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Abstract: In this work, a fishery predator-prey model with anti-predator behavior is presented ac-
cording to the anti-predator phenomenon in nature. On the basis of this model, a capture model guided
by a discontinuous weighted fishing strategy is established. For the continuous model, it analyzes
how anti-predator behavior affects system dynamics. On this basis, it discusses the complex dynamics
(order-m periodic solution (m = 1, 2)) induced by a weighted fishing strategy. Besides, in order to find
the capture strategy that maximizes the economic profit in the fishing process, this paper constructs an
optimization problem based on the periodic solution of the system. Finally, all of the results of this
study have been verified numerically in MATLAB simulation.
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1. Introduction

In nature, there are many predator-prey relationships among various organisms, and this is also
the reason for the balance of nature. This relationship has gone through a long process of natural
evolution. Predators and prey have formed various adaptations of predation and anti-predation in
structure, physiology, habits and lifestyle, forming a certain balanced relationship. In 2012, Choh et
al. [1] found a phenomenon in an experiment that there is a role reversal (anti-predator behavior)
between predators and prey. When the prey species were threatened, in order to survive and reproduce,
they will fight back, and even kill the predators’ juveniles. In 2013, Hoover et al. [2] revealed that
fathead minnows exhibit typical anti-predator behavior; as a response to the predator scent signatures
and chemical alarm cues, they will go into shelters and decrease activity. In 2015, O’Connor et al. [3]
revealed that stimulated by the predators, cichlid fish species spend less time exploring and more time
searching for cover and congregating with other similar species to avoid being attacked by predators.
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In addition, researchers have revealed that in the presence of predation hazards, many species such
as the three-spined stickleback [4], monkey goby [5], red tilefish [6] and other species will exhibit
anti-predator behavior.

To characterize the anti-predator behavior of prey species and analyze its impact on the dynamics of
the system, many scholars have introduced the anti-predator effect into the predator-prey model [7, 8, 9,
10, 11, 12]; among others, Tang and Xiao [7] revealed that the predator will go extinct as a consequence
of the anti-predator behavior, which means that anti-predator behavior can aid prey species in resisting
predator aggressiveness. Sun et at. [8] introduced a kind of anti-predator behavior, which occurs only
when the prey group size is larger than a threshold. Mortoja et al. [9] introduced anti-predator behavior
into a stage-structure model, and, through numerical simulations, they found that the anti-predator
factor may change the system’s stability. Prasad [10] analyzed an additional food provided predator-
prey system with anti-predator behaviour in prey. Sirisubtawee et al. [11] introduced anti-predator
behavior into an impulsive Holling type IV predator-prey model, and discussed the complex dynamics
such as the periodic solution of the impulsive model. Tian and Gao [12] presented a predator-prey
model with an anti-predation effect and prey-dependent threshold control and analyzed the dynamics
of the proposed model.

On the other hand, fishing activities are carried out for both commercial and livelihood needs.
However, it is worth pointing out that overfishing will always lead to depletion of fishery resources.
Therefore, rational management of fishery resources is necessary from the perspective of renewable re-
sources protection, and appropriate fishing levels can not only protect fishery resources, but also maxi-
mize profits. Fishing activities can be carried out in different manners, which include continuous form
[13, 14, 15], semi-continuous form [16], periodic form [17, 18] and state-dependent form [19, 20, 21].
Fishing activity is a typical human activity and it is usually determined by the density of the fish popu-
lation. State-dependent harvesting strategy takes the current state of the species into consideration and
avoid the adverse impacts on the sustainability of the species. There are many cases of human inter-
vention in real world problems, which often occur at state-dependent times or involve state-dependent
thresholds. For such situations, state-dependent strategies are usually used to model this phenomena
or problems, and the corresponding system can be described by impulsive semi-dynamical systems
(ISDSs) [22, 23, 24, 25]. In the past two decades, many scholars have applied the theory and method
of impulsive semi-dynamic system into different subjects and scientific problems, such as pest control
[26, 27, 28, 29, 30], disease control [31, 32], process of sugar manufacturing [33], prey-predator sys-
tem [34, 35, 36, 37, 38], competitive system [39] and other subjects [40, 41]. Predator-prey systems
based on state feedback control had received much attentions, the corresponding models can be di-
vided into predator-dependent [19, 20], prey-dependent [42, 43, 44, 45], ratio-dependent [46, 47] and
prey-predator hybrid-dependent [21, 48, 49]. In natural systems, predators and prey are mixed, so it
is impossible to determine the exact number of the two species, but their proportions are usually kept
constant. Based on this consideration, a weight capture strategy was introduced into a fishery model
[21], where fishing activity is permitted when the weighted sum of both species populations reaches a
threshold. In the current work, we present a predator-prey model with anti-predator behavior and an-
alyze how anti-predator behavior affects system dynamics. Then, following application of the weight
capture strategy to the system, we analyze the complex dynamics induced by a discontinuous weighted
fishing strategy. In addition, in order to obtain the optimal fishing strategy that maximizes economic
profits, we discuss the problem of fishing process optimization.
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The article structure is as follows. In Section 2, we propose a predator-prey model for fisheries with
anti-predator behavior and construct a capture model based on weighted fishing strategies, followed by
presenting some basic knowledge. In the next section, we first investigate the effects of anti-predator
behavior on system dynamics, and then discuss the complex dynamics of the system induced by a
weighted fishing strategy. In addition, in order to maximize the economic profit, we carried out the
study of the optimization of the fishing process. In Section 4, we discuss the numerical simulations
performed to verify the theoretical results obtained in the previous section. In the last section, we
present a summary and discussion.

2. Mathematical model and basic knowledge

Let x denote the prey density and y denote the predator density. Then the classical predator-prey
model can be expressed as follows: 

dx
dt

= B(x) − yD(x),
dy
dt

= µyD(x) − sy,
(2.1)

where, B(x) describes the prey growth rate, D(x) represents the functional response, s represents the
predator mortality rate and µ denotes the conversion rate from prey to predator. In this study, the logistic
type growth rate and Holling-II type functional response are considered, i.e., B(x) = rx(1 − x/K) and
D(x) = bx/(1 + h1x).

