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Abstract: Assessing potential threats typically necessitates the use of a robust mathematical model, a 

comprehensive evaluation method and universal decision rules. A novel approach is utilized in this 

study to optimize existing threat assessment (TA) algorithms and three-way decision models 

(3WDMs) are leveraged that incorporate decision-theoretic rough sets (DTRSs) within dynamic 

intuitionistic fuzzy (IF) environments to create a mixed-attitude 3WDM based on the IF-VIKOR-

GRA method in the context of aviation warfare. The primary objectives of this study include 

determining conditional probabilities for IF three-way decisions (3WDs) and establishing mixed-

attitude decision thresholds. Both the target attribute and loss function are expressed in the form of 

intuitionistic fuzzy numbers (IFNs). To calculate these conditional probabilities, an IF technique is 

used to combine the multi-attribute decision-making (MADM) method VIKOR and the grey 

relational analysis (GRA) method, while also taking into account the risk-related preferences of 

decision-makers (DMs). Optimistic and pessimistic 3WDMs are developed from the perspectives of 

membership degree and non-membership degree, then subsequently integrated into the 

comprehensive mixed-attitude 3WDM. The feasibility and effectiveness of this methodology are 

demonstrated through a numerical example and by comparison to other existing approaches. 

Keywords: threat assessment (TA); intuitionistic fuzzy numbers; VIKOR; GRA; optimistic three-

way decisions; pessimistic three-way decisions 

 

1. Introduction  

Aerial target threat assessment (TA) is a vital aspect of the modern information battlefield. As the 
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information environment becomes increasingly uncertain and ambiguous, addressing this problem 

becomes increasingly difficult. Typically, the problem is resolved through three key steps: model 

construction, threat evaluation and target ranking [1–5]. However, with the evolution of information 

technology, knowledge handling in aerial combat situations could become even more challenging 

due to the emergence of uncertainties. 

Researchers have extensively explored mathematical tools for describing the TA problem in 

uncertain environments. Among these tools, intuitionistic fuzzy sets (IFSs) have gained considerable 

attention for their unique features and advantages [6–8]. Intuitionistic fuzzy numbers (IFNs) may be 

employed to represent target attributes and combined using various operators to produce a final target 

TA value for ranking purposes [9–11]. In this study, we developed an approach to modeling aerial 

target TA problems in an intuitionistic fuzzy (IF) environment, which is highly adaptable to real-

world scenarios. 

Regarding threat evaluation and target ranking, most previous studies have followed a binary 

decision-making model centered on the choices “to attack” or “not to attack”. However, this binary 

approach is not suitable for common situations in modern warfare, where immediate decisions are 

often impossible due to insufficient or unreliable target information. Originally proposed by Yao, the 

three-way decision (3WD) theory expands upon the traditional binary-decision model by introducing 

a third option: hesitation. This extended model has been widely applied to decision-making problems 

and investigated at length by previous scholars [12–19]. In the context of aerial target TA, it is 

common practice to utilize a three-way decision model (3WDM) in conjunction with decision-

theoretic rough sets (DTRSs) [20–26]. The TA process yields target conditional probabilities, which 

are then compared to classification thresholds based on loss estimation. In establishing the proposed 

approach, we incorporated 3WDM with DTRSs to address IF-based TA problems.  

The next critical challenge is the computation of conditional probabilities, a task heavily reliant 

on target information. Typically, this is accomplished through multi-attribute decision-making 

