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Abstract: Biomarkers plays an important role in the prediction and diagnosis of cancers. Therefore, it 
is urgent to design effective methods to extract biomarkers. The corresponding pathway information 
of the microarray gene expression data can be obtained from public database, which makes possible 
to identify biomarkers based on pathway information and has been attracted extensive attention. In the 
most existing methods, all the member genes in the same pathway are regarded as equally important 
for inferring pathway activity. However, the contribution of each gene should be different in the 
process of inferring pathway activity. In this research, an improved multi-objective particle swarm 
optimization algorithm with penalty boundary intersection decomposition mechanism (IMOPSO-PBI) 
has been proposed to quantify the relevance of each gene in pathway activity inference. In the proposed 
algorithm, two optimization objectives namely t-score and z-score respectively has been introduced. 
In addition, in order to solve the problem that optimal set with poor diversity in the most multi-
objective optimization algorithms, an adaptive mechanism for adjusting penalty parameters based on 
PBI decomposition has been introduced. The performance of the proposed IMOPSO-PBI approach 
compared with some existing methods on six gene expression datasets has been given. To verify the 
effectiveness of the proposed IMOPSO-PBI algorithm, experiments were carried out on six gene 
datasets and the results has been compared with the existing methods. The comparative experiment 
results show that the proposed IMOPSO-PBI method has a higher classification accuracy and the 
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extracted feature genes are verified possess biological significance. 

Keywords: pathway activity; multi-objective optimization; particle swarm optimization; adaptive 
strategy; PBI decomposition mechanism 
 

1. Introduction 

Cancer is recognized as one of the serious challenges that endanger human health due to its high 
incidence and mortality. Because the patient does not show obvious symptoms, cancer is not easy to 
be detected in the early stage, which result in a poor prognosis. Therefore, it is urgent to use scientific 
and effective methods to identify biomarkers of cancer for early diagnosis and treatment. With the 
rapid progress of sequencing technology, research in the field of cancer treatment from the gene level 
has become a hot topic. 

Through microarray technology, genes associated with disease can be found in a short time and 
used as biomarkers for early diagnosis, but due to the existence of some redundant features and inherent 
noise in microarray data, the selection of feature genes still face great challenges [1,2]. Some researchers 
think that the generation and development of cancer are related to some specific genes, and have 
proposed several methods to find genes related to different stages of cancer development [3,4], however, 
due to the lack of detailed biological processes, the results obtained by gene expression-based methods 
cannot be proved to be completely correct [5]. Hence, pathway-based methods for feature gene 
extraction were proposed to obtain biomarkers from microarray data, which helps to better understand 
the differences between phenotypes [6,7]. Some scholars have used particle swarm optimization to 
infer pathway activity and achieved good results, a popular pathway activity index t-score was chosen 
as the objective function in [8]. [9] proposed an approach based on binary particle swarm optimization, 
in this approach, partial genes are chosen automatically from microarray gene data for inferring 
pathway activity and the remaining genes are excluded. Reference [10] developed a multi-objective 
particle swarm optimization technology that using protein interaction scores and two improved 
indicators of pathway activity as objective functions to infer pathway activity, all genes are involved 
in pathway activity inference with different weights in this method. 

Multi-objective particle swarm optimization algorithm has become the main research direction of 
multi-objective optimization due to the advantages of high efficiency and speed. However, due to the 
lack of selection pressures, feature solutions distribute around the Pareto front, which will result in the 
lack of diversity of optimal solution set [11]. Some researchers use the space decomposition 
strategies to maintain diversity, which divide the target space into multiple regions, such as grid 
division method [12] and angle division method [13]. some authors put forward the idea of population 
decomposition, which divide the entire population into multiple subgroups, and the subgroups guide 
the population update in parallel according to their respective leaders [14,15]. But fixed selection 
pressures provided by decomposition approaches unable achieve ideal results when dealing with 
complex Pareto fronts problems [16]. Reference [17] developed an adaptive feature selection approach, 
which adjust the selection pressure of archive and particles by adjusting the parameters in the 
decomposition method. 

Motivated by the above researches, in this article, a pathway-based multi-objective particle swarm 
optimization algorithm with adaptive strategy for feature gene extraction is proposed. Two weighted 
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pathway activity indicators are used as objective functions, and find feature solutions by optimizing 
them simultaneously. In addition, in order to improve the diversity of feature solutions, the adaptive 
penalty boundary intersection decomposition method is introduced in the process of optimization.  

