simulation method to study 
the task allocation problem of RMFS and compared the two task allocation modes of decentralized 
and centralized allocation. The results showed that the decentralized allocation is faster than the 
centralized algorithm while ensuring the quality of the solution. Gue [19] studied the control method 
of the robot system by using the simulation method and designed the multi-robot decentralized control 
algorithm. The results show that the decentralized control can avoid the deadlock of the robot better 
than the centralized control method. 

4) Intelligent optimization algorithms. Shen [20] used the intelligent scheduling algorithm to 
study the task allocation and scheduling problem of RMFS, but the allocation and processing of orders 
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was too ideal. Yuan [21] further studied the task scheduling problem of RMFS and designed an 
improved co-evolution genetic algorithm to solve the problem. Zhang [22] used an improved genetic 
algorithm to study the robot allocation problem of RMFS. Compared with the traditional rule-based 
scheduling method, the improved genetic algorithm is more effective. 

Traditional MRTA methods cannot well solve the problems in a dynamic environment. For 
dynamic and changeable environments, the reinforcement learning method has advantages that other 
methods do not have [23]. It can realize its learning by interacting with the environment, so scholars 
introduce reinforcement learning to solve the MRTA problem. For example, in order to solve the 
problem of MRTA assignment in a dynamic environment, Jiajia [24] mixed reinforcement learning and 
a genetic algorithm to solve the scheduling problem of a multi-robot system in an intelligent warehouse.  

However, reinforcement learning cannot handle the MRTA problems of high complexity with a 
large space state. Deep learning can make up for this shortcoming. Chen [25] proposed a learning-
based algorithm for dynamic spectrum access, which keeps stable operation in a highly dynamic 
environment, and the Dueling Deep Q-Network with prioritized experience replay combined with a 
recurrent neural network is used to improve the convergence speed. Chen [26] proposed a multi-agent 
deep reinforcement learning game for anti-jamming secure computing in MEC network, using a post- 
decision state to deal with dynamic and unknown information. Bumjin Park [27] proposed a deep 
reinforcement learning method to find the best allocation schedule for multiple robots and showed that 
the proposed method finds better solutions than meta-heuristic methods, especially when solving large-
scale allocation problems. 

This paper uses deep reinforcement learning to solve the MRTA problems in RMFS. The main 
contributions of the paper are as follows: First, a multi-agent cooperative model of RMFS is 
established, which enables agents to learn autonomously in the system and realize communication 
between each agent. Second, a multi-agent task allocation model is constructed based on Markov 
Decision Process (MDP). Finally, an improved Deep Q Network (DQN) algorithm based on a shared 
utilitarian selection mechanism and priority empirical sample sampling is proposed to solve the task 
allocation model. The improved algorithm can avoid inconsistent information among agents and 
improve the convergence speed of the traditional DQN, which is a useful innovation and can be used 
to solve relevant problems in other fields.  

The remainder of this paper is organized as follows. In Section 2, the multi-agent framework 
based on cooperative structure is described in detail. In Section 3, a multi-agent task allocation model 
is constructed based on the Markov Decision Process. In Section 4, an improved DQN algorithm is 
proposed to solve the task allocation model. In Section 5, simulation experiments are conducted, and 
the results are analyzed to verify the proposed model and algorithm. Section 6 concludes the paper and 
presents the limitations and prospects of the research. 

2. Multi-agent framework of RMFS based on cooperative architecture 

A RMFS consists of picking workstations, movable shelves, mobile robots and other equipment. 
The typical layout of RMFS is shown in Figure 1. Customer orders are divided into many picking tasks, 
which are allocated to mobile robots according to certain rules. Then, robots carry shelves to picking 
stations, where pickers pick the required goods off shelves to complete their tasks. Shelves, robots and 
picking stations need to interact with the environment and cooperate to complete the task of picking. 
In order to make the interaction among these elements more intelligent, multi-agent modeling is used 
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to describe the RMFS, in which each element is abstracted into an agent. 
According to the actual situation of RMFS, seven kinds of agents are abstracted, which can 

interact and cooperate to work in the whole system. Considering the influence of environment change 
on other kinds of agents, the environment in the system is also abstracted as an agent. Then, the 
cooperative multi-agent system architecture is used to model RMFS. In the collaborative structure, not 
only are there management layers to manage agents in the system, but also agents can communicate 
and interact with each other.  