(MADM) methods like VIKOR [27] and TOPSIS [28]. VIKOR generates a compromise ranking list 

by balancing group utility and personal regret, then revealing the alternative closest to the ideal 

solution [29]. TOPSIS, conversely, directly computes and sequences the Euclidean distances between 

targets and ideal solutions, then designates the best alternative as the one that has the shortest 

distance from the ideal solution and longest distance from the negative-ideal solution without 

considering their relative importance [30]. Recognizing the limitations of IF-TOPSIS for effectively 

evaluating targets on the perpendicular of ideal and negative-ideal solutions, Gao et al. [31,32] 

introduced the IF-VIKOR method. Additionally, researchers have explored the application of the 

grey relational analysis (GRA) method, which incorporates the closeness of alternatives to ideal 

solutions in the selection and ranking of weaponry [33]. A hybrid GRA-TOPSIS approach was later 

proven effective in managing aerial target classification in complex and uncertain battlefield 

scenarios [20]. This approach evaluates targets comprehensively based on attribute values and trends 

and can manifest fluctuating trends in target attributes. Building on these observations and 

advancements, we developed the IF-VIKOR-GRA approach to calculate conditional probabilities for 

final classifications. 

The final issue to be resolved pertains to estimating the loss function and establishing 

classification thresholds. The majority of previous researchers have computed loss functions using 

crisp numbers and calculated thresholds based on minimum-risk decision rules [34–36], with 

possible losses solely dependent on target attribute values. However, this approach may not be 

suitable for the uncertain combat environment, necessitating the incorporation of additional factors 

into the decision model. To address this issue, we utilized IFNs to represent the loss function. 
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Additionally, human cognitive features can be leveraged to develop decision rules that are adaptable 

to the risk preferences of decision-makers (DMs). Previous research efforts have used these features 

to enhance the generality and accuracy of decision-making processes such as the establishment of 

classification thresholds. Regarding risk preferences, individuals can be roughly categorized as either 

optimists or pessimists [37]. Optimists tend to predict favorable future outcomes while pessimists 

envision unfavorable circumstances befalling them. Various interpretations of these phenomena can 

be found throughout the literature. Fan et al. [38], for example, constructed optimistic and 

pessimistic multi-granulation IF 3WDMs for target recognition; the former applied a more rigorous 

decision rule for the negative region while the latter used one for the positive region. Zhang et al. [39] 

also proposed a pair of positive and negative IF 3WDMs, constructing them concerning membership 

and non-membership degrees of loss values. Unlike [38], Zhang et al. [39] considered the dual 

thresholds simultaneously, with optimistic DMs more inclined to decisive actions (i.e., attack or not 

attack) while pessimistic DMs tend towards deferment. However, both works overlooked the fact 

that DMs often have mixed attitudes, falling between absolute optimism and total pessimism. This 

feature can be further quantified using numerical equations. In this study, we expanded and 

integrated Zhang’s models to create a mixed-attitude IF 3WDM that allows for adjustable 

proportions of optimism and pessimism among DMs.  

This paper presents an effective IF-VIKOR-GRA algorithm that utilizes a 3WDM. We introduce 

a method that separately manages membership and non-membership degrees, combining the 

resulting optimistic and pessimistic 3WDMs (when α2(x) > α1(x) and β2(x) > β1(x)) into a mixed-

attitude 3WDM with an adjustment coefficient. This integration condenses two pairs of thresholds 

representing different attitudes into a single set. We conducted numerical simulations and 

comparisons against other state-of-the-art methods to validate the mixed-attitude 3WDM based on 

the IF-VIKOR-GRA method. It is important to note that attribute values and loss values are directly 

designated in this paper. Corresponding determination approaches were intentionally left as open 

problems to prevent deviation from the primary theme of our work and avoid straying into unrelated 

topics. 

The remainder of this paper is organized as follows: Section 2 briefly introduces some 

fundamental concepts, theories and methods related to IFNs, VIKOR, GRA and 3WDs. Section 3 

presents the proposed mixed-attitude 3WD TA method with IF-VIKOR-GRA. Section 4 discusses 

our numerical examples and comparative analysis. Section 5 provides a summary and concluding 

remarks. 

2. Preliminaries 

Basic concepts, theories and formulas relevant to IFNs, VIKOR, GRA and 3WDs are briefly 

reviewed in this section. 