When the prey species shows anti-predator behavior, let p characterize the anti-predator rate of the
prey; the term −pxy is added to the change rate of predators. Then, Model (2.1) takes the form

dx
dt

= rx(1 −
x
K

) −
bxy

1 + h1x
:= xP(x, y),

dy
dt

=
µbxy

1 + hx
− sy − pxy := yQ(x),

(2.2)

where r describes the intrinsic growth rate, K represents the environmental capacity, b denotes the
predation rate, h1 is the saturation constant, h = h1 + bh2 and h2 describes the conversion saturation
constant. Considering the biological significance of the model, the study is regionally limited in Ω0 =

{(x, y)|0 ≤ x ≤ K, y ≥ 0}.
For both commercial and livelihood needs, fishing activities are carried out when the fish popula-

tions satisfy certain conditions. Let w denote the proportion of prey species, (1 − w) be the proportion
of a predator population, H denote the threshold of the weighted sum of both species populations, E
represent the capture strength and qi (i = 1, 2) denotes the capture rate. Besides, in order to prevent the
extinction of predators caused by anti-predator behavior, a quantity of predator pups, denoted by τ, is
released into the system. Based on the above capture strategies, the predator-prey model guided by the
weighted fishing strategy is as follows:

dx
dt

= rx(1 −
x
K

) −
bxy

1 + h1x
dy
dt

=
µbxy

1 + hx
− sy − pxy

 wx + (1 − w)y , H,

∆x = −q1Ex
∆y = −q2Ey + τ

}
wx + (1 − w)y = H

(2.3)
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where τ satisfies that τ < min{τ1, τ2}, and

τ1 ,
q2HE
1 − w

, τ2 ,
q1HE
1 − w

·
1 − q2E
1 − q1E

.

The research objective of this paper is to analyze how anti-predator behavior affects the dynamics
of System (2.2), and also to discuss the complex dynamics of the Model (2.3) induced by a weighted
fishing strategy. Besides, to obtain an optimal capture strategy that maximizes the economic profit, we
discuss the problem of fishing process optimization.

We present some basic concepts and results of an ISDS for convenience, and the readers are referred
to the literature [21, 23, 25, 29, 30, 45].

Let us consider a planar impulsive model with following threshold

dx
dt

= f1(x, y)
dy
dt

= f2(x, y)

 χ(x, y) , 0,

∆x = I1(x, y)
∆y = I2(x, y)

}
χ(x, y) = 0,

(2.4)

where fi, Ii and χ are differentiable with respect to x and y. Let Ω represent the domain of solutions
and π = (π1, π2) : Ω × R → Ω characterize the solution map of the corresponding continuous system;
define M , {(x, y) ∈ Ω|χ(x, y) = 0} and I = (I1, I2): M → N = I(M). Then we call the system
constituted by (2.4) as an ISDS, which is denoted by (Ω, π; I,M). For any point S 0 ∈ N , the solution
of (Ω, π; I,M) from S 0 is denoted by z(t) = (x(t), y(t))′, i.e. z(0) = z0 , S 0. The orbit is denoted by
γS 0(z) , {z(t)|t ≥ 0, z(0) = S 0}. If γS 0(z) ∩M , ∅, the trajectory z(t) will reach the pulse setM many
times due to the pulse action; the set of the time is denoted by Σ , {tk|k = 1, 2, · · · }, i.e. z−k = z(tk) ∈ M
and zk = I(z−k ) ∈ N .

Definition 2.1 (Periodic solution [21, 23, 29, 30, 45]). The solution z̃(t) with z̃0 ∈ N is said to be
periodic if there exists n > 1 satisfying z̃n = z̃0. Denote m , min{k|1 ≤ k ≤ n, z̃k = z̃0}; then, z̃(t) is
called an order-m periodic solution with period T = tm.

Definition 2.2 (Oorbitally asymptotically stable [21, 23, 29, 30, 45]). For the periodic solution z̃(t), if
for an arbitrary ε > 0, there is a neighborhood Uδ of z̃, for any z ∈ Uδ, there exists a re-parameterized
function t̂(t) and |z(t) − z̃(t̂(t))| < ε for all t ≥ t0; then, γ(z̃) is called orbitally asymptotically stable.

Figure 1. Schematic diagram of successor function.
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Definition 2.3 (Successor function [23, 29, 30]). Let us assume that M and N in (R2
+, π,R+;M, I)

are two disjoint lines. Denote N ∩ x-axis = {O′}. For a given Q1 ∈ N , denote γQ1(z) ∩ M = {Q3},
γQ1(z) ∩ N = {Q2} and Q4 = I(Q3), as illustrated in Figure 1. Then the type-I successor function
f I
sor is defined by f I

sor(Q2) = d(Q4,O′) − d(Q2,O′), and the type-II successor function f II
sor is defined by

f II
sor(Q1) = d(Q4,O′) − d(Q1,O′).

Lemma 2.1 (Stability criterion [21, 23, 29, 30, 45]). The order-m periodic solution z(t) = (ξ(t), η(t))′

with the period T is said to be orbitally asymptotically stable if |µm| < 1 holds, where

µm =

n∏
j=1

∆ j exp
∫ T

0

[
∂ f1

∂x
+
∂ f2

∂y

]
(ξ(t),η(t))

dt
 ,

with

∆ j =

f +
1

(
∂I2

∂y
∂χ

∂x
−
∂I2

∂x
∂χ

∂y
+
∂χ

∂x

)
+ f +

2

(
∂I1

∂x
∂χ

∂y
−
∂I1

∂y
∂χ

∂x
+
∂χ

∂y

)
f1
∂χ

∂x
+ f2

∂χ

∂y

,

f +
1 = f1(ξ(τ+

j ), η(τ+
j )), f +

2 = f2(ξ(τ+
j ), η(τ+

j )) and f1, f2,
∂I1

∂x
,
∂I1

∂y
,
∂I2

∂x
,
∂I2

∂y
,
∂χ

∂x
and

∂χ

∂y
are calculated

at (ξ(τ j), η(τ j)).