The multi-agent model is divided into three layers: processing layer, scheduling layer and 
execution layer, as shown in Figure 2. The functions of each layer are as follows. 

Shelf mobile robot Picking stationsaisle

 

Figure 1. The typical layout of a RMFS. 
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Figure 2. Collaborative multi-agent framework of RMFS. 

1) Processing layer 
When a order arrives at the system, the order processing agent processes and integrates the order 
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and then distributes the order to the picking table according to a certain order batching method. 
2) Scheduling layer 
In the scheduling layer, according to the received order data, the picking agent uses a deep 

reinforcement learning method to assign tasks to each robot agent, which is the focus of this paper. 
The information management agent is mainly responsible for managing information. All the 
information of picking station agents, shelf agents, robot agents, etc. is supervised by it. 

This paper also abstracts a very important environment agent to manage the environment 
information, which mainly includes road information, congestion information and the location 
information of each agent. Other agents in the system interact with the environmental agents almost 
every moment, obtain the information of the environment and influence the environment. At the same 
time, the environmental agents respond to this influence and change their state by constantly 
communicating and interacting with all kinds of agents in the environment. 

3) Executive layer 
The execution layer includes robot agents, shelf agents and charging station agents, which have 

equal status. They can interact and cooperate with each other to complete the task of picking. 

3. Multi-robot task allocation model based on Markov Decision Process 

In the dynamic multi-robot task allocation process, information about future tasks is uncertain. At 
the current moment, decisions being made need to take into account both the tasks that have been 
identified and possible tasks to be generated in the future. Markov Decision Process (MDP) has the 
advantage of describing such sequential decision optimization problems in an uncertain, information-
imperfect environment. Therefore, in this paper, the MRTA problem in RMFS is described as a multi-
stage MDP under the condition of cooperation, which provides a theoretical basis for solving the 
MRTA problem using deep reinforcement learning. 

MDP has the Markov property, and the task allocation problem under distributed conditions also 
has the Markov property. So, the overall profit of task allocation and the next moment state of the 
whole system are only related to the current state and the current decision of all agents in the system. 

3.1. Parameter definitions 

The relevant definitions are given below: 
 Time period. The allocation time period is defined as  𝑡. It is assumed that the allocation in 

this time period is not affected by other time periods, and it does not affect the allocation of other time 
periods. One allocation time segment is called a round. The total number of time period is T. 

 Robot Agents and their ability. Define the set of robot agents as 𝐴 ൌ ሼ𝐴ଵ, 𝐴ଶ, … , 𝐴ூሽ. Among 
them, 𝐴௜ represents the 𝑖-th agent. The ability of the agent in this paper mainly refers to the current 
remaining power and power consumption of the agent. The current remaining power represents how 
long the agent can perform tasks, and the power consumption represents the power consumed by the 
agent in the process of performing tasks. Define 𝐵௜ as the ability space of agent 𝑖. For each agent, its 
maximum ability is defined as 𝐵ெ௔௫.  

 Tasks. In the process of multi-robot task allocation, there is a series of tasks that arrive 
randomly. The 𝑘 -th task arrived is denoted as task 𝑘 , 𝑘 ൌ 1, … , 𝑁 , where 𝑁  is the total number of 
arrival tasks. 
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 Other variables. Define 𝜔௞  as the execution revenue of the 𝑘 -th task, and the capacity 
consumption of completing the 𝑘-th task is 𝐺௞. The paper assumes that all tasks can be successfully 
completed, and benefits can be obtained without breaking the constraints. 

3.2. Constraints 

In the process of multi-robot task assignment, the following constraints need to be observed: 
Whether the agent 𝐴௜ performs task k at time t is defined as Eq (1): 

𝐶௜ሺ𝑘, 𝑡ሻ ൌ ൜
1, 𝐴𝑐𝑐𝑒𝑝𝑡 𝑡𝑎𝑠𝑘 𝑘 ,
0,      𝑅𝑒𝑓𝑢𝑠𝑒 𝑡𝑎𝑠𝑘 𝑘 . (1)

The same agent can only accept one task at the same time, namely: 

∑ 𝐶௜ሺ𝑘, 𝑡ሻ ൑ 1௞ , ∀ 𝐴௜, 𝑡.  (2)

Task 𝑘 can only be executed once: 

∑ ∑ 𝐶௜ሺ𝑘, 𝑡ሻ ൌ 1, ∀ 𝑘௜௧ .  (3)

