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Abstract: In recent years, with the continuous development of artificial intelligence and brain-computer 

interfaces, emotion recognition based on electroencephalogram (EEG) signals has become a prosperous 

research direction. Due to saliency in brain cognition, we construct a new spatio-temporal convolutional 

attention network for emotion recognition named BiTCAN. First, in the proposed method, the original 

EEG signals are de-baselined, and the two-dimensional mapping matrix sequence of EEG signals is 

constructed by combining the electrode position. Second, on the basis of the two-dimensional mapping 

matrix sequence, the features of saliency in brain cognition are extracted by using the Bi-hemisphere 

discrepancy module, and the spatio-temporal features of EEG signals are captured by using the 3-D 

convolution module. Finally, the saliency features and spatio-temporal features are fused into the 

attention module to further obtain the internal spatial relationships between brain regions, and which are 

input into the classifier for emotion recognition. Many experiments on DEAP and SEED (two public 

datasets) show that the accuracies of the proposed algorithm on both are higher than 97%, which is 

superior to most existing emotion recognition algorithms. 

Keywords: EEG; emotion recognition; spatio-temporal features; Bi-hemispheric discrepancy; spatial 

attention; attention mechanism 
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1. Introduction 

Emotion refers to a spontaneous and uncontrollable reaction that occurs when a person is affected 

by the surrounding environment. It is physically manifested as sweating or rapid heartbeat, and 

psychologically manifested as sadness or pleasure. Emotions change rapidly with the volatility of the 

surrounding environment or their own physiological needs in a short period of time. The complexity of 

the brain’s neural mechanisms causes individuals to produce stressful or continuous emotional 

responses [1]. There are roughly two kinds of existing emotion recognition algorithms: One kind is 

based on non-physiological signals, for example, facial expression [2], speech intonation [3] and 

morphological posture [4], etc; the other is based on physiological signals [5,6] (such as 

electrooculogram [7], electromyography [8] and electrocardiogram [9], etc.). Non-physiological 

signals have the advantages of easy extraction of data and easy deployment, but such signals are highly 

subjective, easy to disguise and hide [10], and cannot reflect the emotional state truly and effectively. 

Physiological signals can objectively and truly reflect the variation of the central nervous system, 

which is hard to hide and can more effectively express real emotions. However, most of the 

physiological signals are extremely weak in emotion-related components, and the impact of noise is 

very obvious, which often leads to low recognition accuracy of the emotion recognition algorithm. 

EEG can directly reflect the activity of the human brain with the change of emotion, which is objective, 

reliable and easy to identify. In addition, EEG is non-invasive, so it has great development potential in 

emotion recognition [11]. 

Recently, with the development of brain-computer interfaces, the new portable and wearable EEG 

devices have become a part of people’s lives. As one hot research issue in the field of brain-computer 

interface, many scholars proposed effective emotion recognition methods [12,13]. To extract EEG 

signal features effectively, researchers have explored the feature extraction of EEG signals in time the 

domain, frequency domain and time-frequency domain. At the same time, researchers constructed 

many emotion recognition networks that are suitable for EEG signals. For example, in [14], An et al. 

extracted and fused the differential entropy features from different frequencies of EEG signals, and 

they also constructed the spatial-frequency domain features by combining them with the placement of 

electrodes. Finally, the spatial-frequency domain features were input into the convolutional 

autoencoder (CAE) for emotion classification, which achieved a good effect. In [15], Liu et al. 

presented a dynamic differential entropy features extraction algorithm from EEG signals by 

combining differential entropy (DE) and empirical mode decomposition (EMD). Then, CNN was 

used to classify the extracted dynamic differential entropy features to obtain a better emotion 

recognition effect. In [16], Liu et al. used convolutional neural network and deep neural network (DNN) 

to achieve good emotion recognition effect. In [17], Cheng et al. first made baseline correction of the 

original EEG signals, and then they constructed the two-dimensional frame structure of the EEG signal 

by combining the spatial structure between electrodes, and used deep forest to distinguish emotion 

based on multi-channel EEG signals. This algorithm solves the shortcomings of the deep neural 

network with too many hyperparameters and too large training data, and achieves high accuracy of 

emotion classification. In [18], Song et al. proposed a feature extraction algorithm from EEG signals 

based on the variational instance-adaptive graph (V-IAG). This algorithm can capture the individual 

dependence between different EEG electrodes simultaneously, so as to obtain more discriminative 
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features. Simultaneously, Song et al. also gives a multi-channel EEG signal features extraction algorithm 

aggregated by multi-stage multi-graph convolution operation. They also used sparse constraints to obtain 

more robust features to achieve better emotion recognition effects. In [19], Cui et al. constructed an end-

to-end network named regional asymmetric convolutional neural network (RACNN) and applied it to 

emotion recognition. RACNN can obtain the characteristics of the differences between the right 

hemispheres of the brain and the left hemispheres of the brain stimulated by emotion. 

Although the above emotion recognition algorithms have achieved good emotion recognition 

effect, these algorithms often fail to take into account the intrinsic characteristics of EEG signals, and 

seldom consider how to use fewer electrodes to achieve better recognition effect in practical application. 

EEG signal is a time-varying and continuous biological time series. Continuous time EEG contains 

dynamic features, which are of great significance to the classification of emotions. The placement of 

electrode caps is orderly, and is based on the spatial characteristics of EEG signals. Therefore, the orderly 

relative position of electrodes will be a great help to the classification of emotions [20]. In addition, 

neurological studies show that there is a very close relationship between the cerebral cortex and the 

production of emotion [21]. Due to the phenomenon of not completely symmetrical right and left 

hemispheres in the brain, in [22], Li et al. proposed a Bi-hemispheric discrepancy model (BiHDM) to 

extract the asymmetry feature of EEG for emotion recognition. In [23], Huang et al. proposed a bi-

hemisphere discrepancy convolutional neural network model (BiDCNN) for EEG emotion recognition. 