3. Dynamical analysis of Systems (2.2) and (2.3)

This section focuses on analyzing the dynamics of the free system (2.2) and the capture system
(2.3), respectively. Since, in the case of µb 6 sh, there is dy/dt < 0, i.e., the predator species will
eventually become extinct. Therefore, from the perspective of ecological diversity, it is assumed that
µb > sh.

3.1. Dynamics of System (2.2)

For System (2.2), we mainly discuss the existence and stability of equilibria. For convenience,
denote

F(x) ,
r(1 + h1x)(K − x)

bK
, p1 , ub + sh − 2

√
µbsh, m , p + sh − µb,

xp
1 ,


s/(µb − sh), p = 0
−m−
√

m2−4phs
2ph , 0 < p < p1

µb−p1−sh
2p1h , p = p1

, xp
2 ,


K, p = 0
−m+
√

m2−4phs
2ph , 0 < p < p1

K, p = p1

and yp
i = F(xp

i ), i = 1, 2.
Define

g(p) =

(
2

h
h1
− 1

)
p − sh + µb − 3

√
(p + sh − µb)2 − 4ph.

Let p ∈ (0, p1) satisfy g(p) = 0. Since the dynamic behavior of System (2.2) are related to the
parameters p and K, we divide the analysis into the following three cases:

Mathematical Biosciences and Engineering Volume 20, Issue 2, 1558–1579.
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(A1): 0 ≤ p ≤ p1, x
p
1 < K ≤ xp

2 ;

(A2): 0 < p < p1,K > xp
2 ;

(A3): p > p1.

Further, (A1) is divided into five subcases:

(A1-1): 0 ≤ p ≤ p, xp
1 < K ≤ 2xp

1 + 1/h1;

(A1-2): 0 ≤ p ≤ p, 2xp
1 + 1/h1 < K ≤ xp

2 ;

(A1-3): p < p < p1, xp
1 < K ≤ xp

2 ;

(A1-4): p = p1, xp
1 < K ≤ xp

2

and (A2) is divided into three subcases:

(A2-1): p < p < p1, xp
2 < K < 2xp

1 + 1/h1;

(A2-2): 0 ≤ p < p1, K > K , max{2xp
1 + 1/h1, x

p
2}.

3.1.1. Existence of equilibria

In System (2.2), EO(0, 0) and EK(K, 0) always exist.

Theorem 3.1. In System (2.2), if Case (A1) holds, there exists a unique positive equilibrium E1; if
Case (A2) holds, there exists two positive equilibria E1 and E2; for Case (A3), the positive equilibrium
does not exist.

Proof of Theorem 3.1. Define Q0(x) = (1 + hx)Q(x). Then, System (2.2) has a positive equilibrium if
and only if the equation Q0(x) = 0 has a positive root less than K. Since Q0(x) = 0 does not have a
positive root when p > p1, the positive equilibrium does not exist for Case (A3). While, for 0 ≤ p ≤ p1,
we have the following cases:

Case I: p = 0. Then Q0(x) = 0 has a unique positive root x = x0
1. Let y0

1 = F(x0
1). Then E1(x0

1, y
0
1) is a

positive equilibrium if K > x0
1;

Case II: 0 < p < p1. In this case, Q0(x) = 0 has two positive roots x = xp
1 and x = xp

2 . Let
yp

i = F(xp
i ), i = 1, 2. When xp

1 < K 6 xp
2 , E1(xp

1 , y
p
1) is a unique positive equilibrium. When

K > xp
2 , E1(xp

1 , y
p
1) and E2(xp

2 , y
p
2) are two positive equilibria.

Case III: p = p1. In this case, Q0(x) = 0 has two identical positive roots xE1 = xp1
1 . Let yp1

1 = F(xp1
1 ).

If K > xp1
1 , then E1(xE1 , yE1) is a unique positive equilibrium.

�
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3.1.2. Stability of equilibria

For any equilibrium E(x, y), the Jacobian matrix is

JE =

(
P(x, y) + xPx(x, y) xPy(x, y)

yQ′(x) Q(x)

)
The corresponding characteristic equation is

|λE − JE | = λ2 − pEλ + qE = 0,

where

pE , P(x, y) + xPx(x, y) + Q(x), qE , P(x, y)Q(x) + xPx(x, y)Q(x) − xyPy(x, y)Q′(x).

Theorem 3.2. EO(0, 0) is a saddle point and unstable. EK(K, 0) is a saddle point for Cases (A1-1)–
(A1-3), and it is locally asymptotically stable for Cases (A1-4), (A2) and (A3). E1(xp

1 , y
p
1) is locally

asymptotically stable for Cases (A1-1), (A1-3) and (A2-1), and unstable for Cases (A1-2), (A1-4) and
(A2-2). E2 is a saddle point and unstable for Case (A2).

Proof of Theorem 3.2. Since qEO = −rs < 0, EO is a saddle point. Given that qEK = −rQ(K), and for
Cases (A1-1)–(A1-3), Q(K) > 0; then, EK is a saddle point. For Case (A1-4), (A2) and (A3), Q(K) < 0
and pEK = Q(K) − r < 0; then, EK is locally asymptotically stable. When K = xp

2 , there is Q(K) = 0;
in this case, EK is a saddle-node.

For E(x, y), we have

pE = −
2rh1x

k(1 + h1x)

[
x −

h1K − 1
2h1

]
, qE =

bx2yQ′0(x)
(1 + h1x)(1 + hx)

.

For Cases (A1-1), (A1-3) and (A2-1), there exist qE1 > 0 and pE1 < 0 due to Q′0(xp
1) > 0 and K <

2xp
1 + 1/h1, which implies that E1(xp

1 , y
p
1) is locally asymptotically stable; for Cases (A1-2) and (A2-2),

there is pE1 > 0; then, E1(xp
1 , y

p
1) is unstable. For Case (A1-2), there is ẏ ≤ 0 and ẏ = 0 if and only if

x = xp
1 , so E1 is unstable. For Case (A1-2), a limit cycle ΓLC exists around E1. Since Q′0(xp

2) < 0 for
Case (A2), i.e., qE2 < 0, E2(xp

2 , y
p
2) is a saddle point and unstable. �

3.2. Dynamics of the capture system (2.3)

For System (2.3), there are

M = {(x, y)|wx + (1 − w)y = H}, N =

{
(x, y)|

w
1 − q1E

x +
1 − w

1 − q2E
(y − τ) = H

}
,

and we denote kM , −w/(1 − w) and KN , kM(1 − q2E)/(1 − q1E).