Limited by the ability of agents, the energy consumed by an agent to perform tasks cannot be 
greater than its maximum energy. For an agent, its ability constraints can be defined as Eq (4): 

∑ ∑ 𝐺௞𝐶௜ሺ𝑘, 𝑡ሻ ൑ 𝐵ெ௔௫
௞௧ , ∀ 𝐴௜.  (4)

3.3. MDP tuple 

1) State space 
Define 𝑓௜ as the working state of the 𝑖-th agent, whose value is 1 when the robot is free and 0 

when it is not. The state of the 𝑖-th agent at moment 𝑡 is 𝑠௜ ൌ ሾ𝑓௜, 𝐵௜ሿ. The state of the system is the set 
of states of all agents, denoted as 𝑠 ൌ ሾ𝑠ଵ, … , 𝑠௜, … , 𝑠ூሿ. 

2) Action space 
The action of an agent is defined in Eq (5).  

𝑎௜ ൌ ൜
1, 𝐴𝑐𝑐𝑒𝑝𝑡 𝑡𝑎𝑠𝑘 𝑘,
0, 𝑅𝑒𝑓𝑢𝑠𝑒 𝑡𝑎𝑠𝑘 𝑘.  (5)

The set of actions of all agents is defined in Eq (6). 

𝑎 ൌ ሺ𝑎ଵ, … , 𝑎௜, … , 𝑎ூሻ.  (6)

3) Reward function 
The reward function at moment 𝑡 is defined in Eq (7). 

𝑟௧
௜ ൌ ቐ

𝜔௞𝛼 െ
𝐺௞

𝜔௞
𝛽, 𝑖𝑓 𝑎௜ ൌ 1, 𝑓௜ ൌ 1 𝑎𝑛𝑑 𝐵௜ ൒ 𝐺௞ ,

0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .
 (7)

𝜔௞ is the execution revenue of the 𝑘-th task; α and β are the normalized indexes of gain and loss, 
respectively. 

4) Strategy and Objective function 
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𝜋௜ is the allocation strategy of the 𝑖-th agent, 𝜋௜ሺ𝑠௜ሻ is the allocation strategy of the 𝑖-th agent 
under state 𝑠௜, indicating how the agent acts under state 𝑠௜ to maximize the expected cumulative reward. 

𝜋௜ሺ𝑠௜ሻ ൌ argmax
௔೔

𝑄௜ ሺ𝑠௜, 𝑎௜ሻ. (8)

The action value function 𝑄௜ ሺ𝑠௜, 𝑎௜ሻ  denotes the cumulative reward obtained by performing 
action 𝑎௜ under state 𝑠௜. It is the total expected discounted reward, as defined in Eq (9). 

𝑄௜ሺ𝑠௜, 𝑎௜ሻ ൌ 𝐸൛∑ 𝛾௧𝑟௧
௜|𝑠௜, 𝑎௜

்
௧ୀଵ ൟ.  (9)

Among them, 𝛾 is the discount coefficient. Generally, the value of 𝛾 is between 0 and 1. When 
the value is 0, only immediate reward is concerned. When the value is 1, there is no discount, and the 
future reward is the same as the immediate reward. 

For the entire system, its total revenue function is defined in Eq (10). 

𝑄ሺ𝑠ሻ ൌ ∑ 𝑄௜൫𝑠௜, 𝜋௜ሺ𝑠௜ሻ൯ூ
௜ୀଵ .  (10)

The ultimate goal of multi-robot task allocation is to maximize the overall revenue of all robots, 
as shown in Eq (11): 

𝑚𝑎𝑥൫𝑄ሺ𝑠ሻ൯ ൌ 𝑚𝑎𝑥ൣ∑ 𝑄௜൫𝑠௜, 𝜋௜ሺ𝑠௜ሻ൯ூ
௜ୀଵ ൧.  (11)

According to Eq (11), each agent must continuously adjust its own decision-making plan to 
minimize the contradiction and maximize the overall total revenue. 

4. Algorithm design 

One of the most popular reinforcement learning methods is Q-Learning, which chooses its actions 
based on Q-values. Q-Learning uses a table to store all possible {state, action} pairs. Although 
effective, it does not scale with the number of states since the number of pairs {state, action} increases 
exponentially, leading to a very large Q-table and so requiring a large amount of memory. To overcome 
this problem, the Deep Q Network (DQN) method has been introduced. 