To achieve more accurate emotion recognition, we construct a new spatio-temporal convolution spatial 

attention network to achieve EEG emotion recognition by combining saliency in brain cognition and 

the characteristics of EEG signals mentioned above. 

Besides, with the development of brain-computer interfaces and portable EEG devices, the 

number of electrodes should be minimized without affecting the recognition effect. Therefore, we 

explore the importance of EEG triggered by different brain regions in emotion recognition. 

Experiments show that the asymmetry of the frontal and temporal lobes plays an important role in 

emotion recognition tasks, which also indicates that the frontal and temporal lobes are the main brain 

regions related to emotion in the brain. These findings are consistent with the findings of 

neuropsychology. This conclusion provides a theoretical basis for channel selection in EEG emotion 

recognition, in order to reduce the computational complexity of emotion recognition models with a 

small number of EEG channels, and for the development of convenient EEG devices. The following 

are the paper’s main contributions: 

(1) In this paper, a three-dimensional (3D) spatio-temporal matrix is constructed by using the 

original EEG signal. The three-dimensional spatio-temporal matrix combined with the spatio-temporal 

convolution module can extract the spatio-temporal features of EEG signals efficiently, while the 3D 

spatio-temporal matrix combined with the Bi-hemispheric discrepancy module can effectively extract 

saliency in brain cognition of emotion. 

(2) In this paper, spatio-temporal features and saliency features are fused and sent into the attention 

module. The attention module can reduce feature redundancy and extract the internal spatial relations 

between multi-channel EEG signals globally, so as to obtain better emotion recognition results. 

(3) In this paper, the contribution of brain asymmetry characteristics in different brain regions to 

emotion recognition provides a theoretical basis for how to select electrodes when developing portable 

EEG devices, and provides ideas for the development of brain-computer interfaces (BCIs). 
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The rest of the paper is structured as follows. The second section describes the EEG data 

preparation approach and the proposed network in depth. The third section introduces the data collection 

and experimental settings employed in this paper, as well as the specifics of model training, before 

comparing and analyzing the experimental outcomes. At the same time, exploratory experiments were 

designed to demonstrate the good performance of the network constructed in this paper in emotion 

recognition tasks. The fourth section summarizes the methods proposed in this paper. 

2. Methodology 

To fully use the spatial and temporal properties of EEG signals, as well as the asymmetry of EEG 

signals in the left and right hemispheres of the brain, we construct a deep network based on Bi-

hemispheric discrepancy and spatio-temporal convolution attention, named BiTCAN, and apply it to 

emotion recognition. In this paper, we first preprocess the original EEG signal and intercept fixed time 

period to spatially code each channel based on information on the physical location of the electrodes. 

Finally, the spatial and temporal features of EEG signals with position information are obtained by 

combining the three-dimensional spatio-temporal convolution module. In this paper, we calculate the 

difference between the right and left hemispheres of EEG signals by using a bi-hemispheric 

discrepancy module to obtain the asymmetric characteristics of EEG signals. Finally, the attention 

model is used to combine spatio-temporal and asymmetry information into the softmax classifier for 

emotion recognition. The schematic diagram of the proposed BiTCAN for emotion recognition is 

shown in Figure 1. The proposed algorithm includes a three-dimensional spatio-temporal matrix 

construction module, a bi-hemispheric discrepancy module, a three-dimensional spatio-temporal 

convolution module, an attention module, and an emotion classification module. Each module of the 

proposed algorithm is described below. 
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Figure 1. The BiTCAN model’s framework for EEG emotion recognition. 
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2.1. 3D spatio-temporal matrix construction module 

In the research of EEG emotion recognition, most algorithms only consider the experimental 

signal in the experiment, while ignoring the influence of the baseline signal (signal without emotion) 

on the emotion recognition algorithm. The human EEG signals are unstable because human EEG 

signals are vulnerable to small environmental changes. At the same time, the EEG signals generated 

by emotional stimulation are also affected by the emotional state before stimulation to a certain extent, 

so baseline removal can effectively inhibit the EEG signals unrelated to emotion and raise the effect 

of emotion recognition. 

In the proposed model, ( )1 2, , ,T E E E E T

tX v v v R =   is defined as EEG signals containing T  time 

points, where E  is the number of electrodes, and ( )  ( )1 2, , , 1,2, ,E E E

t t t tv s s s R t T=    is the EEG 

signals of all E  electrodes collected at a certain time point t . The baseline signal and experimental 

signal in the original EEG signal are divided into K  segment and I  segment. The k -th baseline signal 

segment and the i   experimental signal segment are represented by 
kB   and 

iX  , respectively. To 

acquire the EEG data after baseline removal, all of the baseline signals were averaged, and then the 

average value of the baseline signal was subtracted from the experimental signal. This step can be 

written as follows: 

1

K

k

k

B

B
K

==


,                                                                    (1) 

T

i i
X X B= − ,                                                                   (2) 

where B  represents the average of all baseline signal segments and the EEG data after paragraph i is 

removed from baseline is defined as T

iX . 

EEG signals are produced by sensors collecting different parts of the cerebral cortex, so the EEG 

signals generated by the same area of the cerebral cortex are related. In deep learning algorithms, if 

the network directly processes one-dimensional EEG signals, it often leads the network to find the 

neighborhood correlation of EEG signals and ignore the spatial correlation of signals, which will affect 

the final emotion recognition results. Therefore, inspired by reference [24], we map EEG signals from 

one-dimensional matrices into the two-dimensional matrix to maintain the spatial information between 

adjacent electrode channels in EEG signals and further excavate the spatial correlation of EEG signals. 