3.2.1. Periodic solution for τ = 0

In this case, the system (2.2) has a subsystem (3.1) since y ≡ 0 if y0 = 0
dx
dt

= rx
(
1 −

x
K

)
, x , xH,

∆x = −q1Ex, x = xH,
(3.1)
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where w > 0 and xH , Hw−1.
Denote ξ0 = (1 − q1E)xH and

T ,
1
r

ln
(

K − (1 − q1E)xH

(1 − q1E)(K − xH)

)
; (3.2)

then, a periodic solution exists in the subsystem (3.1):

ξ(t) =
K(1 − q1E)xH exp(r(t − (n − 1)T )

(K − (1 − q1E)xH) + (1 − q1E)xH exp(r(t − (n − 1)T )))
, (n − 1)T ≤ t ≤ nT.

Define

R0 , (1 − q2E)(1 − q1E)
s
r

(
1 −

(h − 1)Kq1ExH

((1 + h)K − (1 − q1E)hxH)(K − xH)

) µbK
r(1−h)

(
K − xH

K − (1 − q1E)xH

) s+K p
r

.

Theorem 3.3. For the case w > 0 and τ = 0, if H < wK, there exists a periodic solution z = (ξ(t), 0)
in System (2.3), and it is orbitally asymptotically stable when R0 < 1.

Proof of Theorem 3.3. The proof can be seen as Theorem 2 in [21, 45]; therefore, it is omitted here. �

3.2.2. Periodic solution for τ > 0

The intersection point of N with the x-axis is denoted as G(xG, yG). For 0 < σ < τ, select a point
Q ∈ N ∩ U(G, σ), where the trajectory z(t) with z(0) = Q intersectsM at Q−, and denote Q+ as the
phase point of Q− after the pulse.

The trajectory of System (2.2) tangent to N is denoted by ẑ(t), and the tangent point is denoted by
A(xA, yA), i.e. dŷ/dx̂|A = kN . If γA(ẑ)∩M , ∅, let A− be the first intersection point, and A+ be the phase
point of A− after the pulse. If γA(ẑ) ∩M = ∅ or γA′(ẑ) ∩M = {A−} for some A′(, A) ∈ N , then let z̃(t)
be the trajectory tangent toM, and the tangent point is denoted by F, i.e. dỹ/dx̃ |F= kM. Moreover, let
R1(xR1 , yR1) ∈ N and R2(xR2 , yR2) ∈ N with yR2 < yR1 such that γRi(ẑ) ∩M = {F} (i = 1, 2). For Case
(A1-2), if ΓLC ∩M , ∅, then denote ΓLC ∩M = {M1,M2} with yM2 < yM1 . Similarly, if ΓLC ∩ N , ∅,
then denote ΓLC ∩ N = {N1,N2} with yN2 < yN1 .

Define Hi , wxp
i + (1 − w)yp

i (i = 1, 2) and

H
p
K ,


max{H|{π(A, t)|t ≥ 0} ∩ M , ∅}, for Cases (A1-1), (A1-3),
max{H|ΓLC ∩ M , ∅}, for Case (A1-2),
wK, for Cases (A1-4), (A3).

(3.3)

For Cases (A1) and (A3), we have

Theorem 3.4. For System (2.3), there exists an order-1 periodic solution for w > 0 and H ≤ H
p
K in

any case of (A1-1), (A1-3), (A1-4) and (A3). Moreover, for the case (A1-1) (or (A1-3)) and H > H
p
K ,

an order-1 periodic solution exists if xR2 ≤ (1 − q1E)xF . For the case (A1-2), an order-1 periodic
solution exists for w > 0 and H ≤ H1; while, for H1 < H ≤ H

p
K , an order-1 periodic solution exists if

xN2 ≤ (1 − q1E)xM2 .
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Proof of Theorem 3.4. In any case of (A1-1) or (A1-3) or (A1-4) or (A3), for w > 0 and H ≤ H
p
K , any

trajectory starting fromN will intersectM, as illustrated in Figure 1. For the point A, if yA+ = yA, then
the orbit γA(z) forms an order-1 periodic solution. Otherwise,

i) In the case of yA+ < yA, we have f I
sor(A) = dA+G − dAG < 0. Since f I

sor(Q) = dQ+G − dQG > 0,
then ∃S ∈ AQ such that f I

sor (S ) = 0, which means that the orbit γS (z) forms an order-1 periodic
solution, as illustrated in Figure 2 (a);

ii) In the case of yA+ > yA, we have f I
sor(A) = dA+G − dAG > 0. The orbit γA+(z) intersects M at

A+−, and then it is pulsed to the point A++. Since yA− > yA+− and yA+ > yA++ , we have f II
sor(A

+) =

dA++G − dA+G < 0. Next, according to the continuity of the solution, for ε = dAA+/2, we can
select a point H ∈ N ∩ U(A, ε), and there is dH−A− < ε. Then, by the impulse effects, there is
dH+A+ ≤ max{1 − q1E, 1 − q2E}ε < ε. Thus

f II
sor(H) = dH+G − dHG

= dA+G − dH+A+ − dAG − dAH.

= dA+A − (dH+A+ + dAH) > 0.

The continuity of f II
sor implies that there exists S ∈ HA+ such that f II

sor(S ) = 0, as illustrated in
Figure 2(b).

 x

 y
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A-

E*

Q

A+

Q+
Q-

 O  x

 y

A
A-

E*

H

A+
H+

A++

H-

A+-

O

Figure 2. Schematic diagram of trajectory change in System (2.3) for Case (A1-1) (or (A1-3))
and H < Hp

K: (a) yA+ < yA; (b) yA+ > yA.