The remainder of this paper is organized as follows. Section 2 provides related methods contained 
a general description of multi-objective optimization (MOO), particle swarm optimization, and the PBI 
decomposition approach. The proposed adaptive feature selection method is elaborated in Section 3. In 
Section 4, the detailed introduction and the preprocessing of datasets are given, and the experimental 
results of the proposed IMOPSO-PBI approach are presented and compared with 6 existing methods. 
Finally, concluding remarks are given in Section 5. 

2. Related methods 

2.1. MOO 

In a multi-objective optimization problem, multiple objective functions need to be optimized 
simultaneously. The optimization problem is not only used in the real-time design of production 
scheduling, urban transportation, network communication and other systems, but also involves 
intelligent planning problems such as engineering design, data mining, and capital budgeting [18]. The 
mathematical definition of multi-objective optimization is as Eq (1). 

𝑚𝑖𝑛𝑖𝑚𝑖𝑛𝑧𝑒   𝐹 𝑥 𝑓 𝑥 , 𝑓 𝑥 , … , 𝑓 𝑥
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝑥 ∈ 𝛺 ⊆ 𝑅

1  

where 𝑥 is a vector in an n-dimensional decision space, and 𝑓 𝑥  is the objective function of the 
multi-objective optimization problem, 𝑚 is the scale of the objective function. 

In recent years, evolutionary algorithms have integrated biological information into meta-
heuristic algorithms. With its unique update mechanism, many breakthrough research results have been 
achieved in the fields of combinatorial optimization and numerical optimization [19]. Multi-objective 
evolutionary algorithms include: multi-objective particle swarm algorithm [20], multi-objective bee 
colony algorithm [21], multi-objective ant colony algorithm [22], multi-objective immune algorithm [23], 
multi-objective differential algorithm [24], etc. 

2.2. Particle swarm optimization 

Particle swarm optimization is an evolutionary computing technology whose basic idea is to find 
the optimal solution through the cooperation and information sharing among individuals in the group. 
The individuals in the population are abstracted as particles, and the particles are affected by the 
combined effects of themselves and the state of the population at each iteration [25]. The velocity of 
the 𝑖 th particle at the next moment is determined by the current velocity, the personal best 
position 𝑝𝑏𝑒𝑠𝑡  and the global best position 𝑔𝑏𝑒𝑠𝑡 , and the particle moves from the current position 
to the new position at the updated velocity. The updating process of particle velocity and position is 
shown in Eqs (2) and (3). 

𝑣 𝑡 1 𝜔 ∗ 𝑣 𝑡 𝑐 ∗ 𝑟 ∗ 𝑝𝑏𝑒𝑠𝑡 𝑥 𝑡 𝑐 ∗ 𝑟 ∗ 𝑔𝑏𝑒𝑠𝑡 𝑥 𝑡 2  
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𝑥 𝑡 1 𝑥 𝑡 𝑣 𝑡 1 , 𝑖 1,2, … , 𝑛 3  

where 𝜔  represent inertia weight, 𝑟  , 𝑟   are the random numbers between 0 and 1, 𝑐  , 𝑐   are 
learning factors generally set to 2. 

2.3. PBI approach 

Decomposition based multi-objective evolutionary algorithm decomposed the target into a set of 
scalar optimization subproblems firstly, and then optimized these subproblems simultaneously. In the 
existing decomposition methods, weighted sum (WS) is limited to dealing with convex Pareto front 
problems, for non-convex Pareto frontiers, optimal solutions cannot be obtained completely. 
Tchebycheff approach (TCH) overcome that problem, but for a continuous multi-objective 
optimization problem, its aggregation function is not smooth, and the resulting Pareto front is not 
smooth too [26]. Compared with the above two decomposition methods, PBI approach can obtain 
more evenly distributed solutions [27]. The mathematical expression of PBI decomposition approach 
is as Eq (4). 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑔 𝑥 ∣ 𝜆, 𝑧∗ 𝑑 𝜃𝑑
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    𝑥 ∈ 𝛺

4  

where 𝜆 is the predefined weight vector, and 𝜃 is the penalty parameter, and 𝑑 , 𝑑  are shown in Eq (5). 

𝑑
∥∥ 𝐹 𝑥 𝑧∗ 𝜆∥∥

∥ 𝜆 ∥
   and  𝑑 ∥∥

∥𝐹 𝑥 𝑧∗ 𝑑
𝜆

∥ 𝜆 ∥ ∥∥
∥ 5  

 

Figure 1. Distance metric of PBI method. 