2.1. IFNs 

Definition 1 [40]. An IFS A in a fixed set U can be defined as follows: 

 , (2.1) 

where the functions ,  denote the degree of membership and non-membership of element 
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x  U to A, respectively. Here, : U  [0, 1], : U  [0, 1], for  x U, obviously 0 ≤

 +  ≤ 1. The non-determinacy degree of element x to set  can be defined as the value of 

function : 

 . (2.2) 

Similarly, : U  [0, 1]. A shortened form of an IFN is also allowed: 

 . (2.3) 

For two IFNs  and , the following basic operations hold: 

 , (2.4) 

 , (2.5) 

 . (2.6) 

2.2. VIKOR and GRA method 

To operate VIKOR [41] and GRA [42] methods, first let  be a set of alternatives, 

, denote  as a set of attributes,  and set  as the 

information data for the jth attribute over the ith alternative. Let  be the weight of the jth attribute. 

Next, define the positive and negative ideal solution series of attributes as follows: 

 , (2.7) 

 , (2.8) 

 , (2.9) 

 , (2.10) 

where  denotes the set of benefit attributes and  is the set of cost attributes. 

2.2.1 VIKOR method 

1) Calculate group utility  and individual regret  by the relations 
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 , (2.11) 

 , (2.12) 

2) Calculate the compromise solution  by the relation 

 , (2.13) 

where  is the compromise coefficient, . The coefficient is introduced as the weight of the 

maximum group utility. Consequently,  is the weight of the minimum individual regret. 

2.2.2 GRA method 

1) Determine the reference sequence as , and denote the positive and negative 

comparison sequences as  and , respectively. 

2) Non-dimensionize the data to be calculated. 

3) Calculate the difference sequences  and , then determine the maximum 

differences and minimum differences. Respectively compute the positive and negative coefficients 

 and , and finally the grey relational degrees  and . Calculate  as follows: 

 , (2.14) 

 , (2.15) 

 . (2.16) 

Similarly, compute  as 

 , (2.17) 

 , (2.18) 

 . (2.19) 

2.3. 3WD based on decision-theoretic rough set model  
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Definition 2 [43,44]. Taking both the Bayesian decision procedure and 3WD into consideration, 

Yao [44] proposed a DTRS model that derives thresholds that separate three regions of probabilities. 

Given an information table S = (U, AT, VA, f ) , where all the sets are nonempty and finite, AT is an 

attribute set and VA is a value set. f :  U  VA and a nonempty finite set X  U. For every x  U, 

the rough membership function  can be defined as: 

 , (2.20) 

where  denotes the cardinality of a finite set and  is the conditional probability of an 

object in  given that it is in . 

Consider a set of two states  = {X, ¬X}. For simplicity, sign X also denotes a target belonging to 

X, and vice versa. Each state has three actions denoted by A = {P, B, N}, which represents the action 

of classifying x into POS (X ) , BND (X )  and NEG (X ) , respectively. A 3  2 matrix of loss function 

L =  (  = P, B, N, and  = P, N) is also introduced to clarify the classification cost during this 

decision process (Table 1). Let  represent the three actions and  indicate whether a target belongs to 

X. Thus,  represents the cost for action  in the state . 

Table 1. Classification cost. 

 X ¬X 

P λPP λPN 

B λBP λBN 

N λNP λNN 

Given the cost matrix above, the predicted losses R( |[x]) in response to the different decisions 

made for targets in [x] can be calculated as follows: 

  (2.21) 

According to the Bayesian decision procedure, decision rules that minimize the risks are 

suggested as follows: 

  (2.22) 

Given the prerequisites  +  = 1, consider λPP ≤ λBP < λNP and λNN ≤ λBN < 

λPN. Accordingly, the above rules can be rewritten as: 

  (2.23) 
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The parameters ,  and  are: 

 , (2.24) 

 , (2.25) 

 . (2.26) 

3. Mixed-attitude 3WD TA method with IF-VIKOR-GRA 

The proposed method was developed to address the dynamic nature of battlefield situations, 

allowing for the full utilization of time-variant target information. This approach was designed to 

deliver objective and comprehensive assessment results that can be tailored to individual preferences. 