DQN combines deep learning with reinforcement learning, which uses a deep neural network 
(DNN) as a function approximator to predict Q-values. A DQN consists of two neural networks: Q-
network and target network. The Q-network is used to predict the optimal Q-value, while the target 
network is used to forecast the next state based on the sample data and the optimal Q-value from all 
potential actions in the next state. In addition, DQN has a component called Experience Replay (ER) 
that stores and generates training data for the Q-Network. 

DQN utilizes the powerful representation ability of neural networks and the dynamic learning 
ability of Q-learning to get the Q value corresponding to each action. By comparing the Q values, the 
agent can execute the action with the largest Q value. DQN uses experience playback and dual network 
structure to improve the stability of the algorithm, and it can perform well in solving complex multi 
agent task allocation. Therefore, this paper intends to use the DQN algorithm to solve the multi-robot 
task allocation model in RMFS. 

4.1. Limitations of DQN algorithm when used in solving the MRTA model of RMFS 

Although the DQN algorithm combines the powerful representation capabilities of neural 
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networks and the powerful decision-making capabilities of reinforcement learning, it may encounter 
some problems when used to solve the proposed MRTA model in the previous section. 

1) The information among agents is inconsistent. The distributed task assignment enables each 
agent to use the DQN method to make independent decisions, which may cause multiple agents to 
choose the same task after learning. In order to coordinate the behavior of each agent and avoid the 
waste of resources, it is necessary for each agent to share decision-making strategies and keep the 
information consistent. 

2) The learning and convergence speed is slow. The DQN algorithm implements an experience 
playback mechanism. When the agent interacts with the environment, sample data will be generated at 
every moment. DQN establishes an experience pool and stores the generated sample data in the 
experience pool. When training the network, it will randomly select a small part of the data from the 
experience pool. When the reward is very small, because each time a small part of sample data is 
randomly extracted, the algorithm will produce a lot of useless trainings, and the learning speed will 
also slow down, resulting in a longer overall task allocation time. 

4.2. Improved DQN algorithm 

Aiming at solving the MRTA model of RMFS, this paper adopts a shared decision-making 
strategy based on a utilitarian selection mechanism and the priority empirical sample sampling method 
to avoid the problems of inconsistent information and slow convergence speed. 

1) Shared decision-making strategy 
For the problem of inconsistency of information among agents, the paper chooses a shared 

decision-making strategy for task assignment under distributed conditions. Strategy sharing means that 
each agent in the system shares its own decision-making plan, which can be achieved by formulating 
a strategy selection mechanism in advance, so that the agents can agree on the current decision 
environment. Specifying such a decision strategy can reduce the communication between agents and 
at the same time enable information sharing in the entire system. 

Generally speaking, there are four common strategy selection mechanisms: utilitarianism, 
egalitarianism, plutocracy and dictatorship [28]. This paper chooses to use the utilitarian selection 
mechanism f, which means that the goal is to maximize the sum of the rewards of all agents. In state 𝑠, 

𝑚𝑎𝑥
గೞ∈஽ሺ௦ሻ

∑ 𝑃ሺ𝑎|𝑠ሻ𝑄ሺ𝑠, 𝑎ሻ௔∈൫஺ሺ௦ሻ൯ . (12)

where 𝜋௦ is the strategy in state 𝑠, 𝐷ሺ𝑠ሻ represents the strategy set of all agents, 𝐴ሺ𝑠ሻ represents the 
action set of all agents, 𝑃ሺ𝑎|𝑠ሻ represents the possibility of choosing action 𝑎 under state 𝑠 and 𝑄ሺ𝑠, 𝑎ሻ 
represents the Q value of agents taking action 𝑎 in state 𝑠. 

2) Sampling based empirical sample priority 
In order to accelerate the learning and convergence speed of DQN, this paper proposes a sampling 

method of empirical samples based on priority. That is, the sample in the experience playback pool is 
set to a priority. When extracting small samples of data, the samples with high priority are selected 
first, so that it can extract the sample data that can be learned quickly and effectively. 