As shown in Figure 1, 𝑧∗ is the ideal reference value, the red line is the Pareto frontier (PF), the 
point 𝑃 is the projection of 𝑓 𝑥  on the line 𝐿, and the intersection of PF and the line 𝐿 is the optimal 
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solution under the decomposition weight vector λ. 𝑑  represent the distance between the point 𝑃 and 
the ideal point 𝑧∗, and 𝑑  represent the distance between 𝑓 𝑥  and the line 𝐿. It can be seen that 
𝑑   determines the degree of convergence of the population. The smaller 𝑑   is, the closer its 
corresponding solution 𝑥 is to the ideal PF, and 𝑑  with a penalty parameter determines the diversity 
of the population. Figure 2 shows the contours of 𝑔 for three different penalty parameters, as can be 
seen from the figure, the smaller the penalty parameter 𝜃, the larger the area of the update area, the 
more favorable the population is to approach the ideal PF. The larger the penalty parameter 𝜃, the 
smaller the area of the update area, and the closer the updateable solution is to the weight vector, which 
is more conducive to the diversity of the population. That is to say, the penalty parameter 𝜃 plays an 
important role in the performance of penalty boundary interaction methods. 

 

Figure 2. The contour of aggregation function under different penalty parameters. 

Many scholars set the parameter to a fixed value of 5, however, it is difficult to select the solution 
with better convergence and diversity with a fixed penalty value. In [28], the authors introduced a 
subproblem-based penalty mechanism and an adaptive penalty mechanism to analyze the influence of 
different penalty values on the feature solution set, but this method did not consider the evolution state 
of each subproblem. [29] proposed a method to adjust the penalty value by the angle between the 
solution and the weight vector, but this increases the time complexity of the algorithm. In [17], an 
adaptive penalty mechanism based on PBI parameters is proposed to reduce the time complexity of 
calculating penalty values while maintaining diversity. 

3. The proposed IMOPSO-PBI algorithm 

This section mainly describes the proposed pathway-based adaptive feature gene selection 
algorithm. Firstly, the overall flow of the proposed algorithm is summarized and the computational 
complexity is described. For more comprehensibility, details about each component of IMOPSO-PBI 
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method are described in the following sections. The process of inferring pathway activity and particle 
coding is briefly introduced; two objective functions are described, and the adaptive updating 
mechanism of penalty value based on penalty boundary interaction is introduced. 

3.1. Framework of the proposed IMOPSO-PBI algorithm 

 

Figure 3. Flowchart of our proposed IMOPSO-PBI method. 

The flowchart of our proposed IMOPSO-PBI method is shown in Figure 3, and the whole 
process of IMOPSO-PBI method is shown in Table 1. Firstly, the original datasets are preprocessed, 
the top 1000 feature genes are selected and the corresponding pathway has been obtained through 
the David database. Then, the pathway is encoded according to the encoding strategy introduced in 
Section 3.2, and an initial population containing 𝑆 particles has been obtained. Next, the population 
is initialized, the position of each particle in the population is randomly initialized between 0 and 1, 
the target value of each particle is calculated through the objective functions 𝑓  and 𝑓 , and the speed 
and position of the particle are determined by Eqs (1) and (2) to update. The leader archive is updated 
through Algorithm 1, and the penalty value is also updated during the archive update process, and 
the crowding distance between particles is calculated. Finally, the solution in the lead archive is the 
desired result. 
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Table 1. Framework of the proposed IMOPSO-PBI method. 

Algorithm 1 Framework of the proposed algorithm 
  Input: Pre-processed Gene Expression Profile(G), Swarm size(S), 

maximal generation number(max-gen); 
  Output: Final archive ← A set of Non-dominated Solutions 
  𝑝 , 𝑝 , … 𝑝 ← Obtain KEGG pathways from DAVID  
  for k = 1 to 𝑆 do 
      GENERATE (𝑃 ) ← Initialize the particles 
      𝑓 , 𝑓 ← Calculating fitness of each particle 

while i <= max-gen do 
  Update position and velocity of particles by Eqs (1) and (2); 
  Update Archive; 
  Computational crowding distance;  
end while 
  Obtain solutions from the final archive; 

  end for 

3.2. Inferring pathway activity and encoding strategy 

At first, the top 1000 genes taken from the preprocessed data (described in Section 4.1) are put 
into the DAVID Bioinformatics Resources [30], then we can obtain the corresponding KEGG pathway. 
Because each pathway contains several genes, so the pathway activity can be calculated by Eq (6). 

𝛼 𝑝
∑ ∑ 𝑒 ∗  𝜔

∑ 𝜔
6  

Here, M is the number of genes in the pathway, and N is the number of samples of each gene. 

 

Figure 4. Particle encoding technique. 
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After calculating the pathway activity, we encode particles based on the pathway. As shown in 

Figure 4, particle 𝑃  contains three pathways, 𝑝 𝑔 、𝑔 、𝑔  , 𝑝 𝑔 、𝑔 、𝑔  , 𝑝

𝑔 、𝑔 , 𝑔  represents the 𝑖th gene on the 𝑗th pathway. The numerical value on each cell represents 

the degree of relevance of that gene in inferring pathway activity. 