In this paper, EEG electrodes are arranged into a two-dimensional mapping matrix (whose size 

is M N  ) by using the 10–20 international standard to preserve the spatial features between 

channels, where M  is the number of electrodes used in the vertical direction and N  is the number 

of electrodes used in the horizontal direction. Since the maximum number of channels tested in our 

paper is 62, the electrode channels of each data set can be arranged in a matrix of 9 × 9. Figure 2(a) 

is the international 10–20 standard electrode position topographic map. Figure 2(b) is the two-

dimensional mapping matrix of electrode position. In order not to introduce other irrelevant noise, in 

this paper, we do not interpolate the position without an electrode but directly set the value of the 

position without an electrode to 0. 
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Figure 2. The electrode placement and the mapping matrix. 

To preserve the spatial position information between each electrode and adjacent electrodes, each 

one-dimensional data vector ( )1 2, , ,E E

t t t tv s s s=  is converted to a two-dimensional matrix according to 

the mapping matrix shown in Figure 2. The two-dimensional matrix tf  at t  time can be expressed as:  

1 2 3

4 5

6 7 8 9 10

11 12 13 14

15 16 17 18 19

20 21 22 23

24 25 26 27 28

29 30 31 32

33 34 35

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

t t t

t t

t t t t t

t t t t

t t t t t t

t t t t

t t t t t

t t t t

t t t

s s s

s s

s s s s s

s s s s

f s s s s s

s s s s

s s s s s

s s s s

s s s

 
 
 
 
 

=






 










.     (3) 

For each two-dimensional data vector, in order to reduce the degree of individual aggregation, in this 

paper, we use the Z-score normalization proposed in reference [25] to normalize all elements, that is: 

t

t

e

t fe

t

f

s
s





−
 = ,   (4) 

where e

ts   is the EEG signal value of a certain electrode e  in time dimension t  after normalization, 

and 
tf

  is the mean value of all channels’ EEG signals at time t , 
tf

  is the standard deviation of these 

signal values, and the two-dimensional matrix at time t  after normalization is expressed as 
tf
 . The 

output EEG data after constructing the module with the three-dimensional spatio-temporal matrix are 

( )1 2, , ,T M N T

TX f f f R     =  . 
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2.2. Bi-hemispheric discrepancy module 

According to neuroscience research, in brain cognition, the right and left hemispheres of the brain 

have different stress signals to emotional stimuli, but simple convolution operations cannot obtain 

long-distance dependence messages of symmetry positions. In order to highlight saliency in brain 

cognition, we use the asymmetry difference between the two hemispheres of the brain caused by 

emotional stimuli and we conduct subtraction operation on the electrode pair at the symmetrical 

position of the brain and obtain more accurate emotion recognition accuracy. Based on the electrodes 

Fz, CZ, Pz and Oz on the central line, two electrodes with the same vertical distance were found as an 

electrode pair. For example, Fp1–Fp2, AF3–AF4, and C3–C4 were symmetrical electrode pairs. 

Each electrode element e

ts   in the normalized two-dimensional matrix 
tf
  is operated as follows: 

( ) ( ) ( ), , 1 ,i j i j M i j

t t ts s s
+ −  = − ,    (5) 

where ( ),i j

ts    denotes the electrode value at the position ( ),i j   at time t  , ( )1 ,M i j

ts
+ −    denotes the 

symmetric electrode of ( ),i j

ts  , where 1,2,i m= , 1,2,j n= . 

After processing by the Bi-hemispheric discrepancy module, the two-dimensional matrix 
tf
  can 

be defined as: 

( ) ( ),

1
  1

2
, ,    

1
1,  

2

i j

t t

M
i

f i j s
M

i

 

+
 = = 

+− 


，
.     (6) 

The Bi-hemispheric discrepancy module not only obtains the asymmetric difference 

characteristics of EEG signals in different hemispheres in the brain, but also retains the position 

structure relationship between EEG channels. Bi-hemispheric discrepancy module is used to extract 

the hemispheric asymmetry of the 3D spatio-temporal matrix ( )1 2, , ,T M N T

TX f f f R     =  , which 

can be calculated by the following equation: 

( )i

i

B T M N T

By F X R  =  .    (7) 

Among them, ( )1 2= , , ,iB M N T

Ty f f f R        is the asymmetry feature, and 
iBF   is defined as the 

function of the Bi-hemispheric discrepancy module. 

The extraction process of hemispheric asymmetric features is shown in Figure 3. Figure 3 shows 

how the three-dimensional spatio-temporal matrix of EEG signals is constructed, and the EEG signals 

of each electrode at each time point are taken as a pixel value in the matrix. Then the hemispheric 

asymmetry characteristics of EEG signals are extracted by using the Bi-hemispheric discrepancy module. 
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Figure 3. Feature extraction process of bi-hemispheric discrepancy module. 

2.3. 3D spatio-temporal convolution module 

In traditional two-dimensional convolution, the input layer, convolution layer, pooling layer, and 

output layer are normally present. The network’s input and output layers are the input and output layers, 

respectively. The local features of the same place in the feature map acquired in the previous layer are 

extracted by each neuron in the convolution layer. The feature maps extracted from the convolution 

layer are down-sampled in the pooling layer, resulting in scale invariance in the convolution neural 

network, decreasing data calculation and keeping of important information. However, the two-

dimensional convolution operation is only suitable for two-dimensional images and can only extract 

the image’s spatial features. Three-dimensional convolution can combine temporal and spatial 

information from EEG signals, allowing it to learn more representative spatial and temporal aspects in 

signals than two-dimensional convolution. 

In this paper, a three-dimensional spatio-temporal convolution module is constructed to extract 

the spatio-temporal information of EEG signals, and the local position information in the two-

dimensional plane and the deep temporal dimension information of EEG signals are extracted by the 

three-dimensional convolution operation. Figure 4 shows the schematic diagram of 3D convolution. 

*

Spatial Temporal Convolutional  

Figure 4. The schematic diagram of 3D convolution. 



21545 

Mathematical Biosciences and Engineering  Volume 20, Issue 12, 21537–21562. 