The sample priority in the experience pool is mainly calculated by the time difference error in the 
DQN algorithm, that is, the target Q value minus the predicted Q value. It is assumed that 〈 𝑠, 𝑎, 𝑟, 𝑠ᇱ〉 is 
a sequence of experience sample j, and 𝑠ᇱ  indicates the next state. The time difference error 𝛿௝  of 
sample j is 
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𝛿௝ ൌ 𝑟௝ ൅ 𝛾 𝑚𝑎𝑥
௔

𝑄෠ሺ𝑠ᇱ, 𝑎ሻ െ 𝑄ሺ𝑠, 𝑎ሻ. (13)

Among them, 𝑄ሺ𝑠, 𝑎ሻ  represents the Q value of agent taking action 𝑎  in state 𝑠 . 
𝑚𝑎𝑥

௔
𝑄෠ሺ𝑠ᇱ, 𝑎ሻ  represents the optimal action value function for the next state, and 𝛾  is the discount 

coefficient. 𝑟௝ represents rewards under state 𝑠. 
When the time difference error is large, the improvement range of prediction accuracy will 

increase accordingly, which shows that using this sample to learn can better improve the effect of 
the algorithm, and thus, the higher its priority should be set. The priority  𝑃ሺ𝑗ሻ  of sample j is 
calculated as follows: 

𝑃ሺ𝑗ሻ ൌ
𝛿௝

∑ 𝛿௝௝
൘  . 

(14)

The process of the improved DQN algorithm is shown in Figure 3. The pseudo code of the 
algorithm is as follows: 

Improved DQN algorithm 
Input: MDP quaternion, Selection mechanism f 
Output: Q value, Optimal Strategy  𝜋∗, Reward value r 
1 Initialize the experience pool D, the action value function Q of the prediction network with 
random weights 𝜃. 
2 Initialize state 𝑠, action a 
3 Get the initial state s 
4 When the maximum episode is not reached： 
5   If exploration value ε ൐ u: 
6     Choose a random action a 
7   else： 
8     Choose a ∈ f 
9   Perform actions a 
10   Obtain the reward r and the next state s＇ 
11   Store experience samples 〈 𝑠, 𝑎, 𝑟, 𝑠′〉 into experience pool D 
12   Use Eq (13) to calculate the time difference error of the sample. 
13   Use Eq (14) to calculate the priority of the sample. 
14   The priority calculated in the above formula is to sample small batches of stored samples 
〈 𝑠, 𝑎, 𝑟, 𝑠′〉 from the experience pool D. 
15   If the experience trajectory ends at time step j + 1: 
16       𝑦௝ ൌ  𝑟௝ 
17   else: 
18        𝑦௝ ൌ 𝑟௝ െ 𝛾𝑚𝑎𝑥𝑄ሺ∅௝ାଵ, 𝑎,; 𝜃ିଵሻ; 
19   Use gradient descent algorithm to update the network model parameters 𝜃  in the loss 

function൫𝑦௝ െ 𝑄ሺ∅௝, 𝑎; 𝜃ሻ൯
ଶ
. 

20   set s = s＇ 
21 Return Q value, action a, reward value r. 
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Input：MDP，
choice a strategy f

Initialize empirical playback pool D, parameters, 
status, actions, and set random value u

ε-greedy strategy 

Choose action with 
ε probability

u<ε

u>ε

Random selection
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Select the action a with the 
largest Q value and execute it

Store samples in experience pool D
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mechanism f

Yes

 

Get the reward value r and the next state

Use Eq(13) to calculate the time difference error of the 
sample, and use Eq (14) to calculate the priority of the 
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Select high-priority data 
samples to train the network

Whether
 the number of experience pool 
memory reaches the initial set 

value

Output: Q value, 
strategy    ,reward value r

Priority em
pirical playback

No

 

Figure 3. The process of the improved DQN algorithm. 

5. Results and discussion 

5.1. The simulation environment and parameter setting 

The simulation is conducted using Anaconda 3.6.1 and Tensor Flow machine learning framework.  
Libraries such as pandas, matplotlib and gym in python are used to build the simulation environment. 

A grid map is constructed in the simulation environment, as shown in Figure 4, which consist of 7 
× 8 sets of shelves (Grey ones), 6 picking stations (red ones) and 10 robots (yellow ones). In this 
experiment, 180 order tasks are randomly generated in each allocation cycle. The starting coordinates 
of these robots are (26, 5), (26, 7), (26, 9), (26, 11), (26, 13), (26, 15), (26,17), (26,19), (26,21), (26,23); 
and the coordinates of the six picking stations are (2,37), (6,37), (10,37), (14,37), (18,37), (22,37). 
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Figure 4. The simulation environment. 

Table 1. Simulation parameter setting.  