3.3. Objective functions 

In this paper, weighted t-score and weighted z-score are selected as the objective function of the 
multi-objective optimization algorithm. In general, the t-score is used to measure the ability to 
differentiate the cumulative expression of the constituent genes of a given pathway [31]. The 
mathematical expression of the t-score is as follows. 

𝑡 𝑝
𝜇 𝑥 𝜇 𝑦

𝜎 𝑥
𝑠

𝜎 𝑦
𝑠

7
 

where 𝑝  indicates the pathway activity level of a given pathway, 𝜇 𝑥   and 𝜇 𝑦   represent the 
mean of pathway activity for classes 𝐶  and 𝐶  respectively, 𝜎 𝑥   and 𝜎 𝑦   represent the 
standard deviation of pathway activity for classes 𝐶  and 𝐶  respectively. 𝑠  and 𝑠  represent the 
number of samples in the two classes. In this paper, the concept of weighted t-score is introduced, 
which assumes that all genes in the pathway participate in the inference of pathway activity with a 
certain weight. The formula of weighted t-score is defined as Eq (8). 

𝑡 𝑝
𝜇 𝑥 𝜇 𝑦

𝜎 𝑥
𝑠

𝜎 𝑦
𝑠

8
 

where 𝜇 𝑥
∑  ∗ 

∑
 , 𝜇 𝑦

∑  ∗ 

∑
 represent the weighted mean of pathway activity 

for classes 𝐶  and 𝐶  respectively, and the weighted standard deviation of pathway activity for 
classes 𝐶  and 𝐶  are described as  

𝜎 𝑥
∑  ∗ 

∑
, 𝜎 𝑥

∑  ∗ 

∑
 

Suppose a particle consists of n pathways, then the weighted t-score of the particle should be expressed 
as Eq (9). 

𝑡 𝑃
∑   𝑡 𝑝

n
9  

The higher the weighted t-score is, the greater the differentiation ability is. Therefore, the weighted t-
score of the particle should be maximized. The proposed algorithm is designed to be a minimization 
problem, so the first objective function can be expressed as Eq (10). 
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𝑓
1

𝑡 𝑃
10  

Weighted z-score is chosen as another objective function in this paper, the z-score is a measure of the 
distance between a data point and its overall mean, a positive z-score means that the data point is 
greater than the weighted mean, and a negative z-score means it is less than the weighted mean. The 
weighted z-score of a particle is described as Eq (11). 

𝑍 𝑃
𝛼 𝑃 𝜇 𝑃

𝜎 𝑃
11  

in the formula, 𝛼 𝑃 ，𝜇 𝑃 ，𝜎 𝑃   represent the pathway activity, weighted mean and 

weighted standard deviation of particle 𝑃  respectively, here 𝛼 𝑃
∑  

. The smaller the 

absolute value of the z-score, the closer it is to the overall mean, so the second objective function can 
be expressed as Eq (12). 

𝑓 |𝑍 𝑃 | 12  

3.4. The mechanism for archive updating 

Since the capacity of the archive is limited, it is necessary to update the archive in real time during 
the feature selection process. This paper updates the archive by adaptively changing the penalty value 
of the PBI parameter. According to Section 2.3, we can know that when the value of 𝑑  corresponding 
to the current weight vector is small, increasing the penalty value helps to obtain a solution closer to 
the direction of the current weight vector. Therefore, this section proposes a method that change the 
penalty value of 𝑑  adaptively. When the 𝑑  value of the solution obtained under a specific weight 
vector in the archive increases, the penalty value decreases exponentially. Its specific mathematical 
expression is as Eq (13). 

𝜃 𝑡 1 𝑔𝑒𝑛𝑥 ∗ 𝑒 13  

where, 𝑑  is the value of 𝑑  of the corresponding weight vector at the 𝑖th iteration, the outer part of 
the formula is set to 1 to maintain the original balance, the coefficient 𝑁 of 𝑑  is set to 30. Moreover, 
in order to avoid too small d value to make the convergence worse, an adaptive penalty value that 
varies with the number of iterations is introduced, the 𝑔𝑒𝑛𝑥 value is added to Eq (13) to ensure that 
the penalty value varies within the normal range, 𝑔𝑒𝑛𝑥 is expressed as Eq (14). 

gen x θ θ θ ∗
𝑔𝑒𝑛

𝑀𝑎𝑥𝑔𝑒𝑛
14  

To satisfy the condition that the initial penalty value should be greater than 1, the value of θ  should 
be set to 1, and for the value of θ , 100 is a good choice. 