Moreover, for Case (A1-1) (or (A1-3)) and H > H
p
w, if xR2 ≤ (1 − q2E)xF , then f I

sor(R2) = dF+G −

dR2G ≤ 0. Similar to Case I), there exists an order-1 periodic solution in system (2.3). While, for
(A1-2), we can adopt a proof similar to (A1-1); hence, it is omitted. �

For Case (A2), two positive equilibria E1 and E2 exist simultaneously in System (2.2), where E2 is
a saddle point, EK is locally asymptotically stable. Define

w∗i ,
yp

i

K − xp
i + yp

i

, i = 1, 2.

For Case (A2-1), E1 is locally asymptotically stable. For Case (A2-2), E1 is unstable. Moreover,
there exists K > K and System (2.2) has a limit cycle ΓLC for K < K < K. In this case, let H ,
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max{H|ΓLC ∩ M , ∅}. For H1 < H ≤ H, denote ΓLC ∩ M = {D1,D2} with yD1 ≤ yD2 . Similarly, if
ΓLC ∩ N , ∅, denote ΓLC ∩ N = {B1, B2} with yB1 ≤ yB2 . For K ≥ K, EK is globally asymptotically
stable.

Since E2 is a saddle point, let Γsm and Γusm respectively represent the stable and unstable manifolds
that pass through E2 below the isoline ẋ = 0. For H1 < H ≤ H2, denote Γsm∩M = {D}. If Γsm∩N , ∅,
then denote B as the intersection point with a smaller y label. Otherwise, let B be a point on N with
yB = (1 − q2E)yD + τ. For H2 < H ≤ wK, denote Γusm ∩M = {D}, and Γsm ∩ N = {B}.

Theorem 3.5. For Case (A2), there exists an order-1 periodic solution in System (2.3) if one of the
conditions holds: 1) 0 < w ≤ w∗1 and H ≤ wK; 2) w∗1 < w ≤ 1 and H ≤ H1; 3) w∗1 < w ≤ w∗2,
H1 < H ≤ wK and yB1 ≥ (1 − q2E)yD1 + τ; 4) w∗2 < w ≤ 1, H2 < H ≤ wK and yB ≥ (1 − q2E)yD + τ.

Proof of Theorem 3.5. It can be easily verified that for any case of 1) 0 < w ≤ w∗ and H ≤ wK or 2)
w∗ < w ≤ 1 and H ≤ H1, any trajectory starting fromN will intersectM; then, using a proof similar to
Theorem 3.4, we can prove that there exists an order-1 periodic solution. While, for 3), w∗1 < w ≤ w∗2
and H1 < H ≤ H2, if yB1 ≥ (1 − q2E)yD1 + τ, any trajectory starting from B2G ⊂ N will intersectsM;
similarly, we can prove that there exists an order-1 periodic solution. Case 4) is similar to Case 3) and
thereby omitted. �

Let z̃ = (ξ̃(t), η̃(t)), 0 ≤ t ≤ T be the order-1 P.S.. Denote ξ1 = ξ̃(T ), η1 = η̃(T ), ξ0 = (1 − q1E) ξ1,
η0 = (1 − q2E) η1 + τ, f 0

1 = f1(ξ0, η0), f 1
1 = f1(ξ1, η1), f 0

2 = f2(ξ0, η0) and f 1
2 = f2(ξ1, η1). Then, we have

the following theorem.

Theorem 3.6. The order-1 periodic solution z̃ = (ξ̃(t), η̃(t)) is orbitally asymptotically stable if∫ T

0

 bh1ξ̃(t)η̃(t)(
1 + h1ξ̃(t)

)2 −
rξ̃(t)

K

 dt < ln
(∣∣∣∣∣∣ξ0η0

ξ1η1
·

w f 1
1 + (1 − w) f 1

2

(1 − q2E)w f 0
1 + (1 − q1E)(1 − w) f 0

2

∣∣∣∣∣∣
)
. (3.4)

Proof of Theorem 3.6. From Model (2.3), we have

f1(x, y) = rx
(
1 −

x
K

)
−

bxy
1 + h1x

, f2(x, y) =
µbxy

1 + hx
− sy − pxy,

χ(x, y) = wx + (1 − w)y − H, I1(x, y) = −q1Ex, I2(x, y) = −q2Ey + τ.

Then we have

∂ f1

∂x
= r −

2rx
K
−

by
(1 + h1x)2 ,

∂ f2

∂y
=

µbx
1 + hx

− s − px,

∂I1

∂x
= −q1E,

∂I1

∂y
= 0,

∂I2

∂x
= 0,

∂I2

∂y
= −q2E,

∂χ

∂x
= w,

∂χ

∂y
= 1 − w.

In addition,

∆1 =

f +
1

(
∂I2

∂y
∂χ

∂x
−
∂I2

∂x
∂χ

∂y
+
∂χ

∂x

)
+ f +

2

(
∂I1

∂x
∂χ

∂y
−
∂I1

∂y
∂χ

∂x
+
∂χ

∂y

)
f1
∂χ

∂x
+ f2

∂χ

∂y

=
(1 − q2E)w f 0

1 + (1 − w)(1 − q1E) f 0
2

w f 1
1 + (1 − w) f 1

2

,
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exp
∫ T

0

(
∂ f1

∂x
+
∂ f2

∂y

)
(ξ̃(t),η̃(t))

dt
 =

ξ1η1

ξ0η0
exp

∫ T

0

(
bh1ξ̃η̃

(1 + bhξ̃)2
−

rξ̃
K

)
dt.

Thus,

µ1 = ∆1 exp
∫ T

0

(
∂ f1

∂x
+
∂ f2

∂y

)
(ξ̃(t),η̃(t))

dt
 = ∆1

ξ1η1

ξ0η0
exp

∫ T

0

(
bh1ξ̃η̃

(1 + bhξ̃)2
−

rξ̃
K

)
dt.