The assessment process, which includes an improved VIKOR-GRA method and a mixed-attitude 

3WDM-IF, is visually depicted in Figure 1 and explained in detail in Algorithm 1. 
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Figure 1. Process of the proposed method. 

3.1. Dynamic information integration 

Real-world battlefield scenarios are characterized by turbulence and urgency. To grasp an 

adversary’s status rapidly and comprehensively, it is crucial to select an appropriate aggregation 

operator for the information collected at various time intervals. Recognizing that the significance of 

target information intensifies as the present moment approaches, a set of time points (or moments) 

can be denoted as  with the corresponding weight vector . This 

sequence can be calculated using the inverse form of the Poisson distribution, resulting in a 

monotonically increasing sequence [45]: 
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 , (3.1) 

where ,  and .  

Let T be a set of incoming targets, , while A is a set of target attributes,

. Denote  as the information data for the ith target over the jth attribute. In 

IFNs , where  denotes the membership degree of the 

target Ti to the attribute Aj and  represents the non-membership degree of the target Ti to the 

attribute Aj. This yields the following integrated IF target information matrix Z: 

 , (3.2) 

 . (3.3) 

3.2. Steps for target attribute weight matrix construction 

Here, IF entropy is introduced to calculate target attribute weights in the IF environment. By 

minimizing the total entropy, the weight can be distributed to acquire maximized reliability. 

1) Determine the IF entropy  for target attribute : 

 . (3.4) 

2) Construct a nonlinear programming model for target attribute weights : 

 . (3.5) 

3) Calculate the target attribute weights using the Lagrange function with the Lagrange factor : 

 , (3.6) 

 . (3.7) 
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3.3. Conditional probability calculation based on the IF-VIKOR-GRA method 

The traditional IF technique for order preference, as applied in the TOPSIS method, involves 

sorting targets by comparing the Euclidean distance between the targets and positive and negative 

solutions, which is a straightforward approach. However, the VIKOR method goes further by aiming 

to simultaneously maximize group benefits while minimizing individual regrets. In the context of 

dynamic TA, it also becomes imperative to evaluate the evolving threat levels of targets. To address 

this issue, we propose an IF-VIKOR-GRA method designed to compute the conditional probabilities 

of targets. 

The positive and negative ideal solution series are defined as follows: 

  (3.8) 

  (3.9) 

where  and  can be calculated by  

 , (3.10) 

 , (3.11) 

and  denotes the set of benefit attributes while  is the set of cost attributes. 

Next, calculate the distance between two IFNs  and  according to the 

following distance measure method [46]: 

Let , , , 

. 

 . (3.12) 

Denote the distance between positive-ideal, negative-ideal solutions and target  as  and 

, then compute the following: 

 , (3.13) 
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 . (3.14) 

Next, calculate the ranking value of the IF-VIKOR method [32] and IF-GRA [20]. 

The group utility , individual regret  and compromise solution  for the ith target are 

calculated as follows: 

 , (3.15) 

 , (3.16) 

 . (3.17) 

The coefficient  is dependent on the DM’s risk preference between overall benefits and personal 

opinions. If it is set to 0.5, the DM has no specific preference; higher or lower values suggest a 

certain preference. A smaller Qi value signifies a larger threat posed by the target . Hence, the 

conditional probability generated from the VIKOR method can be computed as follows: 

 . (3.18) 

Apart from making comparisons regarding the targets’ relative closeness to ideal solutions, the 

target-ideal similarity of the sequence curve geometry should also be examined. 