The process of updating archive and penalty values is shown in Table 2. Firstly, the optimal 
solution is selected from the former leader archive under the current weight vector. Then, remove the 
optimal solution from the former leader archive and add it to the updated archive. At last, calculate the 
𝑑  value corresponding to the current weight vector and update the penalty value. 
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Table 2. The pseudocode of archive updating. 

Algorithm 1 Archive Updating 
Input: leader archive (LA), size of leader archive (LAS) 
Output: updated leader archive (𝐿𝐴 ) 

penalty values for each weight vector (𝜃)  
  for i =1 to LAS do 

𝑝 ←  Select the best particle from LA under 𝜃  by Eq (4); 
        𝐿𝐴 ←  𝐿𝐴 \ 𝑝; 
        𝐿𝐴 ← 𝐿𝐴 ∪ 𝑝; 
        𝑑  ← Calculate 𝑑  value of 𝑖th weight vector by Eq (5);  
        𝜃  ← Update 𝜃  by Eq (13); 
  end for 

3.5. Computational crowding distance 

The set of non-dominated solutions distributed on the Pareto front is called the pareto optimal set, 
the optimal solutions can be stored in the archive. Here, the process of updating the archive and 
calculating the crowding distance is described. Assume that the maximum number of non-dominated 
solutions that the archive can accommodate at each iteration is N, suppose that by calculating the 
fitness in each iteration, M non-dominated solutions are obtained, if 𝑀 𝑁, keep the optimal solution 
in the archive, else if 𝑀 𝑁, calculate the crowding distance for all solutions and add solutions with 
higher crowding distances to the updated archive. 

4. Experiments results 

4.1. Datasets and preprocessing 

Six real gene expression datasets were used in this paper, which are available from the public 
website (www.biolab.si/supp/bi-cancer/projections/info/). 
Prostate: Gene expression measurements for samples of prostate tumors and adjacent prostate tissue 
not containing tumor were used to build this classification model. The number of genes in this 
dataset are 12,533 and the number of samples are 102, including 50 normal tissues and 52 prostate 
tumor samples. 
DLBCL: Diffuse large B-cell lymphomas (DLBCL) and follicular lymphomas (FL) are two B-cell 
lineage malignancies that have very different clinical presentations, natural histories and response to 
therapy. The number of genes in this dataset are 7070 and the number of samples are 77, including 
Diffuse large B-cell lymphoma 58 examples and Follicular lymphoma 19 examples. 
GSE412(Child-ALL): The childhood ALL data set (GSE412) includes gene expression information 
on 110 childhood acute lymphoblastic leukemia samples. The number of genes in this dataset are 8280 
and the number of samples are 110, including Diffuse large B-cell lymphoma 50 examples and 
Follicular lymphoma 60 examples. 
GSE2535 (Chronic Myeloid leukemia Treatment): Imatinib induces complete cytogenetic response 
in the majority of patients with chronic myeloid leukemia (CML) in chronic phase. The number of 



1590 

Mathematical Biosciences and Engineering  Volume 20, Issue 2, 1580–1598. 

genes in this dataset are 12,625 and the number of samples are 28, including non-responder to imatinib 
treatment 12 examples and responder to imatinib treatment 16 examples. 
GSE2443 (Prostate Cancer Treatment): After an initial response to androgen ablation, most prostate 
tumors recur, ultimately progressing to highly aggressive androgen-independent cancer. The number 
of genes in this dataset are 12,627 and the number of samples are 20, including androgen dependent 
tumor 10 examples and androgen - independent tumor 10 examples. 
GSE116959 (Lung adenocarcinoma): Based on GPL17077 platform（Agilent-039494 Sure Print G3 
Human GE v28x60K Microarray 039381）, the number of samples are 68, including normal Lung 
tissue 11 examples and LUAD 57 examples. 

The above original datasets can be obtained as matrix format, whose columns are genes and rows 
are samples. firstly, the signal-to-noise ratio for each gene(column) needs to be calculated by Eq (15). 

|𝑆𝑁𝑅|
 mean  class 1  mean  class 2
 S.D.  class 1  S.D.  class 2

15  

Compute the mean and standard deviation (S.D.) of classes 1 and 2 and put them into signal-to-noise 
equation, and then according to the calculated signal-to-noise ratio, the genes (column) are sorted in 
descending order. A high SNR indicates that these genes are distributed over a wide range of values, 
some genes with low signal-to-noise ratio may be considered unimportant for class labels, so we take 
the top 1000 genes and used them for further experiments. In order to eliminate the adverse effects 
caused by singular sample data, normalize the filtered data using min-max normalization method. 

