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Abstract: The trajectory tracking control of the quadrotor with model uncertainty and time-varying
interference is studied. The RBF neural network is combined with the global fast terminal sliding
mode (GFTSM) control method to converge tracking errors in finite time. To ensure the stability of
the system, an adaptive law is designed to adjust the weight of the neural network by the Lyapunov
method. The overall novelty of this paper is threefold, 1) Owing to the use of a global fast sliding
mode surface, the proposed controller has no problem with slow convergence near the equilibrium
point inherently existing in the terminal sliding mode control. 2) Benefiting from the novel equivalent
control computation mechanism, the external disturbances and the upper bound of the disturbance
are estimated by the proposed controller, and the unexpected chattering phenomenon is significantly
attenuated. 3) The stability and finite-time convergence of the overall closed-loop system are strictly
proven. The simulation results indicated that the proposed method achieves faster response speed and
smoother control effect than traditional GFTSM.

Keywords: UAV; trajectory tracking control; global fast terminal sliding mode control; neural
network-based method; adaptive control

1. Introduction

Nowadays, multi-rotor unmanned aerial vehicle (UAVs) plays an important role in many
commercial applications, such as air pollution monitoring, rescue missions, precision agriculture,
retail delivery, as well as academic research and military action [1]. The quadrotor is one of the most
widely used classes of UAVs, which has the advantages of hovering, vertical take-off and landing,
simple structure, and low cost. The quadrotor has four actuators and six degrees of freedom, and its
dynamic model has the characteristics of strong coupling, under-actuated and susceptible to external
disturbances [2]. Therefore, the design of high-performance flight controllers for quadrotors is a
challenging task, which has received extensive attention in the academic circle.
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In recent years, significant research has been done on the trajectory-tracking control of quadrotors.
The conventional approach to deal with the nonlinearity is simplifying the model to linear equivalents
by using dynamic inversion, feedback linearization, gain-scheduling, or Taylor’s approximation, etc.
However, these control methods are susceptible to model uncertainties and time-varying
interference [3]. In order to achieve better robustness and anti-interference performance, many
advanced control algorithms have been used to design flight controllers of quadrotors, for instance,
neural network-based optimal mixed H2/H∞ control [4], terminal sliding mode control [5],
backstepping control [6], adaptive fuzzy quantized control [7] and active disturbance rejection
control [8].

Although these advanced control strategies improved the flight performance of the quadrotor, few
results are concerned with the convergence rate of the system output. In practice, the real-time
performance of the control system is vital to the flight stability of the quadrotor, and the convergence
speed should be one of the key indexes for the flight control system [9]. The control methods
concerned with the convergence rate of system output include Hybrid finite-time control [10],
finite-time adaptive sliding mode tracking control [11], finite-time Lyapunov theory [12], global fast
terminal sliding mode (GFTSM) control [13, 14], etc. The GFTSM control method can make the
system state variables converge to the equilibrium point in a limited time. However, traditional
GFTSM control still has some limitations and challenges. Firstly, accurate model information is
required in the calculation of the equivalent control which restricts GFTSM available to applications.
Especially, some parameters are difficult to obtain because of the complex dynamics of multi-rotor
UAVs. Secondly, the GFTSM control needs the upper bound of the external disturbance, which is
hard to estimate in real applications. Thirdly, the system chattering is inevitable because of the
discontinuous item in the switch control. The chattering will affect the stability of multi-rotor UAVs,
which is not suitable for practical application.

This article focuses on the GFTSM control strategy of quadrotor UAVs based on the RBF neural
network (GFTSM-RBF). This strategy has three important features: 1) The chattering phenomenon of
GFTSM control can be effectively reduced by using a neural network to learn the unknown dynamics
model and the upper bound of disturbance of UAV online. It also reduces the work of dynamics
modeling and parameter identification before controller design. 2) The weights of the neural network
are adjusted online according to the designed adaptive law to ensure the stability of the closed-loop
system. 3) The equivalent control that usually requires precise model information of the system is
computed directly using the RBF neural network. Therefore, the structure of the controller is simplified
and the online calculation is reduced, which makes it affordable for practical applications.