First, calculate the positive and negative grey relational degrees ,  using Eqs 

(3.19) and (3.20): 

 , (3.19) 

 , (3.20) 

where  is the discrimination coefficient ranging from 0 to 1, normally taken as 0.5. Next, normalize 

these values according to Eqs (3.21) and (3.22): 

 , (3.21) 
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 . (3.22) 

A larger  indicates that the target  is more dangerous. Thus, the conditional probability can be 

calculated as: 

 . (3.23) 

To fully leverage the strengths of both VIKOR and GRA methods, their weighted average value 

can be calculated as follows: 

 , (3.24) 

where  is the preference value, which ranges from 0 to 1 depending on the DM’s preference towards 

either method. 

Additionally, considering the fluctuating challenge levels posed by various types of incoming 

weapons and their varying combat capabilities, we introduce a new coefficient, , to 

further fine-tune the assessment results. Its value increases as the importance of the weapon type to 

which a target belongs increases. The comprehensive conditional probability can thus be expressed 

as follows: 

 . (3.25) 

Finally, define IFN , whereas , , 

. 

3.4. Target classification 3WDM with IFNs 

This section introduces the novel mixed-attitude 3WDM-IF model, where the cost parameter 

values are also designated as IFNs [39].  

First, construct the IF cost parameter matrix L =  (  = P, B, N, 

and  = P, N )  as shown in Table 2. 

Table 2. IF cost parameter matrix. 

 X(P) ¬X(N) 

P   

B   

N   

Under the prerequisites 

  (3.26) 
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the classification cost  (  = P, B, N) can be calculated as follows: 

 . (3.27) 

In reference to Definition 1, the above equation can be rewritten as follows: 

 . (3.28) 

For simplicity, denote  as . Next, with respective consideration to  and , the 

optimistic and pessimistic 3WDM-IF can be constructed based on Eqs (2.22) and (2.23). 

First, define two sets of thresholds:  and  for decision 

rules made based on the membership and non-membership degrees. Calculate the variants using Eqs 

(3.29)–(3.34). 

 , (3.29) 

 , (3.30) 

 , (3.31) 

 , (3.32) 

 , (3.33) 

 ,  (3.34) 

The given prerequisites in this case are: 
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  (3.35) 

We can infer that  where ,  , so the 

following definitions hold: 

  (3.36) 

DMs are faced with open sets of choices when  and , as illustrated in 

Figure 2. 

 

Figure 2. 3WD situation where  and . 

In the scenario described above, it is reasonable to assume that optimistic individuals would lean 

towards making bold decisions (i.e., categorizing targets into either positive or negative regions). 

Pessimistic individuals, conversely, would tend to favor more choices, potentially labeling more 

targets as “to be further confirmed”. Ideally, this divergence in decision-making approaches would 

result in noticeable differences in the decisions, as visually depicted in Figures 3 and 4. 

 

Figure 3. Optimistic 3WDM-IF. 

 

Figure 4. Pessimistic 3WDM-IF. 
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For individuals who do not fall expressly into optimist or pessimist categories, and rather exhibit 

a certain degree of preference that falls between these opposing attitudes, the scenario must be 

approached differently. The novel mixed-attitude 3WDM-IF was designed to facilitate rational, 

precise and expeditious decision-making in such cases. This approach harmoniously blends the 

aforementioned optimistic and pessimistic strategies to ensure overall accuracy. In Eq (3.37), linear 

combinations are made between the two pairs of thresholds applied in the previously discussed 

strategies. The values of the newly generated thresholds are adjustable through the modification of 

the adjustment coefficient . 

  (3.37) 

With some adjustments to Eq (2.23), the mixed-attitude 3WDM-IF can be expressed as: 

  (3.38) 

as is shown in both Figure 5 and Table 3. 

Targets categorized within the positive region necessitate an immediate organization of an attack. 

Those situated in the boundary region, on the other hand, require further observation in case of 

sudden changes in the situation. As for the remaining targets, it is advisable to stay on standby as no 

further action is necessary. 

 

Figure 5. Mixed-attitude 3WDM-IF ( ). 

Table 3. Mixed-attitude 3WDM-IF and corresponding actions. 