Parameter Meaning Value 
I Number of robots 10 
S_num Number of picking tables 6 
N Number of tasks 180 
𝐵௜ Power range 15–100% 
𝜔௞ Revenue of task 1–10 
𝛼 Learning rate 0.001 
D Experience pool size 10000 
𝜀 Exploration value 0.7–0.9995 
𝛾 Attenuation coefficient 0.9 
Sample_size Sample size of the experience 

pool 
128 

Update_net Frequency of parameter update 
of target network  

200 

Total_episodes Total training episodes 6000 

The basic parameters of the simulation experiment are listed in Table 1. The learning rate 𝛼 is 0.001; 
the experience pool size D is 10,000. The initial exploration value in the greedy strategy of 𝜀-greedy 
action selection is 0.7, and the final exploration value is no higher than 0.9995, which is increased 
by 1×10-5. The attenuation coefficient 𝛾 of the Q-learning algorithm is 0.9; the revenue for each task 
𝜔௞ ∈ ሺ1,10ሻ. The power range 𝐵௜ of the i-th robot is set to [15–100%]. If it is less than 15%, it must 
be charged, and no more tasks will be assigned. The sample size of random gradient descent batch 
sampling is 128. When the data volume of the experience pool reaches 128, the network will be trained, 
and the parameters will be updated. The prediction network updates its parameters at each time step, 
and the target network updates its parameters every 200 time steps. The total number of training 
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episodes is 6000.  

5.2. Comparative analysis 

1) Algorithm performance 
In order to prove the effectiveness of the improved DQN algorithm, the convergence speeds of 

the loss function of the DQN algorithm before and after improvement are compared. The results are 
shown in Figures 5 and 6. 

 

Figure 5. Convergence of loss function of DQN. 

 

Figure 6. Convergence of loss function of improved DQN. 

Figures 5 and 6 shows the loss function of the unimproved DQN algorithm has not yet converged 
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after 5000 rounds, while the improved DQN showed a general convergence trend after 2500 rounds. 
From this we can conclude that, by adding the selection mechanism and sample priority, the improved 
DQN reduces useless exploration, increases the learning speed and reduces the time for training, which 
accelerate the convergence speed of the loss function. 

In order to further prove the effect of improvement, the changing trend of the total revenue is also 
shown in Figure 7. Figure 7 shows that the total revenue during training gradually increases and tends 
to converge at around 2500 rounds, which indicates that the revenue gained during the training process 
increases first and tends to be stable at last, which indicates that the improved algorithm learns effective 
decision strategy in the learning process and can ensure that the overall revenue tends to be stable. 

 

Figure 7. The total revenue of the improved DQN algorithm. 

 

Figure 8. The comparison of task allocation times. 
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2) Task allocation time 
The paper also proves the effectiveness of the MRTA model and algorithm proposed by 

comparing with the method based on the market mechanism used in [14]. The total task allocation time 
required for the two methods under different order sizes is shown in Figure 8. Experimental results 
show our proposed method takes less time to complete all the tasks than the market mechanism-based 
method under different sizes of tasks. The picking efficiency is improved by 14.91–29.15% under 
different order sizes. 

6. Conclusions 

In this paper, a MRTA method based on deep reinforcement learning is proposed to solve the task 
allocation problem in RMFS. First, this paper uses the collaborative architecture of multi-agent 
modeling to model the robots, picking stations and other devices in RMFS systems, and it transforms 
the task allocation problem of robots into a multi-agent task allocation problem under the distributed 
condition. Then the task allocation model of multiple agents is established based on MDP. In order to 
avoid inconsistent information among agents and improve the convergence speed of the traditional 
DQN, an improved DQN algorithm based on a shared utilitarian selection mechanism and priority 
empirical sample sampling is proposed to solve the task allocation model. Simulation results show that 
the task allocation algorithm based on deep reinforcement learning is more efficient than that based on 
the market mechanism, and the convergence speed of the improved DQN algorithm is much faster 
than that of the original algorithm. 

However, there are still some problems that need to be further studied in the future: 1) The 
algorithm proposed in this paper aims at solving the task allocation problem under the distributed 
condition, which may need a lot of computing power in practice. The optimized modeling and solving 
algorithms based on the distributed condition need to be studied further to reduce the cost. 2) The 
priority of orders is not considered when designing the reward function. In follow-up research, the 
reward function can be optimized based on the priority of orders. 
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