4.2. Related parameter settings 

In this section, the proposed algorithm is compared with some existing algorithms, to ensure the 
objectivity and fairness of the comparison results, the parameters of this experiment are consistent 
with the parameter settings in the existing algorithm. The specific experimental parameters are listed 
in Table 3. 

Table 3. Parameters used in the algorithm. 

Parameters Values 
Number of Iterations 100 
Swarm size 25 
Initialization of degree of correlation of each gene Rand (0,1) 
Weighting factor 𝑐  2 
Weighting factor 𝑐  2 
𝑟 , 𝑟  Rand (0,1) 

4.3. Performance metrics 

Performance metrics play an important role in the process of verifying and comparing algorithm 
performance. Six classic performance metrics are chosen in this paper, they are sensitivity, specificity, 
F-score, accuracy, G-mean and AUC, and the expressed as follows respectively. 
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sensitivity 
𝑡𝑝

𝑡𝑝 𝑓𝑛
16  

specificity 
𝑡𝑛

𝑡𝑛 𝑓𝑝
17  

F-score 
2𝑡𝑝

2𝑡𝑝 𝑓𝑛 𝑓𝑝
18  

accuracy 
𝑡𝑝 𝑡𝑛

𝑡𝑝 𝑡𝑛 𝑓𝑝 𝑓𝑛
19  

𝐺𝑚𝑒𝑎𝑛 𝑟𝑒𝑐𝑎𝑙𝑙 ∗ 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 20  

𝑡𝑝, 𝑡𝑛, 𝑓𝑝, 𝑓𝑛 are represented true positive, true negative, false positive and false negative, respectively. 
In order to avoid the contingency of experimental results and improve the reliability, 10-fold cross-
validation method was used in this experiment. Each dataset is divided into ten parts, of which nine 
parts are used for training and the remaining one is used for testing, and the results are demonstrated 
in Tables 4–9. In addition, the Pareto fronts of the proposed algorithm and existing algorithms on the 
experimental datasets are shown in Figure 5(a)–(f), respectively. 

4.4. Comparative analysis 

In order to verify the performance of the proposed algorithm, some existing algorithms are 
selected for comparison with it. For example, a method for identifying genes using protein interaction 
scores [10], the sequential forward search method [5], T-test [32], feature selection algorithm based on 
feature clearness [33], a correlation-based feature selection method [34], and a multi-objective particle 
swarm algorithm [3]. Next, we will analyze the comparison results. 

Table 4. Performance comparison of different methods for Prostate dataset. 

 Sensitivity Specificity F-score Accuracy G-mean AUC 

Proposed 0.96275 0.9758 0.96239 0.96472 0.9693 0.9728 

MOPSO-PPI 0.95384 0.9617 0.95195 0.95738 0.9578 0.9526 

MOPSO 0.93459 0.912 0.9265 0.9235 0.9232 0.9385 

SFS 0.89998 0.864 0.88697 0.88234 0.8818 0.9169 

T-set 0.9269 0.816 0.88132 0.87256 0.8697 0.9154 

CFS 0.9131 0.9201 0.9211 0.9112 0.9166 0.9215 

CBFS 0.8558 0.93 0.8971 0.8971 0.8921 0.9138 
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Table 5. Performance comparison of different methods for DLBCL dataset. 

 Sensitivity Specificity F-score Accuracy G-mean AUC 

Proposed 0.95376 0.98572 0.92592 0.97582 0.9696 0.9794 
MOPSO-PPI 0.94512 0.97369 0.90916 0.96465 0.9593 0.9713 

MOPSO 0.92222 0.9379 0.87635 0.9332 0.93 0.9655 
SFS 0.74445 0.9655 0.79647 0.9131 0.8478 0.8966 
T-set 0.83335 0.9172 0.8035 0.89738 0.8743 0.9540 
CFS 0.5556 0.9355 0.6667 0.8684 0.7209 0.9308 
CBFS 0.1944 0.9555 0.2966 0.7829 0.431 0.9354 

Table 6. Performance comparison of different methods for GSE412 (Child-All) dataset. 

 Sensitivity Specificity F-score Accuracy G-mean AUC 

Proposed 0.9236 0.98674 0.89742 0.90691 0.9546 0.9462 

MOPSO-PPI 0.91456 0.98680 0.85621 0.88423 0.951 0.9258 

MOPSO 0.716 0.89667 0.77904 0.81453 0.8013 0.9040 

SFS 0.68 0.9067 0.75478 0.80363 0.7852 0.9027 

T-set 0.672 0.82668 0.71157 0.7563 0.7453 0.8840 

CFS 0.6400 0.9133 0.7442 0.7990 0.7645 0.8827 

CBFS 0.7100 0.6359 0.7427 0.7773 0.6719 0.8994 

Table 7. Performance comparison of different methods for GSE2535 (Chronic Myeloid 
Leukemia Treatment) dataset. 