The rest of the paper is arranged as follows. In Section 2, the dynamics model of a quadrotor UAV
is briefly described, and a novel GFTSM-RBF controller design for trajectory tracking of the UAV is
proposed. Simulation results and performance analysis are shown in Section 3. The work of this paper
is summarized in the last section.

2. Method

2.1. Model formulation

The coordinate system and schematic of the quadrotor are shown in Figure 1. The body frame of
the quadrotor {B} is attached to the center of mass and {E} is the reference frame. According to the
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direction of rotation, the rotors of the quadrotor can be divided into two groups, namely (1,3) and (2,4).
These two sets of rotors produce lift force F1, . . . , F4 and neutralize the counter-torque. The rotation
of the body is controlled by the speed difference between rotors. The rolling motion of the quadrotor is
accomplished by changing the speed of rotor 2 or 4. The pitching motion of the quadrotor is achieved
by adjusting the speed of rotor 1 or 3. The yaw rotation of the quadrotor is accomplished by the reverse
moment difference between the two pairs of rotors (1,3) and (2,4). The vertical motion is performed
by increasing or decreasing the total speed of the rotors [15].

Figure 1. The schematic diagram of the quadrotor.

Assuming that the fuselage structure and rotors of the quadrotor are rigid, the rotational and
translation movement of the quadcopter can be obtained as follows [16]:



ϕ̈ = θ̇ψ̇a1 + θ̇a2Ωr + b2Uϕ

θ̈ = ϕ̇ψ̇a3 + ϕ̇a4Ωr + b4Uθ

ψ̈ = θ̇ϕ̇a5 + b6Uψ

mẍ =
(
sϕsψ + cϕsθcψ

)
Ut

mÿ =
(
−sϕcψ + cϕsθsψ

)
Ut

mz̈ = mg −
(
cψcϕ
)

Ut

(2.1)

where ϕ, θ and ψ represent the Euler angles (i.e., roll, pitch, and yaw angles). x, y and z are the positions
of the center of gravity of the quadrotor, g is the gravity, m is the total mass of the quadrotor, Ir is the
inertia of the rotor. Ωr = Ω4 + Ω3 − Ω2 − Ω1. ai and bi(i = 1, . . . , 6) are constants, which given by,
a1 =

(
Iy − Iz

)
/Ix, a2 = Ir/Ix, a3 = (Iz − Ix) /Iy, a4 = Ir/Iy, a5 =

(
Ix − Iy

)
/Iz, b2 = 1/Ix, b4 = 1/Iy,

b6 = 1/Iz. Ut is the total thrust, Uϕ, Uθ, Uψ are the torques in the ϕ, θ and ψ direction of rotation,
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respectively. The control allocation is:
Ut = b

(
Ω2

1 + Ω
2
2 + Ω

2
3 + Ω

2
4

)
Uϕ = bl

(
Ω2

4 −Ω
2
2

)
Uθ = bl

(
Ω2

1 −Ω
2
3

)
Uψ = c

(
−Ω2

1 + Ω
2
2 −Ω

2
3 + Ω

2
4

)
where l is the distance of the rotors on the diagonal. b is the lift coefficient. c is the drag coefficient.
Ω1, . . . ,Ω4 is the rotational speed of each propeller.