Therefore, |µ1| < 1 if and only if (3.4) holds; then, by Lemma 2.1, the order-1 periodic solution
z̃ = (ξ̃(t), η̃(t)) is orbitally asymptotically stable. �

Theorem 3.7. For the case (A1-1) (or (A1-3)) and H ≤ H
p
K , the order-1 periodic solution z =

(ξ̃(t), η̃(t)) is orbitally asymptotically stable and globally attractive if yA+ < yA.

Proof of Theorem 3.7. According to Theorems 4 and 5, when H ≤ H
p
K , there exists an order-1 P.S. in

system (2.3). If yA+ < yA, then L ∈ AQ, which means that for any S ∈ N, f I
sor(S ) < 0 with yS > yL,

f I
sor(S ) > 0 with yS < yL and f I

sor(S ) = 0 if and only if S = L. Thus, for any S +
0 ∈ AL ⊂ N, there exists

a sequence {S +
k }(k = 0, 1, 2, · · · ) satisfying yS +

k+1
= yS +

k
+ f I
sor(S

+
k ). If S +

0 ∈ AL, {S +
k } is monotonically

decreasing. Moreover, yL is the lower limit. If S +
0 ∈ LQ, {S +

k } is monotonically increasing, and yL is
the upper limit. Thus yS +

k
→ yS ′(k → ∞). Therefore,

f I
sor(S

′) = f I
sor( lim

k→∞
S +

k ) = lim
k→∞

f I
sor(S

+
k ) = lim

k→∞
(yS +

k+1
− yS +

k
) = 0.

Moreover f I
sor(S ) = 0; then, we have S ′ = S , and the orbit from any point S +

0 ⊂ N will approach
z = (ξ̃(t), η̃(t)), which means that z = (ξ̃(t), η̃(t)) is globally attractive. �

Next, we discuss the order-2 periodic solution. For a given point S (xS , yS ) on N with 0 ≤ yS ≤

y , (1 − q2E)H/(1 − w) + τ, when yS ≤ yA, there is ψN(yS ) = (1 − q2E)π(S ,TS ) + τ. While for
yS > yA, there exists a unique S ′ ∈ N with yS ′ ∈ (0, yA) and T̂z such that yS ′ = π(S , T̂S ). Then
ψN(yS ) = (1 − q2E)π(S ,TS ′) + τ. For the above summary, there is

ψN(yS ) =

{
(1 − q2E)π(S ,TS ) + τ, yS ≤ yA

(1 − q2E)π(S ,TS ′) + τ, yS > yA
(3.5)

Property 3.1. For Case (A1) and H ≤ H
p
K , the Poincaré map ψN defined by (3.5) has the following

characteristics: 1) ψN is continuous on [0, y]. Moreover, ψN increases and then decreases, and it
reaches a maximum at y = yA; 2) ψN is continuously differentiable on [yA, y].

For Case (A1) and H ≤ Hp
K , if ψN(yA) < yA, the order-1 periodic solution of System (2.3) is orbitally

asymptotically stable and globally attractive (Theorem 3.7); in this case, there does not exist an order-n
(n ≥ 2) periodic solution. For the case ψN(yA) > yA, there exists a unique yL2 ∈ [yA, ψN(yA)] such that
ψN(yL2) = yL2 . Let yL1 ∈ [0, yA] such that ψN(yL1) = yL2 . Then ψ2

N(yL1) = ψN(yL2) = yL2 . Meanwhile, let
yN1 ∈ [0, yA] and yN2 ∈ [yL2 , y] such that ψN(yN1) = ψN(yN2) = yA.

Theorem 3.8. For w > 0, H ≤ H
p
K and ψN(yA) > yA, if i) ψ2

N(yA) < yA or ii) ψ2
N(yA) > yA and µ1 > 1

holds, then there exists an order-2 periodic solution in System (2.3).

Proof of Theorem 3.8. Because ψN
(
yN1

)
= ψN

(
yN2

)
= yA, obviously, ψ2

N (y1) = ψ2
N (y2) = ψN (yA).

Then, ψ2
N is increasing on

[
0, yN1

]
and

[
yA, yN2

]
and ψ2

N is decreasing on
[
yN1 , yA

]
and

[
yN2 , y

]
. Since

ψ2
N
(
yN1

)
= ψN (yA) > yA > yN1 , there is ψ2

N(yN1) > yN1 .
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i) If ψ2
N (yA) < yA, then there is ψN (yA) > yN2 . As ψN (yA) = ψ2

N
(
yN2

)
, there is ψ2

N
(
yN2

)
> yN2 , which

also implies that ψ2
N (ψN (yA)) < ψN (yA). Thus there exist yM1 ∈

[
yN1 , yA

]
and yM2 ∈

[
yN2 , ψN (yA)

]
such that ψ2

N
(
yM1

)
= yM1 , ψ

2
N
(
yM2

)
= yM2 . And there is ψN

(
yM2

)
= yM1 , ψN

(
yM1

)
= yM2 .

ii) If ψ2
N (yA) > yA, there is ψN (yA) < yN2 , i.e. ψ2

N
(
yN2

)
< yN2 . For any y ∈

[
yA, ψN (yA)

]
, we have

yA < ψN(y) < ψN (yA). Next, it discusses the property of ψN on
[
yA, ψN (yA)

]
. Let y0 = yA; then,

y1 = ψN (y0) = ψN (yA) > y0, y2 = ψN (y1) = ψ2
N (y0) > y0 and y3 = ψN (y2) < ψN (y0) = y1. A

sequence {yn} is obtained under ψN , where y0 < y2 < y4 < · · · < yL2 < · · · < y5 < y3 < y1.

Denote yM1 = lim
n→∞

y2n and yM1 = lim
n→∞

y2n+1. It is obvious that yM1 ≤ yL2 ≤ yM2 . Since µ1 > 1,

yM1 < yL2 < yM2 . Besides ψN
(
yM2

)
= yM1andψN

(
yM1

)
= yM2 , so µ2 < 1, i.e., the order-2 periodic

solution is orbitally asymptotically stable.