It can be seen from Figure 4 that the 3D convolution kernel can move in three directions (height, 

width and channel). Assuming that the element 0 0 0

0 0 0( )
x y z

ijs x y z   is an eigenvalue at 
0 0 0( , , )x y z   in the 

position of the j -th feature map in the i -th layer, the 3D convolution process can be expressed as:  

0 0 0 0 0 0

1 1 1
( )( )( )

0 0 0 ( 1)

0 0 0

( )= (b + )
i i iP Q R

x y z x p y q z rpqr

ij ij ijc i c

c p q r

s x y z w s
− − −

+ + +

−

= = =

  ,    (8) 

where the activation function is  , the size of the three-dimensional convolution kernel is 
iR , and the 

value of the convolution kernel connecting the c  feature map of the 1i −  layer and the j  feature map 

of the i  layer at the ( , , )p q r  point is 
pqr

ijcw . For the convolution layer, we employ the ReLu activation 

function, which is stated as: 

( ) ( ) (0, )ReLu s s max s= = .    (9) 

The three-dimensional pooling layer can shrink the feature matrix and extract the signal’s primary 

features, which is conducive to reducing the over-fitting risk of the network. After the pooling 

operation, the feature will have a certain loss. In this paper, the data after the three-dimensional spatio-

temporal matrix construction module are ( )1 2, , ,T M N T

TX f f f R     =  , where M and N are 9. The 

shape of the data is obviously small. If the pooling layer is still processed, too much information will 

be lost. Therefore, the 3D spatio-temporal feature extraction module in this paper does not need to 

add a pooling layer to compress the feature map. In our method, the structure of the 3D spatio-

temporal feature extraction module is shown in Figure 5 (taking the SEED dataset as an example). 

Cov1 Cov2 Cov3
Cov4

200×9×9

32@200×9×9 64@200×9×9 32@200×9×9

1@200×9×9

Input
Ouput

32@4×4×4 64@4×4×4 32@4×4×4

1@4×4×4

 

Figure 5. Module of spatio-temporal feature extraction. 

Figure 5 shows that the spatio-temporal feature extraction module based on 3D CNN is composed 

of four continuous three-dimensional convolution layers, in which the convolution kernel size of each 

convolution layer is 4 × 4 × 4. Continuous convolution can extract the local features between EEG 

signals more carefully and increase the nonlinear expression ability of the model. Compared with the 

common 3 × 3 × 3 convolution kernel, the 4 × 4 × 4 convolution kernel can better retain the spatial 

relationship between electrodes. The features captured by the spatio-temporal feature extraction 

module can be expressed as: 
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( )3

3

D T M N T

Dy F X R  =  ,   (10) 

where 
3Dy  denotes the spatio-temporal feature, and 3DF  is the spatio-temporal feature extractor. 

2.4. Space attention module 

For different emotional states, the activation state of different brain regions is different. In the 

process of emotion recognition, the prefrontal and temporal lobe brain areas have differing weights. 

The effect of EEG emotion identification is affected by strengthening or suppressing a certain brain 

region. The attention mechanism can learn the weight map of the different EEG channels, and improve 

the properties of EEG signals that are conducive to emotion recognition, and suppress useless 

information that interferes with the recognition effect. In this paper, we use a spatial attention module 

to extract important information from asymmetric features and spatio-temporal features. The structure 

of the spatial attention module is shown in Figure 6. In Figure 6, we can find that the spatial attention 

module consists of an average pooling layer, maximum pooling layer, convolution layer and dense layer. 

Softmax 

AvgPool, MaxPool

Feature M
Output Y

M , ,avg

m nM
,

Max

m nM A

Conv layer Spatial Attention

 

Figure 6. The structure of space attention module. 

Firstly, the extracted asymmetric features and spatio-temporal features are spliced to obtain the 

feature M , namely: 

v 3iB D M N CM y y R  =  .    (11) 

Then, to reduce the complexity of the calculation, we conduct global average pooling and 

maximum pooling of feature M , which are defined as:  

( ) ( ), , ,

1

1 C
avg

m n GAP m n m n

c

M F M M c
C =

= =  ,    (12) 

( ) ( ), , ,
1

C
Max

m n GMP m n m n
c

M F M Max M c
=

= = ,    (13) 
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where avg M NM R    and Max M NM R    are the average or maximum values of all channels C   of the 

feature M  , respectively; 
GAPF   and 

GMPF   represent the average pooling function and the maximum 

pooling function; 
,m nM  is a vector, representing the eigenvalues of all channels of M  at the position of 

( , )m n . 

In this paper, the results of average pooling and maximum pooling of features M  are spliced into 

the feature matrix 
,a mM , and then the feature map M   is obtained by convolution with the convolution 

of channel number 1. Then the spatial attention weight matrix is calculated by the dense layer with 

Softmax activation function, that is:  

( )A softmax WM b= + ,    (14) 

where W and b are learnable network parameters. 1M NA R    is the spatial attention weight matrix. 

After the attention matrix is generated, the entire attention process can be defined as: 

Y A X=  ,   (15) 

where Y  is a feature enhanced by attention and   represents a multiplication by element. 

2.5. Classifier 

In this paper, after feature enhancement by using a spatial attention module, the obtained features 

are input into the classifier module to achieve high-precision emotion classification. A flattened layer, 

two completely connected layers with the ReLu activation function, and a fully connected layer with 

the Softmax activation function make up the classifier module. Dropout is added to the FC1 and FC2 

layers of the full connection layer to prevent over-fitting in network training. Dropout is an effective 

tool to prevent overfitting, which can not only reduce the computation of the network, but also enhance 

the generalization ability of the network. 

Firstly, the feature Y  is input into the Flatten layer for flattening, so that the three-dimensional 

feature Y  is converted to one-dimensional 
1y , which is convenient for the subsequent calculation of 

the full connection layer. The input of FC1 is y , and the output is:  

1

1 1 1( )y tanh W y b= + ,    (16) 

where 
1W  is the weight of FC1 in the full connection layer, 1b  is the bias, and tanh() is the activation 

function. 