Based on the model Eq (2.1) and taking the lumped disturbance into account, the quadrotor
equations are formulated as

Ẋ = f (X,U) + d(X,U) (2.2)

where X = [ϕ, ϕ̇, θ, θ̇, ψ, ψ̇, z, ż, x, ẋ, y, ẏ]T ∈ R12 is the state vector, U =
[
Uϕ,Uθ,Uψ,Ux,Uy,Uz

]T
∈ R6

is the input, f (X,U) is nonlinear functions, d(X,U) = [d1, d2, . . . , d6]T is the lumped disturbance vector
on each degree of freedom of the quadrotor. Equation (2.2) can be expended as follows:

ẋ1 = x2

ẋ2 = x4x6a1 + x4a2Ωr + b2U1 + d1

ẋ3 = x4

ẋ4 = x2x6a3 + x2a4Ωr + b4U2 + d2

ẋ5 = x6

ẋ6 = x2x4a5 + b6U3 + d3

ẋ7 = x8

ẋ8 = U4 + d4

ẋ9 = x10

ẋ10 = U5 + d5

ẋ11 = x12

ẋ12 = U6 + d6

(2.3)

where U4,U5,U6 are the position’s virtual control:
U4 =

(
sx1 sx5 + cx1 sx3cx5

)
Ut/m

U5 =
(
−sx1cx5 + cx1 sx3 sx5

)
Ut/m

U6 = g −
(
cx5cx1

)
Ut/m

(2.4)

To simplify the design of controller, it is assumed that the vehicle does not pass through singularities
(−π/2 < ϕ < π/2,−π/2 < θ < π/2 and − π < ψ < π).

In order to track the position reference signal, the desired total thrust Ut and the attitude angles
(x1d, x3d) can be achieved through Eq (2.4) as follows:

x1d = arctan
(
cos θr

U4 sin x5+U5 cos x5
U6−g

)
x3d = arctan

(
U4 cos x5+U5 sin x5

U6−g

)
Ut = m

√
U2

4 + U2
5 + (U6 + g)2

(2.5)
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2.2. Controller design

The goal of this section is to propose the GFTSM-RBF control and use it to design a closed-loop
controller for the quadrotor to track the desired trajectoryx1d, x3d, x5d, x7d, x9d, x11d. The structure of
the controller is presented in Figure 2. The altitude of the quadcopter is controlled by the total thrust
Ut , and the rotation movement is controlled by U1,U2,U3. The desired angles of roll x1d , pitch x3d

and Ut is achieved through Eq (2.5). The desired yaw x5d is used to control the heading through the
yaw controller.

Figure 2. The structure of quadrotor flight controller designed by GFTSM-RBF control
algorithm.

The controller integrates the GFTSM control and the adaptive RBF neural network in the frame of
Lyapunov theory, as shown in Figure 3. There are four steps to compute the control as shown in
Figure 4. The design steps are as follows:

Step 1. The tracking errors of the quadrotor are defined as

ei = xk − xkd, (i = 1, . . . , 6, k = 2i − 1) (2.6)

Thus, the derivative of the error are

ėi = ẋk − ẋkd = x2i − ẋkd (2.7)

And the second time derivative of errors are as follows

ëi = ẋ2i − ẍkd (2.8)
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Step 2. Based on the GFTSM control theory [18], the sliding mode surfaces of the quadrotor
position and attitude tracking control system is designed as:

si = ėi + αiei + βie
qi/ri
i (2.9)

where, αi and βi are positive constants. qi and ri(qi < ri) are odd integers. The time derivative of the
sliding surfaces are

ṡi = ëi + αiėi + βi
qi
ri

eqi/ri−1
i ėi

= ẋ2i − ẍkd + αiėi + βi
qi
ri

eqi/ri−1
i ėi

(2.10)

Step 3. The Lyapunov candidate functions are designed as follows

V̇ s
i = si ṡi

The derivative of Lyapunov candidate functions are obtained

V̇ s
i = si ṡi (2.11)