Conditional probability Classification Action 

  Attack 

  Further observation 

  Standby 

4. Illustrative example analysis 

Consider an ongoing air-defense combat scenario involving four incoming targets  (  = 1, 

2, 3, 4) under surveillance. These targets are defined by attributes denoted as  (  = 1, 2, 3, 4) 

representing their combat capability, speed, distance and angle, respectively. Combat capability and 

speed fall under the benefit attribute category, where higher values indicate a higher level of threat. 
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Distance and angle are categorized as cost attributes, where lower values signify a higher level of 

threat. The IF evaluation information for all the targets [20] at three consecutive moments,  (  

= 1, 2, 3) is presented in Table 4. Assume here that  is the current time. 

Table 4. Initial target IF evaluation information. 

t T A1 A2 A3 A4 

t1 

T1     

T2     

T3     

T4     

t2 

T1     

T2     

T3     

T4     

t3 

T1     

T2     

T3     

T4     

According to Eq (3.1), let  = 1.5, then  = (0.2, 0.2667, 0.5333). The integrated IF target 

information matrix Z can be obtained based on Eqs (3.1)–(3.3): 

 . (4.1) 

The present comprehensive attribute weight vector based on Eqs (3.4)–(3.7) is: 

 . (4.2) 

According to Eqs (3.8)–(3.11), the positive and negative ideal solution series are: 

  (4.3) 

Select 0.75 as the value of the compromise coefficient  for the VIKOR method. According to 

Eqs (3.12)–(3.18), the corresponding conditional probability can be calculated as: (1, 0, 0.5628, 

0.2365). Similarly, the conditional probability generated from the GRA method can be obtained as 

(0.6120, 0.4759, 0.5624, 0.5177). 

Take , ρ = (0.95, 0.75, 0.8, 0.85), so based on Eqs (3.24) and (3.25), the final 

comprehensive conditional probability  is  and the target 

ranking is: T1 > T3 > T4 > T2. Table 5 presents an IF cost parameter matrix L that can be utilized to 

further obtain the optimistic and pessimistic thresholds for 3WD.  
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Table 5. IF cost parameter matrix for attack decision. 

   

   

   

   

After obtaining the thresholds described above, set  as 0.5 and calculate the final thresholds for 

3WDM. Table 6 lists the final conditional probabilities, thresholds and classification decisions of all 

the targets and corresponding actions, which are further illustrated in Figure 6. Based on the mixed-

attitude 3WDM-IF, , ;  requires an immediate attack while ,  

and  need further confirmation. 

To validate the efficacy of the mixed-attitude 3WDM, we conducted numerical simulations to 

explore its performance in comparison to different TA methods and with various coefficients. 

Table 6. Final conditional probabilities, thresholds, classification decisions and actions. 

   Classification Action 

 0.7657 
0.6734 

POS Attack 
0.2040 

 0.1785 
0.5316 

BND Further observation 
0.1611 

 0.4501 
0.5671 

BND Further observation 
0.1718 

 0.3206 
0.6025 

BND Further observation 
0.1825 

 

Figure 6. Decisions for targets based on the mixed-attitude strategy. 
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We first compared the proposed VIKOR-GRA with the TOPSIS-GRA method [20] and the 

VIKOR method using ρ = (0.95, 0.75, 0.8, 0.85) and  = 0.5. Figure 7 clearly shows where the threat 

rankings produced by all three methods were identical, affirming the effectiveness of the proposed 

method. In terms of classification results, the three methods converged on the classification of T3 and 

T4 in the boundary zone but exhibited notable discrepancies for T1 and T2: VIKOR-GRA and VIKOR 

classified T1 in the positive zone, while TOPSIS-GRA classified it into the boundary zone; VIKOR 

placed T2 in the negative zone while the other two methods assigned it to the boundary zone. This 

observation suggests that the proposed method surpasses mere absolute distance comparisons 

between targets and ideal solutions. It factors in a trade-off between individual regrets and group 

benefits, as well as the correlations between curves. In essence, the method combines the strengths of 

VIKOR and GRA while accounting for target types, resulting in more comprehensive and reasonable 

evaluation outcomes. 