The input of FC2 is 1y , and the output is: 

2 2 1 2( )y tanh W y b= + ,        (17) 

where 
2W  is the weight of FC2 in the full connection layer, 2b  is the bias, and tanh() is the activation 

function. 

The last layer of the classifier module adopts the full connection layer with Softmax activation 

for emotion recognition, that is: 
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( )
( )

( )
1

, 1,2,
c

C

i

exp y
P c x c C

exp y
= =


,    (18) 

( )ˆ arg max
c

e P c x= .    (19) 

The classification cross-entropy is utilized as the loss function in this paper, and it is defined as 

follows: 

( )( ),

1

log
C

c x

c

L y P c x
=

= − ,    (20) 

where C denotes the total number of classes, ( )P c x  denotes the probability that x belongs to class c, 

ê  is the prediction value and ,c xy  denotes the binary indicator (0 or 1) in the class label.  

3. Dataset and experimental setup 

3.1. Dataset 

To evaluate the effectiveness of the proposed algorithm, we employ the public database SJTU 

emotion EEG dataset (SEED) [26] and the multi-channel database of human emotional state, the 

database for emotion analysis using physiological signals (DEAP) [27, 28], for emotion recognition. 

SEED dataset contains EEG signals triggered by the emotions from watching videos. In this 

dataset, there are 15 subjects, which contain 7 males and 8 females. The EEG signals are triggered by 

watching 15 Chinese film clips. Before each movie clip, a 5-second start prompt is given. Each film 

clip is around 4 minutes long. After watching each movie clip, each participant had 45 seconds to 

complete an evaluation questionnaire. In order to avoid fatigue in long-term experiments, a 15-

second rest time is reserved for each film clip. The order of emotions presented in the selected 

segment is [1, 0, −1, 0, 1, −1, 0, 1, 0, 0, 1, 0, −1, 0, 1, −1], where 1 represents positive emotions, 0 

represents neutral emotions, and -1 represents negative emotions. In three different periods, each 

participant carried out repeated tests, and there were 45 experiments in total. In data collection, the 

electrode cap was placed in accordance with the international 10–20 standard system [29]. Three 

types of emotions (neutral, positive, and negative) were recorded through 62-lead EEG acquisition 

equipment. The sampling frequency of the experiment was 1000 Hz, which was then down-sampled 

to 200 Hz during data preprocessing. 

Koelstra et al. [30] created the DEAP dataset, which is a multimodal dataset. The DEAP dataset 

contains emotionally stimulated responses from 32 healthy subjects. In the DEAP dataset, EEG signals 

with 32 channels and a set of physiological signals of peripheral physiological signals with 8 channels 

are recorded when watching 40 1-minute emotion-related music videos. The experiment included a 2-

second screen display of the test number, a 5-second baseline recording, a 1-minute music video 

presentation, and the remaining time for participants to self-evaluate (1 to 9) arousal, valence, liking, 

and dominance. After 20 experiments, participants took a brief break. The final EEG data for each 
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participant consists of 60 seconds of experimental data and 3 seconds of baseline signal. Electrode 

placement during EEG acquisition follows the international 10–20 system. The signal is down-sampled 

to 128 Hz after being recorded at 512 Hz sampling frequency. 

In this work, as the raw EEG signal has a large amount of noisy information unrelated to emotion, 

it will interfere with emotion recognition and affect the accuracy of emotion recognition. In this paper, 

the EEGLAB toolkit was used to pre-process the raw signal and remove the physiological noise 

unrelated to the EEG signal, including eye movement, EMG, and industrial frequency interference. The 

EEGLAB toolkit also performed spherical interpolation on the bad electrodes with high noise impact. 

In the experiment of this paper, the experiment with the SEED dataset is classified into three 

categories (positive, neutral, and negative). Each participant had 45 experiments (15  3). In this paper, 

we believed that the video was not enough to stimulate emotion at the beginning. Therefore, the first three 

seconds of the video were taken as the baseline signal, and the EEG signal at 31–90 s (total 60 s) was 

taken as the experimental signal. The size of the final processed EEG signal was 2700  200  9  9, 

where 2700 was the length of the time dimension of the data (45 experiments, 60 s of each experiment), 

200 was the number of sampling points per second and 9  9 was the size of the two-dimensional 

matrix constructed according to the electrode position. For the DEAP dataset, only EEG signal 

channels (32 channels) are used to select the data from the valence and arousal dimensions. Two 

classification tasks were performed on each dimension, namely, high/low valence and high/low arousal 

(low: ≤5, high: >5). The first 3 s were selected as the baseline signal, and the last 60 s were selected as 

the experimental signal for baseline correction. The final size of the processed EEG signal was 2400  

128  9  9, of which 2400 was the length of the data time dimension (40 trials, 60 s data per trial), 128 

was the number of sampling points per second, and 9  9 was the size of the constructed two-

dimensional matrix according to the electrode position. 

3.2. Parameter setting 

The method proposed in this paper was experimented on Python 3.7 based on the Tensorflow 2.2 

platform using Keras 2.3.1. On a cluster server with an NVIDIA GeForce TITAN X GPU, training and 

testing are carried out. The network is optimized by using the adaptive moment estimation algorithm 

(Adam) optimizer, with a learning rate of 10–4. The experiment employs ten-fold cross-validation. 

The accuracy of a subject is determined by the average value of each fold, and the accuracy of the 

entire emotion recognition is determined by the average value of all subjects’ accuracy. The 

experiment’s test data will be randomly disturbed. The proportion of the training set and test set is 

divided according to the proportion of training set and test set in the experiment to investigate the 

influence of training set scale on network performance. In each iteration of the experiment, 10 or 20 

times, batch_size was 64. 

In order to verify the accuracy and robustness of our algorithm, three sets of experiments are 

conducted to verify. First, compared with the existing emotion recognition algorithms, the classifier’s 

performance of the BiTCAN network is verified by a tenfold cross-validation method for a single subject. 