According to Eq (2.11), the control law of the quadrotor can be designed as

Ui = Ueq
i + U sw

i , (i = 1, . . . , 6) (2.12)

where,
U sw

i = −λisi − δis
qi/ri
i , (i = 1, . . . , 6)

and,
Ueq

1 =
1
b2

(
−d1 − x4x6a1 − x4a2Ωr + ẍ1d − α1ė1 − β1

q1
r1

eq1/r1−1
1 ė1

)
Ueq

2 =
1
b4

(
−d2 − x2x6a3 − x2a4Ωr + ẍ3d − α2ė2 − β2

q2
r2

eq2/r2−1
2 ė2

)
Ueq

3 =
1
b6

(
−d3 − x2x4a5 + ẍ5d − α3ė3 − β3

q3
r3

eq3/r3−1
3 ė3

)
Ueq

4 = −d4 + ẍ7d − a4ė4 − β4
q4
r4

eq4/r4−1
4 ė4

Ueq
5 = −d5 + ẍ9d − a5ė5 − β5

q5
r5

eq5/r5−1
5 ė5

Ueq
6 = −d6 + ẍ11d − a6ė6 − β6

q6
r6

eq6/r6−1
6 ė6

where, Ueq
i is equivalent control and U sw

i is the switch control. λi and δi are positive parameters. Take
Eq (2.12) into Eq (2.10), the derivative of si are

ṡ1 = b2

(
−λ1s1 − δ1sq1/r1

1

)
ṡ2 = b4

(
−λ2s2 − δ2sq2/r2

2

)
ṡ3 = b6

(
−λ3s3 − δ3sq3/r3

3

)
ṡ4 = −λ4s4 − δ4sq4/r4

4
ṡ5 = −λ5s5 − δ5sq5/r5

5
ṡ6 = −λ6s6 − δ6sq6/r6

6

Step 4. Adaptive RBF design: The control law Ui is difficult to calculate because Ueq
i contains the

dynamic model and the disturbance term of the system. To obtain the control law, the RBF neural
network is used to estimate the Ueq

i . Suppose a neural network with hidden layers [17] is adopted:

Ûeq
i = ŴT

i hi (xi) , (i = 1, . . . , 6)
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where xi = [si, xkd]T , (k = 2 j − 1) is the input of the neural network, Ŵi = [wi1,wi2, . . . ,win]T is the
weights of the neural networks, hi (xi) = [hi1, hi2, · · · , hin]T is the radial basis function and given by:

hi j = exp

−
∥∥∥xi − ci j

∥∥∥2
σ2

i j

 , ( j = 1, 2, . . . , n)

where σi is j th standard deviation. ci j is the j th center vector.
In addition, the adaptive law of Ŵi is

˙̂Wi = −
η1

m
sih j (2.13)

The final design of control law is

Ûi = Ûeq
i + U sw

i , (i = 1, . . . , 6) (2.14)

Substitute Eq (2.14) into Eq (2.10), then the derivative of the sliding surface variable is

ṡ1 = b2

(
−λ1s1 − δ1sq1/r1

1 + Ûeq
1 − Ueq

1

)
ṡ2 = b4

(
−λ2s2 − δ2sq2/r2

2 + Ûeq
2 − Ueq

2

)
ṡ3 = b6

(
−λ3s3 − δ3sq3/r3

3 + Ûeq
3 − Ueq

3

)
ṡ4 = −λ4s4 − δ4sq4/r4

4 + Ûeq
4 − Ueq

4
ṡ5 = −λ5s5 − δ5sq5/r5

5 + Ûeq
5 − Ueq

5
ṡ6 = −λ6s6 − δ6sq6/r6

6 + Ûeq
6 − Ueq

6

(2.15)

Figure 3. The structure of the global fast terminal sliding mode (GFTSM) control based on
the adaptive RBF neural network.

Mathematical Biosciences and Engineering Volume 20, Issue 2, 1841–1855.



1848

Figure 4. The brief flow chart of the GFTSM-RBF control strategy.