 Sensitivity Specificity F-score Accuracy G-mean AUC 

Proposed 1 0.9135 0.9216 0.89537 0.9558 0.9382 

MOPSO-PPI 1 0.89163 0.90762 0.87532 0.9443 0.9025 

MOPSO 1 0.44447 0.8585 0.80357 0.6667 0.83334 

SFS 0.84375 0.62499 0.7897 0.74998 0.7261 0.7083 

T-set 0.71875 0.625 0.69905 0.6786 0.6702 0.8333 

CFS 0.5900 0.8771 0.6967 0.7143 0.7194 0.8358 

CBFS 0.6250 0.7343 0.7143 0.7143 0.6774 0.7708 

Table 8. Performance comparison of different methods for GSE2443 (Prostate Cancer Treatment) dataset. 

 Sensitivity Specificity F-score Accuracy G-mean AUC 
Proposed 1 0.986 0.9903 0.9896 0.993 0.9463 
MOPSO-PPI 1 0.98 0.9867 0.9857 0.9899 0.9137 
MOPSO 1 0.96 0.981818 0.98 0.9798 0.80 
SFS 0.84 0.92 0.8723 0.88 0.8791 0.7891 
T-set 0.92 0.88 0.9094 0.9 0.8998 0.7677 
CFS 1 0.8010 0.9091 0.9021 0.895 0.7715 
CBFS 0.80 1 0.8889 0.9 0.8944 0.860 
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Table 9. Performance comparison of different methods for GSE116959 dataset. 

 Sensitivity Specificity F-score Accuracy G-mean AUC 

Proposed 0.9681 0.9846 0.9862 0.9822 0.9763 0.9431 
MOPSO-PPI 0.9426 0.9638 0.9752 0.9683 0.9531 0.9347 

MOPSO 0.9238 0.9582 0.9613 0.9584 0.9408 0.9218 
SFS 0.8947 0.9326 0.9427 0.9482 0.9135 0.9152 
T-set 0.9021 0.9288 0.9296 0.9353 0.9154 0.9238 
CFS 0.8572 0.8914 0.9192 0.9136 0.8741 0.9175 
CBFS 0.8324 0.8761 0.8783 0.893 0.8540 0.8926 

Table 4 shows the performance comparison of different methods for Prostate dataset, the 
sensitivity, specificity, F-score, accuracy, G-mean and AUC of the proposed IMOPSO-PBI algorithm 
are 0.96275, 0.9758, 0.96239, 0.96472, 0.9693, 0.9728 respectively, it is obvious that the performance 
of the proposed IMOPSO-PBI algorithm is better than that of the comparison algorithm. And as 
Figure 5(a) shows, when 𝑓   is the same, the non-dominant solution obtained by the proposed 
IMOPSO-PBI algorithm has a smaller 𝑓 . Table 5 shows the performance comparison of different 
methods for DLBCL dataset, the sensitivity, specificity, F-score, accuracy, Gmean and AUC of the 
proposed IMOPSO-PBI algorithm are 0.95376, 0.98572, 0.92592, 0.97582 ,0.9696, 0.9794 respectively, 
better than that of the comparison algorithm. And as Figure 5(b) shows, no matter for 𝑓  or 𝑓 , the 
proposed IMOPSO-PBI algorithm has better performance. Table 6 shows the performance comparison of 
different methods for GSE412 (Child-All) dataset, the sensitivity, specificity, F-score, accuracy, Gmean 
and AUC of the proposed algorithm are 0.9236, 0.98674, 0.89742, 0.90691, 0.9546, 0.9462 respectively, 
the specificity of proposed IMOPSO-PBI method is slightly lower than the MOPSO-PPI algorithm, 
but the difference can be ignored. And as Figure 5(c) shows, the proposed IMOPSO-PBI method can 
get a better Pareto front. 

For GSE2535 (Chronic Myeloid Leukemia Treatment) dataset, the performance comparison 
results are shown in Table 7, the sensitivity of the proposed IMOPSO-PBI method, MOPSO-PPI and 
the MOPSO algorithm are the same value as 1, the proposed IMOPSO-PBI algorithm has better 
performance on other metrics, and it can be seen from Figure 5(d) that most of the solutions on the 
Pareto front of the proposed IMOPSO-PBI method outperform other algorithms. For GSE2443 
(Prostate Cancer Treatment) dataset, Table 8 describes the outcome of the proposed IMOPSO-PBI 
method and other techniques, the specificity of CBFS higher than the proposed IMOPSO-PBI method, 
apart from this, the proposed IMOPSO-PBI method has a better performance on other metrics, the 
proposed IMOPSO-PBI algorithm has a better Pareto front, which can be seen from the Figure 5(e). 
For GSE116959 (Lung adenocarcinoma) dataset, although the Pareto front of MOPSO-PPI locally is 
better than the proposed IMOPSO-PBI as shown in Figure 5(f), our proposed algorithm is better on 
the whole. From Table 9, we can know that the proposed IMOPSO-PBI algorithm has better 
performance on the metrics. In general, the proposed IMOPSO-PBI algorithm has better performance 
than the comparison algorithms on all experimental data, which proves that the IMOPSO-PBI 
algorithm in this paper is useful and efficient. 
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Figure 5. The Pareto fronts of contrast algorithm on the experiment datasets. 