Second, we design ablation experiments to demonstrate the important role of each module in the 

proposed network and its impact on the accuracy of EEG-based emotion recognition tasks. Finally, we 

also designed experiments on the contribution of different brain regions to emotion recognition, and 
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selected brain regions that are more useful for EEG emotion recognition based on neurological 

mechanisms, which provides a theoretical basis for the development of portable EEG devices.  

4. Experimental results and analysis 

4.1. Emotional recognition results 

To verify the performance of the proposed algorithm, emotion recognition experiments were 

conducted on the SEED dataset and the DEAP dataset, respectively. In the experiment, each participant 

used a ten-fold cross validation method. We evaluated the performance of the model by using multiple 

indicators to present the results more clearly. The experimental results of the SEED dataset are shown 

in Figure 7. Similarly, we conducted the same experiment on the DEAP dataset and calculated the 

statistical standard deviation for multiple indicators on both datasets. The smaller the standard 

deviation, the more stable the performance of the proposed network is. The final experimental results 

of the two datasets are shown in Table 1. 

 

Figure 7. Recognition results of different subjects in the SEED dataset. 

In Figure 7, the classification accuracy of the proposed model has reached over 97% among all 

subjects, with 11 subjects having a Precision of over 98%, 6 subjects having a Sensitivity of over 98%, 

and 12 subjects having a Specification of over 98%, demonstrating the superior performance of the 

proposed model. 
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Table 1. Evaluation results of different indicators for two datasets. 

Dataset 

Index 
SEED (%) 

DEAP (%) 

Valence Arousal 

Accuracy 98.46/0.84 97.65/1.20 97.73/1.19 

Precision 98.25/1.24 99.35/1.05 98.57/0.98 

Sensitivity 97.19/1.74 98.14/1.26 99.16/0.98 

Specificity 98.10/1.09 98.33/1.48 97.91/1.04 

From Table 1, it can be seen that our model has achieved very good results on both the SEED 

dataset and the DEAP dataset, with standard deviations below 2 on multiple evaluation indicators, 

proving that the proposed model is robust. 

On the SEED and DEAP datasets, a comparison is done with 10 other usual approaches in order 

to better validate the advantages of the proposed algorithm (referred to as BiTCAN). These 10 

algorithms include: (1) A dynamic graph convolutional neural networks-based emotion recognition 

algorithm was proposed in [31], which can be named DGCNN; (2) A channel fusion dense convolution 

network-based emotion recognition algorithm was proposed in [32], which can be named CDCN; (3) 

A novel hybrid model-based emotion recognition algorithm was proposed in [33], which can be named 

DGGN; (4) An improved temporal convolutional network-based emotion recognition algorithm was 

proposed in [34], which can be named SITCN; (5) An attention-based LSTM with domain 

discriminator model-based emotion recognition algorithm was proposed in [35], which can be named 

ATDD-LSTM; (6) A novel model-based emotion recognition algorithm was proposed in [36], which 

can be named DE-CNN-BiLSTM; (7) A fused CNN-LSTM deep learning model-based emotion 

recognition algorithm was proposed in [37], which can be named CNN-LSTM; (8) A temporal relative 

(TR) encoding mechanism and self-attention mechanism in the transformer-based emotion recognition 

algorithm was proposed in [38], which can be named TR&CA; (9) A simple EEG-based recognition 

network was proposed in [39], which can be named SEER-Net; (10) A dual-branch dynamic graph 

convolution-based adaptive transformer feature fusion network with adapter-finetuned transfer 

learning for EEG emotion recognition was proposed in [40], which can be named DBGC-ATFFNet. 

The comparison results are shown in Table 2. 

It can be seen from Table 2 that BiTCAN obtains the best classification accuracy. In the SEED 

dataset, the accuracy of the three-classification task of BiTCAN reaches 98.46%, while the standard 

deviation is only 0.84%. The accuracy of BiTCAN is 1.15 percentage points more than the second-

best algorithm, while the standard deviation is 0.63 percentage points lower than that of the next-best 

algorithm. In the DEAP dataset, the accuracy of BiTCAN in two dimensions is 97.65 and 97.73%, 

respectively, which is 0.26 and 0.32% higher than that of the next best algorithm, while BiTCAN has 

the lowest standard deviation among the existing algorithms. The reason why the BiTCAN algorithm has 

excellent emotion recognition performance is attributed to three important modules in BiTCAN network 

construction. The bi-hemispheric discrepancy module extracts the subtly different features of emotional 

response between the two hemispheres of the human brain. Three-dimensional spatio-temporal matrix and 

three-dimensional spatio-temporal convolution module extract more advanced spatio-temporal features 

related to emotion from continuous EEG signals. The attention module can enhance the important 

information related to emotion in EEG and suppress useless interference information. 
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Table2. Effect of each emotion recognition algorithm on the seed dataset and DEAP dataset. 

Model SEED (%) 
DEAP (%) 

Valence Arousal 

DGCNN 90.40/8.49 92.55/3.53 93.50/3.93 

CDCN 90.63/4.34 92.24/– 92.92/– 

DGGN 97.28/2.70 96.98/2.23 97.19/2.56 

SITCN 88.84/– 95.02/– 95.29/– 

ATDD-LSTM 91.08/6.43 90.91/12.95 90.87/11.32 

DE-CNN-BiLSTM 94.82/– 94.02/– 94.86/– 

CNN-LSTM 93.74/– 97.39/– 97.41/– 

TR&CA – 95.18/2.46 95.58/2.28 

SEER-Net 90.73/3.38 – – 

DBGC-ATFFNet 97.31/1.47 – – 

BiTCAN 98.46/0.84 97.65/1.20 97.73/1.19 
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Figure 8. Confusion matrix of two databases. (a) The average confusion matrix of the 

SEED database; (b) The average confusion matrix of the DEAP database in valence; (c) 

The average confusion matrix of the DEAP database in arousal. 

In order to observe the emotion recognition effect of the proposed algorithm more intuitively, 

Figure 8 shows the confusion matrix obtained by BiTCAN in the SEED dataset and DEAP dataset. 