Theorem 2.1. Considering the quadrotor UAV dynamics (Eq (2.3)) subject to lumped disturbance,
there exists a set of control gains such that the proposed GFTSM (Eq (2.14)) for the quadrotor UAV can
ensure that all signals in the closed-loop control system are bounded and the finite-time convergence
of all the outputs to the designated trajectory can be guaranteed.

Proof. Assume that the equivalent control Ueq
i can be estimated by the RBF neural network, and the

minimum estimation error is εi > 0. The equivalent control Ueq
i becomes

Ueq
i =Wihi (xi) + εi

where Wi is an ideal value of Ŵi. Hence, the estimation error of Ueq
i is

Ûeq
i − Ueq

i = Ŵihi (xi) −Wihi (xi) − εi = W̃ihi (xi) − εi

where W̃i = Ŵi −Wi is the error of weight vector, and submit it to Eq (2.15).

ṡ1 = b2

(
−λ1s1 − δ1sq1/r1

1 + W̃ihi (xi) − ε
)

ṡ2 = b4

(
−λ2s2 − δ2sq2/r2

2 + W̃ihi (xi) − ε
)

ṡ3 = b6

(
−λ3s3 − δ3sq3/r3

3 + W̃ihi (xi) − ε
)

ṡ4 = −λ4s4 − δ4sq4/r4
4 + W̃ihi (xi) − ε

ṡ5 = −λ5s5 − δ5sq5/r5
5 + W̃ihi (xi) − ε

ṡ6 = −λ6s6 − δ6sq6/r6
6 + W̃ihi (xi) − ε

(2.16)
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The following Lyapunov function is used

Vws
i =

1
2

s2
i +

1
2η

W̃T
i W̃i

The time derivative of Vws
i is

V̇ws
i = si ṡi +

1
η

W̃T
i

˙̂Wi (2.17)

Take Eqs (2.13) and (2.16) into Eq (2.17), the derivative of the sliding surface variable can be written
as (take i = 1 for example).

V̇ws
1 = s1 ṡ1 +

1
η
W̃T

1
˙̂W1

= s1b2

(
−λ1s1 − δ1sq1/r1

1 + W̃ihi (xi) − ε1

)
+ 1

η
W̃T

1
˙̂W1

= −b2λ1s2
1 − b2δ1sq1/r1+1

1 + s1b2W̃
T
1 hi (xi) − s1b2ε1 +

1
η
W̃T

1
˙̂W1

= −b2λ1s2
1 − b2sq1/ri+1

1

(
δ1 +

ε1

sq1/r1
1

)
+ W̃T

1

(
s1b2hi (xi) + 1

η
˙̂W1

)
= −b2λ1s2

1 − b2sq1/r1+1
1

(
δ1 +

ε1

sq1/r1
1

)
If δ1 >

∣∣∣ε1/sq1/r1
1

∣∣∣, then V̇ws
1 ≤ 0, which means s1 and W̃1 converge to zero.

Define a Lyapunov candidate function

Ve
i =

1
2

e2
i (2.18)

Submit si = 0 and Eqs (2.9)–(2.18), the derivative of Eq (2.18) are obtained.

V̇e
i = eiėi = −aie2

i − βie
qi/ri+1
i ≤ 0 (2.19)

According to Eq (2.19), ei converges to zero too. Equation (2.16) can be rewritten as (take i = 1 for
example):

ṡ1 = −λ
′
1s1 − δ

′
1sq1

1 /r1 (2.20)

where,λ′1 = λ1b2, δ′1 =
(
b2δ1 +

b2ε1

sq1/r1
1

)
.

By solving Eq (2.20), the convergence time of si from s1(0) , 0 to s1(ts) = 0 is obtained:

ts =
r1

λ′1(r1−q1) ln λ′1 s1(0)(r1−q1)/q1+δ′1
δ′1

≤
r1

λ′1(r1−q1) ln λ′1 s1(0)(r1−q1)/q1+b2δ1

b2δ1

□

Table 1. The main physical parameters of the quadrotor used in the simulation.