�

3.3. Fishing process optimization

In order to realize the sustainability of fishery resources and maximize economic benefits, it is
necessary to consider the problem of harvest optimization. In Model (2.3), let H = wl + (1 − w)ml,
where m , yp

1/xp
1 , and the weight w and harvest density l are the decision variables. Besides, we

assume that E and τ are also linearly dependent on the decision variables w and l, i.e.

E(l) = Emin + (Emax − Emin)
l − l1

l2 − l1
,

τ(w, l) = w
[
τ1 + (τ2 − τ1)

l − l1

l2 − l1

]
,

(3.6)

where l1 and l2 are, respectively, the lower and upper limits of the harvest level, Emin and Emax re-
spectively represent the minimum and maximum harvest effort and τ1 and τ2 respectively represent
the minimum and maximum quantities of released predator populations. Let c1 be the unit sale rev-
enue of prey species, c2 represent that of predator species, c3 denote the unit price of harvesting
and c4 be the feeding predator unit cost. In general, c3 and c4 are fixed, and c1/c2 varies with sea-
son and market demand; also, denote σ , c2/c1. Therefore, the total revenue can be expressed as
Hbene f it(w, l) = c1q1E(l)ξ(T (w, l)) + c2q2E(l)η(T (w, l)) − c3E(l) − c4T (l). The objective is to find the
maximum of Pbene f it(w, l), which can be described as follows:

max Pbene f it =
Hbene f it(w, l)

T (w, l)
such that l1 ≤ l ≤ l2, 0 ≤ w ≤ 1.

(3.7)

The optimal control level l∗, w∗ can be obtained by solving the optimization model (3.7). Ac-
cordingly, it is possible to determine the release amount τ∗ = τ(l∗,w∗), the optimal capture effort
E∗ = E(l∗,w∗), and the optimal capture period T ∗ = T (l∗,w∗).

4. Computer simulation verification

We will verify the main results through numerical simulations. For System (2.2), we set the model
parameters as follows r = 2, b = 20% = 0.2, µ = 10% = 0.1, h1 = 0.01, h2 = 0.3, s = 14% = 0.14.
Then there is p1 = 0.0018.
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4.1. Theory verification

4.1.1. Verification of Theorem 3.1 and Theorem 3.2

First, for K=100, how the anti-predator rate p affects the dynamics of the system (2.2) is presented
in Figure 3. When p = 0.0015, two positive equilibria exist in the system; when p = 0.0018, a
unique positive equilibrium exists; and, when p = 0.02, there is no positive equilibrium. It is clear
that the anti-predator factor has a certain effect on the number of equilibria; with the increase of the
anti-predator factor, the number of positive equilibria gradually decreases.
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Figure 3. Effect of anti-predator rate p on the dynamics of the system (2.2).

Next, for p = 0.0015, how the environmental capacity K affects the dynamics of the system (2.2) is
shown in Figure 4. For K = 100, E1 is locally asymptotically stable, and for K = 150, E1 is unstable;
and, a limit cycle exists surrounding E1; while, for K = 200, EK is globally asymptotically stable.
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Figure 4. Effect of environmental capacity K on the dynamics of the system (2.2).

Next, we will verify the main results by changing the capture level H. The control parameters were
set as w = 0.2, τ = 0.5, E = 1, q1 = 0.5 and q2 = 0.2.

4.1.2. Verification of Theorem 3.4

Case I: H ≤ min{H1,wK}
Here we consider three subcases:

i) p = 0 and K = 100. Then a unique positive equilibrium E1(13.73, 9.81) exists in System (2.2).
Since H1 = 10.5944, for H = 10, there exists an order-1 periodic solution; its period is about
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T = 0.74, as shown in Figure 5-4.

ii) p = 0.0015 and K = 50. Then at the positive equilibrium E1(21.8584, 6.8586), there is H1 = 9.86.
For H = 9 < H1, there exists an order-1 periodic solution; its period is about T = 1.35, as
illustrated in Figure 5-5.

iii) p = 0.0018 and K = 100. Then at the equilibrium E1(33.33, 8.89), there is H1 = 13.78. For
H = 13 < H1 = 13.78, an order-1 periodic solution with the period T = 0.84 exists, as depicted
in Figure 5-6.
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Figure 5. Diagram of trajectory tendency of the system (2.3) and presentation of the order-1
periodic solution with H ≤ min{H1,wK} for different p and K in case (A1).

Case II: H1 < H < H2

In this case, the order-1 periodic solution exists conditionally. For p = 0, K = 100 and H = 13,
since xR2 ≥ (1 − q1E)xF holds for a given q1, q2 and τ (Figure 6-1), an order-1 periodic solution exists
(Figure 6-4); its period is about T = 0.96. It should be pointed out that the inequality is dependent on
the values of q1, q2 and τ; once the inequality is reversed, all trajectories will go forward to E1 after
several pulses. For p = 0.0015, K = 50 and H = 10, System (2.3) also has an order-1 periodic solution
with the period T = 2.37 (Figure 6-5) since xR2 ≥ (1 − q1E)xF holds (Figure 6-2). For p = 0.0018,
K = 100 and H = 16, since xB ≥ (1 − q1E)xD holds for a given q1, q2 and τ (Figure 6-3), an order-1
periodic solution exists (Figure 6-6); its period is about T = 1.144.

4.1.3. Verification of Theorem 3.5

For Case A2, we assume that p = 0.0015; then, xp
1 = 21.86, xp

2 = 61 and K = 143.7. Diagrams of
the trajectory tendency of the System (2.3) for different values of K and H are illustrated in Figure 7.

For K = 100, E1(21.86, 9.52) is locally asymptotically stable. Since H1 = 12, H2 = 17.2 and
wK = 20, for H = 11, the order-1 periodic solution exists unconditionally (Figure 7-1); for H = 14 and
H = 18, when yB ≥ (1 − q2E)yD + τ holds, the existence of the order-1 periodic solution is guaranteed
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Figure 6. Diagram of trajectory tendency and order-1 periodic solution of system (2.3) with
H1 < H < H2 for different values of p and K in Case A1.