Figure 8(a) shows that when tested on the SEED dataset, positive and negative emotions are easily 

distinguished, while neutral and negative emotions are more difficult to distinguish, which may be that 

positive emotional stimuli cause more resonance among participants [41]. It can be seen from Figure 8(b) 

and (c) that it is relatively difficult to distinguish between low valence and low arousal when testing on 

the DEAP dataset, which indicates that negative emotions are more easily confused. 

4.2. The ablation experiments 

In order to demonstrate the validity of the modules in the proposed algorithm, an ablation study 

was carried out. The network structure after the ablation of the three modules is given in Figure 9. 

Figure 9(a) represents the network structure after removing the bi-hemispheric discrepancy module, 
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named w/o Bi-h block. Figure 9(b) represents the network structure after removing the 3D spatio-

temporal convolution module, named w/o 3D block. Figure 9(c) represents the network structure after 

removing the spatial attention module, named w/o AM block. The ablation experiments were 

performed by using a ten-fold cross-validation method for each subject, and the average accuracy of 

all subjects in the SEED or DEAP dataset was used as the final accuracy of the ablation model. The 

final emotion recognition results are shown in Figure 10. In the experimental results, we can find that 

the recognition accuracy of the model after removing a module is slightly worse than the BiTCAN 

results, but its accuracy is still higher than the baseline methods, thus proving the importance of the 

three modules proposed in this paper. 
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Figure 9. The diagram of the ablation experiment. 

Figure 10 shows that the performance of the BiTCAN network is optimal whether it is a SEED 

dataset or DEAP dataset, and all the three modules in the BiTCAN network contribute to the final 

classification effect. Figure 9 shows that the accuracy and stability of the model in emotion recognition 

are greatly affected after removing the three-dimensional spatio-temporal convolution module, while 

the bi-hemispheric discrepancy module has a significant impact on the accuracy of classification and 

the spatial attention module has a great influence on the stability of the network. Therefore, we can 

conclude that the discrepancy information in the bi-hemispheric module is indeed helpful to the task 

of EEG emotion recognition. The 3D convolution module can not only extract spatial and temporal 

features, but also fuse the hemispheric discrepancy and spatial and temporal features. The focus of the 

attention module on different brain regions makes the high-correlation EEG channel reduce the feature 

redundancy, which is more conducive to emotion recognition. 
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Figure 10. The results of the ablation experiment. 

4.3. The contribution of brain regions to emotion recognition 

Neurological studies show that the brain responds to different emotions with different activation 

values in different brain regions [42,43]. The attention mechanism added to the proposed model can 

effectively focus on the differences in activation degrees of different brain regions caused by emotions, 

which can increase emotion recognition accuracy. According to the neural mechanism, the brain is 

divided into four different regions [44,45], as indicated in Figure 11, the temporal lobe, the frontal lobe, 

the occipital lobe and the parietal lobe. Figure 11(a) is the brain partition map of the SEED dataset, 

and Figure 11(b) is the brain partition map of the DEAP dataset. The specific electrode settings are 

shown in Table 3, the frontal lobe is represented by F, the temporal lobe is represented by T, the parietal 

lobe is represented by P and the occipital lobe is represented by O. 
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Figure 11. The brain region division on two datasets. 
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In emotion recognition, we explore the contribution of different brain regions, the electrodes in 

each brain region were selected to construct a three-dimensional spatio-temporal matrix in the 

experiment, while the electrodes in other useless positions were set to zero. Each subject is tested by 

tenfold cross-validation. The final accuracy of a specific brain area is the average accuracy of all 

subjects. The experimental results are shown in Table 4. It can be seen from Table 4 that the frontal 

and temporal lobes play the most important roles in emotion recognition, and emotion classification 

accuracy is the highest. In the emotion recognition task, the standard deviations of frontal and temporal 

lobes are lower and more stable than those of other brain regions, which is consistent with the research 

in [42,43]. The response of the occipital lobe and parietal lobe to emotion is basically the same, but 

the standard deviation of the occipital lobe is greater and the volatility is greater. Therefore, in the 

design of portable EEG emotion recognition equipment, the electrode selection should focus on the 

frontal lobe and temporal lobe. 

Table 3. The electrode blocks in different brain regions on two datasets. 

Brain region SEED DEAP 

Frontal 
Fp1, Fpz, Fp2, AF3, AF4, F7, F5, F3, F1, Fz, F2, 

F4, F6, F8, FC7, FC8 

Fp1, Fp2, AF3, AF4, F7, F3, 

Fz, F4, F8 

Temporal 
FC5, T7, C5, TP7, CP5, P7, P5, PO7, FC6, T8, 

C6, TP8, CP6, P8, P6, PO8 

FC5, T7, CP5, P7, FC6, T8, 

CP6, P8 

Parietal 
FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, C2, C4, 

CP3, CP1, CPz, CP2, CP4 

FC1, FC2, C3, Cz, C4, CP1, 

CP2 

Occipital 
P3, P1, Pz, P2, P4, PO5, PO3, POz, PO4, PO6, 

CB1, O1, Oz, O2, CB2 

P3, Pz, P4, PO3, PO4, O1, Oz, 

O2 

The above experiments not only explored the contribution of each brain area to emotion 

recognition, but also proved that the proposed network in this paper reduced the number of electrodes 

to a quarter (for the SEED dataset, there are 16 electrodes in frontal and temporal lobes, 15 electrodes 

in parietal and occipital lobes; for the DEAP dataset, when there are nine electrodes in the frontal lobe, 

eight electrodes in the occipital lobe and the temporal lobe, and seven electrodes in the temporal lobe), 

and the accuracy of emotion classification is still almost the same as that of the whole brain electrode. 