Next, we examined the impact of  with ρ ranging from 0.5 to 1 on the target membership 

degree and classification. The results are shown in Figure 8. Coefficient ρ serves as a measure of the 

risk level for each target according to its type, directly influencing the target’s hesitancy degree given 

that . The target’s hesitancy degree decreases as ρ increases, with 

the target’s membership degree and non-membership degree increasing proportionally. This aligns 

with the expectation that riskier targets yield higher assessment results. The thresholds also rise 

concurrently, as illustrated in Figure 8. The values of α and β both increase with ρ, but α increases 

relatively faster, leading to an expansion in the negative and boundary zones and contraction in the 

positive zone. Although seemingly contradictory, this phenomenon is consistent with the concept that 

riskier targets necessitate more cautious decision-making. It is also worth noting that as ρ varies, the 

final target ranking and classification decisions remain unaffected for targets of the same type. 

However, for targets with different combat capabilities, ρ assists in prioritizing them. 

 

Figure 7. Threat ranking and classification results for three methods. 
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Figure 8. Influence of confidence degree on classification . 

 

Figure 9. Influence of adjustment coefficient on thresholds . 

Next, we fixed ρ at 0.75 and proceeded to examine the influence of the adjustment coefficient for 

the optimistic 3WDM and pessimistic 3WDM on mixed-attitude 3WDM thresholds. As Eq (3.37) 

demonstrates, the adjustment coefficient ε directly reflects and quantifies the DM’s attitude towards 

both ends of the decision spectrum. Ranging from 0 to 1, ε indicates that the DM leans toward a 

pessimistic decision when below 0.5 and implies the opposite when it exceeds 0.5. Figure 9 provides 

a visual representation of how ε influences the thresholds in the mixed-attitude 3WDM. The region 

between α and β gradually widens as ε increases, also indicating the expansion of the boundary zone. 

Though the changes in α and β are not substantial, they do reflect the precision of the method. This 

observation aligns with the notion that more pessimistic DMs make more cautious decisions. 

Therefore, the combination of 3WDMs with opposing attitudes and the adjustment coefficient ε 
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makes the proposed 3WDM adaptable to the subjective tendencies of DMs, leading to more accurate 

results. 

The simulation results further verify the feasibility of the mixed-attitude 3WDM. This new model 

can facilitate 3WDs for aerial targets in dynamic IF environments. It may also have broader 

applications, including addressing target TA and classification problems in more complex battlefield 

scenarios.  

5. Conclusions 

This paper proposes a novel 3WD TA model that leverages DTRS and fuzzy set theories for 

application in uncertain battlefield environments. Both target attributes and loss functions are 

represented using IFNs. The conditional probability for 3WD is derived through an innovative IF-

VIKOR-GRA method, which considers a trade-off between group utility and individual regret, as 

well as data trend similarities. We obtained two sets of decision thresholds reflecting optimistic and 

pessimistic attitudes based on the 3WDM with IFNs. We then constructed the mixed-attitude 

3WDM-IF by combining optimistic and pessimistic 3WDM-IFs, taking into account risk preferences 

to enable more flexible decision rules. We conducted numerical simulations to verify the reliability 

of the TA method comprising IF-VIKOR-GRA and mixed-attitude 3WDM-IF. The IF-VIKOR-GRA 

method was found to be capable of producing comprehensive and rational evaluation results, while 

the generality of the mixed-attitude 3WDM-IF allows for more precise classification rules based on 

the preferences of DMs. 

Future research may focus on conducting comprehensive evaluations of the strengths and 

weaknesses of various mathematical tools employed for describing battlefield uncertainties, as well 

as refining the hybrid TA algorithm concerning the time scale. This exploration could contribute to 

improving battlefield knowledge management, target descriptions and response timeliness. 
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