4.5. Biological relevance 

Table 10. Disease associated with the resultant pathway markers. 

Disease Gene Symbol (#PMID) 
Prostatic neoplasms GSTP1 (25), KLK3 (82), IGF1 (20), GSTP1 (25), ERG (54), TGFBR2 (5)
Prostate carcinoma BCL2 (120), KLK3 (1857), IGF1R (42), BCL2 (120), ESR2 (66), 

MSMB (68), HOXB13 (54), PCAT1 (43), FHIT (7), MKI67 (6) 

Malignant neoplasm of 
prostate 

ERG (441), GSTP1 (134), IGF1 (111), HNF1B (22), PIK3CA (127), 
EPHB2 (39), TP53 (310), CHEK2 (27) 

Anemia HAMP (147), GATA1 (12), TNF (29), CSF3 (11), IFNA2 (7) 

Carcinoma ESR1 (70), PTGS2 (57), ABCB1 (29), HIF1A (17), CDK4 (15), BRCA1 
(81), PTEN (60) 

Lymphoma BCL2 (262), PTEN (13), CDK4 (9), TP53 (156), KRAS (5), ATM (22) 
RHOA (4), EPHX1 (3) 

Leukemia KMT2A (385), NRAS (19), JAK2 (38), STAT3 (26), CSF3R (20), 
GSTM1 (13), BRAF (12), ATM (17) 

Acute lymphocytic  
leukemia 

KMT2A (202), IKZF1 (81), ABL1 (264), PBX1 (67), FLT3 (48),  
PETN (7), LMO2 (5) 

Lung adenocarcinoma ITGB4 (182), CDC20 (115), MMP9 (96), CALM1 (73), RRAS (62), 
ID1 (56) 
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In order to verify the biological relevance of the selected pathway marker genes, the top 60% 
pathway markers are chosen and searched in the disease-gene association database 
(http://www.disgenet.org/). From this database we can obtain the number of PubMed citations of the 
disease-gene association, and a part is shown in Table 10. The first column of the Table 10 is the 
disease name and the second column is the corresponding gene symbol, in addition, the numbers in 
parentheses indicate the number of PubMed citations. From the results, we can know that the marker 
genes are related to particular diseases, that is to say, the selected marker genes are biologically related. 

To explore the potential role of marker genes on overall survival rate, the Kaplan-Meier (KM) 
survival curve was presented based on the partial marker genes in this study. In Figure 6(a)–(f), the 
horizontal axis represents the patient’s survival time and the vertical axis represents the patient’s 
survival rate. The red and blue lines represent the high and low expression groups, respectively. 
Although there was no significant difference in survival rate between the two groups during the initial 
period, with the increase of time, the survival rate of the high expression group decreased rapidly. The 
low expression group had higher survival rate and longer survival time, which demonstrates that the 
cancer is related to some specific genes. Through identifying the biomarkers of cancers can help 
prediction and diagnosis cancers, which can result in a good prognosis. 

 

Figure 6. Survival curves of cancer patients in different datasets. 

5. Conclusions 

Biomarkers play an important role in the diagnosis and treatment of diseases, in this paper, a 
decomposition-based multi-objective optimization algorithm is proposed to screen pathway marker 
genes. Consider in the process of inferring pathway activity, the contribution of each gene should be 
different. In this research, the relevance of each gene in pathway activity inference is quantified. 
Moreover, in order to avoid the excessive concentration of feature solutions in most multi-objective 
optimization algorithms, an adaptive mechanism based on PBI decomposition is introduced. The 
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proposed IMOPSO-PBI method is applied to six real datasets and compared with some existing 
algorithms, the results show that the method achieves better performance. In addition, the biological 
relevance of the screened marker genes was proved by biological analysis. In the future, we can 
optimize on this framework, such as choosing different objective functions and performance metrics, 
and we can also use this method on other datasets, such as HNSCC, KIRC, besides, some public 
available single-cell RNA-seq along with the bulk RNA-seq are also good choice. 
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