(Figure 7-4 and Figure 7-7). For K = 150 > K, E1(21.86, 10.4) is unstable and a limit cycle exists. In
this case, H1 = 12.6, H2 = 19.8 and wK = 30. Similarly, for H = 12, the order-1 periodic solution
exists unconditionally (Figure 7-2)), while for H = 17 and H = 22, when yB ≥ (1−q2E)yD+τ holds, the
existence of the order-1 periodic solution is guaranteed (Figure 7-5 and Figure 7-8). For K = 200 > K,
E1(21.86, 10.4) is unstable and EK is globally asymptotically stable. In this case, H1 = 13.1, H2 = 21
and wK = 40. Similarly, for H = 13, the order-1 periodic solution exists unconditionally (Figure 7-3);
while, for H = 19 and H = 25, when yB ≥ (1 − q2E)yD + τ holds, the existence of the order-1 periodic
solution is guaranteed (Figure 7-6 and Figure 7-9).

4.1.4. Verification of Theorem 3.8

For Case (A2), when K < K < K, E1 is unstable and a limit cycle ΓLC exists. For H1 < H ≤ H and a
smaller τwith yB ≥ (1−q2E)yD +τ, there exists an order-1 periodic solution (Theorem 3.5, Figure 7-5).
Notice that yB ≥ (1− q2E)yD + τ is just a sufficient condition to ensure that there is a periodic solution.
In fact, as long as yB1 ≥ (1− q2E)yD1 + τ, for example, τ = 1.74, the order-1 periodic solution will exist
(Figure 8-1) for p = 0.0015, K = 150 and H = 15. For a bigger τ, for example, τ = 2.1 and τ = 2.2,
there may also exist an order-1 periodic solution (Figure 8-2, 8-3), but existence is not guaranteed.
From Figure 8-2, it is observed that even if an order-1 periodic solution exists, its shape has changed.
Figure 8-3 presents an order-2 periodic solution. The existence of an order-2 periodic solution implies
the existence of an order-1 periodic solution, but in this case, the order-1 periodic solution is unstable.

The dynamics of System (2.3) depends on the control parameters w, q1 and q2. Next, we consider
another set of control parameters: w = 0.6, q1 = 0.6 and q2 = 0.4. For p = 0 and K = 150, there
is K > K = 127; then, EK is unstable, E1(13.72, 10.33) is unstable and a limit cycle exists. We have
H = 18.55 > H1 = 12.37. Presentation of the order-m periodic solution of System (2.3) for p = 0,
K = 150, H = 18.55 and different values of τ is shown in Figure 9. For τ = 4.1, System (2.3) has an
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Figure 7. Diagram of the trajectory tendency of the System (2.3) for different values of K in
Case A2: 1) H < H1; 2) H1 < H < H2; 3)H2 < H < wK.

order-2 periodic solution, as depicted in Figure 9-1. In this case, the order-1 periodic solution exists but
is unstable. For τ = 4, there exists an order-3 periodic solution (Figure 9-2) and for τ = 3.95, System
(2.3) has an order-4 periodic solution (Figure 9-3). The existence of an order-m periodic solution
(m ≥ 3) would also lead System (2.3) to chaos [42, 50].

4.2. Numerical optimization

Let K = 100, E1 = 40%, E2 = 100%, τ1 = 0.5 and τ2 = 2, and the other model parameters are the
same as in the above simulations. Here, we consider two scenarios: 1) without anti-predator behavior,
i.e., p = 0; 2) with anti-predator behavior, i.e., p = 0.0015. Besides, it is assumed that l1 = 20%xE1 ,
l2 = 90%xE1 , c1 = 5, c3 = 30 and c4 = 5. For p = 0 and σ = 20, 30, the dependence of T and Pbene f it

on w and l are presented in Figure 10. When σ = 20, the unit benefit Pbene f it achieves its maximum at
w∗ = 0.1 and l∗ = 0.69xE1 . When σ = 30, Pbeni f it achieves its maximum at w∗ = 1 and l∗ = 0.34xE1 .

For p = 0.0015, EK is locally asymptotically stable. It is assumed that 0.1 ≤ w ≤ 1. For σ = 20, 30,
the dependence of T and Pbene f it on w and l are presented in Figure 11. For σ = 20, the unit benefit
Pbene f it achieves its maximum at w∗ = 0.1 and l∗ = 0.69xE1 . For σ = 30, Pbeni f it achieves its maximum
at w∗ = 1 and l∗ = 0.34xE1 .
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Figure 9. Presentation of the order-m periodic solution (m = 2, 3, 4) for p = 0, K = 150,
H = 18.55 and different values of τ in case A2.

5. Summary and discussion

This work presented a fishery predator-prey model with anti-predator behavior and analyzed the
dynamics of the model in detail. Besides, it introduced a weighted fishing strategy into the system
and established a fishery capture model (2.2). It analyzed the dynamics of the model and showed that
the anti-predation intensity affects the number of equilibria, that is, with the increase of anti-predation
intensity, the number of equilibria will decrease (Figure 3). Moreover, it showed that, for a fixed anti-
predator factor, the carrying capacity K has certain impact on the stability of the equilibria (Figure
4).

It also discussed the dynamic behavior of the capture model (2.3) according to different levels of
anti-predation factors. The results showed that an order-1 periodic solution always exists when H ≤ H1,
no matter how strong the anti-predator factor (Figure 5 and Figure 7). For H1 < H ≤ H2, there is a
constraint that ensures the existence of an order-1 periodic solution (Figure 6 and Figure 7). Moreover,
for 0 ≤ p < p1 and K < K < K, System (2.3) presents an order-m periodic solution (m ≥ 2) for certain
values of τ (Figure 8 and Figure 9). However, it is difficult and challenging to prove the existence of
an order-m periodic solution (m > 2), which will be our next study.

In the numerical optimization, it was shown that the benefits from fishing processes are dependent
on the unit sales price of prey and predators, as well as on the harvest unit cost. For given values of
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c1, c3 and c4, the unit benefit may achieve the maximum at different pairs of (l∗,w∗) for different values
of σ (Figure 10 and Figure 11). This also indicates that we can determine the optimal capture strategy
(E∗, τ∗ and T ∗) based on the selling prices of predators and prey, and then carry out fishing activities.
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