Parameter Value Parameter Value
g(m/s2) 9.81 Iz(kg · m2) 0.0013
m(kg) 0.468 Ir(kg · m2) 0.0028
Ix(kg · m2) 0.0075 l(m) 0.25
Iy(kg · m2) 0.0075 Ωr(rad/s) 1
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3. Results

The simulation results given in this section verify the effectiveness and performance of the proposed
controller. Table 1 lists the main physical parameters of the quadrotor used in the simulation. The
proposed flight controllers parameters are set as: α1 = 4.5, β1 = 1.4, q1 = 3, r1 = 7, σ1 = 0.2, λ1 =

10, α2 = 8.2, β2 = 2.5, q2 = 3.5, r2 = 7.5, σ2 = 0.2, λ2 = 20, η1 = 10.5, η2 = 14.5, n = 5, c =
[−2.6,−1.2, 0,−1.2,−2.6]

In the simulation flight, the quadrotor tracked 3d trajectory under the external interference and
parameter uncertainties. The initial state values of the quadrotor are [0, 0, 0]rad and [0, 0, 0]m. The
disturbance terms are set as d1 = d2 = d3 = 0.2sin(4t), d4 = d5 = d6 = 0.06cos(4t). Seven seconds after
the simulation started, the quadrotor weight was suddenly reduced by 30%. Comparative simulations
with the conventional GFTSM control method proposed in [19] are also given.

The simulation results of the proposed controller are shown in Figures 5–10. As shown in Figure 5,
the 3D flight trajectory demonstrated that the proposed controller has succeeded following the 3D
flight trajectory in finite time, but the traditional GFTSM has steady-state error since the parameter
perturbation. Figure 6 shows the time evolution of position variables (x, y and z). It can be seen that
the abrupt change of z variable due to the mass variation was overcome by the GFTSM-RBF controller
within 2 seconds, but GFTSM failed. Figure 7 shows the tracking errors of position variables. It can
be observed that the proposed GFTSM-RBF achieves better position tracking than traditional GFTSM.
Figures 8 and 9 shows the trajectory tracking of attitude angles(ϕ, θ and ψ). It can be observed that both
of the two control systems can track the attitude references accurately, but the GFTSM-RBF controller
has a faster tracking speed and smoother yaw angle ψ. Figure 10 presents the control inputs of the two
control approaches. As expected, GFTSM exhibits chattering in the control input, and the GFTSM-
RBF nearly eliminates the chattering. As a result, the GFTSM-RBF method presents a faster tracking
speed and greater robustness against sustained time-varying disturbances and parametric uncertainties.

Figure 5. The 3D trajectory tracking of the quadrotor.
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Figure 6. The position components of the two obtained trajectories.

Figure 7. The position tracking errors of the two control method.
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Figure 8. The trajectory tracking of attitude angle with GFTSM-RBF.

Figure 9. The trajectory tracking of attitude angle with GFTSM.
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Figure 10. The control input of quadrotor.

4. Conclusions

This paper presents an adaptive GFTSM-NN controller to realize 3D trajectory tracking for the
quadrotor with unknown disturbance and dynamic uncertainty. Global fast terminal sliding surfaces
are designed for finite-time convergence of all the outputs of quadrotor. The equivalent control of the
GFTSM controller is estimated by the RBF-NN. Adaptive laws are developed to compute the weights
of RBF-NN. The quadrotor’s closed-loop stability and finite-time convergence is guaranteed through
the Lyapunov theory and subsequent analysis demonstrated in this paper. Finally, a comparison of
the proposed control technique is presented with the conventional GFTSM. The results demonstrate
that the GFTSM-NN achieves faster response speed, more robust to dynamic uncertainty, and lower
chattering than the GFTSM. In future work, the proposed GFTSM-RBF approach will be validated
by a real quadrotor UAV to perform the trajectory-tracking task. Also, control input constraints will
be considered.
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