This is mainly because the space-time matrix constructed in this paper can better preserve the space-

time features. The nature of EEG signals determines that the data contain a large amount of time 

information but lack spatial information. The spatio-temporal matrix constructed in this paper increases 

spatial information. At the same time, the bi-hemispheric discrepancy module extracts the differences 

in emotional reactions between the left and right hemispheres of the brain. The three-dimensional 

convolution module and the attention module jointly extract the spatio-temporal features of more 

powerful and higher resolution depth features, so as to obtain better emotional recognition results. 

  



21556 

Mathematical Biosciences and Engineering  Volume 20, Issue 12, 21537–21562. 

Table 4. Effect of emotion recognition based on brain regions. 

 SEED 
DEAP 

Valence Arousal 

F 96.82/2.27 96.42/1.93 96.74/1.65 

T 96.77/2.04 96.28/2.03 97.28/1.65 

P 93.19/3.32 95.96/1.97 95.91/1.70 

O 94.94/4.20 95.60/2.78 96.04/2.18 

F represents the electrode used only in the frontal lobe, T represents the electrode used only in the temporal lobe, P 

represents the electrode used only in the parietal lobe and O represents the electrode used only in the occipital lobe. 

In previous studies, researchers in neuroscience have also explored the effects of asymmetry 

between different hemispheres in the brain on emotion [46–48]. It is pointed out in some literature that 

positive emotions can better stimulate the electrode activity of the left frontal lobe of the brain, while 

negative emotions can better activate the electrode activity of the right frontal lobe of the brain [49–51]. 

So, in this paper, we use the bi-hemispheric discrepancy module to extract the asymmetric information 

of the left and right hemispheres to obtain results more conducive to emotional classification and 

recognition features. In addition, in the proposed method, we also add the attention module to enhance 

the key information in EEG signals from the global perspective to strengthen the distinguishing feature.  

In order to observe the electrode activity under different emotions more intuitively, we directly 

input the EEG features extracted by the bi-hemispheric discrepancy module into the attention module, 

and map the attention activation value to the corresponding electrode position, which can be seen in 

Figures 12 and 13. In Figure 12, we can find the electrode activity mapping of the SEED three-class 

dataset under positive, neutral and negative emotions. Figure 13 is the electrode activity mapping of the 

DEAP dataset under four emotions (high valence and high arousal (HVHA), high valence and low 

arousal (HVLA), low valence and high arousal (LVHA) and low valence and low arousal (LVLA)) 

in two emotional dimensions. The deeper the color is, the greater the contribution made under 

specific emotions. 

 

 (a) Positive                   (b) Neutral                 (c) Negative 

Figure 12. The electrode activity maps under three emotions in the SEED dataset. 
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(a) HVHA                (b) HVLA                 (c) LVHA                 (d) LVLA 

Figure 13. The electrode activity maps of four emotions in the DEAP dataset with two 

dimensions. 

Figure 12 shows that the emotional induction is focused on the anterior frontal lobe, frontal lobe 

and temporal lobe, which is in line with the findings of the experiments in Table 4. Figures 12(a)–(c) 

show that the electrode activity map under positive emotions is more obvious than that under neutral 

emotions and negative emotions, the electrode activity of the frontal and occipital lobes are not obvious, 

and the difference in the parietal lobe is not significant.  

Moreover, the electrode activity map under positive emotions is more different from that under 

the other two emotions, which is also the reason why positive emotions are easier to distinguish than 

the other two emotions in the emotion recognition experiment. The difference between neutral emotion 

and negative emotion is mainly that the electrode activity of the temporal lobe is slightly different, so 

the difference between these two emotions is small and difficult to distinguish, which may be related 

to the brain action mechanism of human beings under negative emotion and neutral emotion. It can be 

seen from Figure 13 that the four emotional categories in the two dimensions of the DEAP dataset are 

also basically concentrated in the anterior frontal lobe, frontal lobe, and temporal lobe. In the emotional 

state of high valence, the occipital lobe also made some contributions. Compared with the valence 

dimension, the emotions in high and low arousal dimensions are easier to distinguish in the electrode 

activity diagram (especially the electrodes of CP5 and CP6 temporal lobes), which also corresponds 

to the experimental results in Table 4. In both datasets, the asymmetry of frontal and temporal lobes 

plays an important role in emotion recognition tasks. These findings are consistent with 

neuropsychological findings that the frontal and temporal lobes are the main brain regions associated 

with emotion. 

5. Conclusions 

In this paper, we propose an EEG emotion recognition model based on BiTCAN, which improves 

the classification accuracy of EEG emotion recognition tasks. BiTCAN consists of a three-dimensional 

space-time matrix construction module, a Bi-hemispheric discrepancy module, a three-dimensional 

space-time convolution module, an attention module, and an emotion classification module. A 3D 

spatio-temporal matrix combined with a 3D spatio-temporal convolution module can effectively 

extract the spatio-temporal features of EEG signals, and a 3D spatio-temporal matrix combined with a 

Bi-hemispheric discrepancy module can effectively extract the asymmetric features of EEG signals. 
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Finally, the spatio-temporal features and asymmetric features are fused and sent to the attention module. 

The attention module can reduce the feature redundancy and extract the global internal spatial 

relationship between the multi-channel EEG signals, so as to obtain better emotional recognition 

results. The accuracy of our emotion recognition is above 97% in both of the two public datasets DEAP 

and SEED, which is better than the existing algorithms. In addition, we investigate the role of different 

brain regions in emotion recognition, concluding that the asymmetry of the frontal and temporal lobes 

is important in the emotion recognition task, which is consistent with neuropsychological findings. We 

also give some experiments to show how to select channels in EEG emotion recognition to reduce the 

computational complexity of emotion recognition models with a small number of EEG channels and 

provide a theoretical basis for the development of convenient EEG devices. Although the proposed 

model achieved satisfactory results in a single-subject task, it performed poorly in cross-subject 

experiments for a simple feature. In the future, we’ll concentrate on the multimodality emotion 

recognition task and the cross-subject classification task based on EEG signals, which can provide 

more ideas for the development of BCI. 
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