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Abstract: The rapid development of deep learning has made a great progress in salient object detec-
tion task. Fully supervised methods need a large number of pixel-level annotations. To avoid laborious
and consuming annotation, weakly supervised methods consider low-cost annotations such as category,
bounding-box, scribble, etc. Due to simple annotation and existing large-scale classification datasets,
the category annotation based methods have received more attention while still suffering from inac-
curate detection. In this work, we proposed one weakly supervised method with category annotation.
First, we proposed one coarse object location network (COLN) to roughly locate the object of an image
with category annotation. Second, we refined the coarse object location to generate pixel-level pseudo-
labels and proposed one quality check strategy to select high quality pseudo labels. To this end, we
studied COLN twice followed by refinement to obtain a pseudo-labels pair and calculated the consis-
tency of pseudo-label pairs to select high quality labels. Third, we proposed one multi-decoder neural
network (MDN) for saliency detection supervised by pseudo-label pairs. The loss of each decoder and
between decoders are both considered. Last but not least, we proposed one pseudo-labels update strat-
egy to iteratively optimize pseudo-labels and saliency detection models. Performance evaluation on
four public datasets shows that our method outperforms other image category annotation based work.

Keywords: weakly supervised; salient object detection; saliency detection; image category
annotation; deep learning

1. Introduction

Salient object detection aims to simulate the human visual system for detecting regions that are
most attractive, which is widely used in many computer vision tasks such as image segmentation [1,2],
defect detection [3,4], object tracking [5], etc. Traditional methods detect salient object through hand-
crafted features [6, 7], which usually achieve low performance.
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In recent years, deep neural networks (DNN) have achieved great progress in many related fields [8–
10]. DNN has also been widely used in salient object detection [11–15]. Fully supervised methods [16–
18] have shown satisfactory results while requiring expensive pixel-level annotation. An experienced
annotator often takes several minutes to label one image, and the expensive labeling cost makes it
difficult to train a model using large-scale labeled datasets.

Due to fully supervised methods relying on expensive pixel-wise annotation, researchers have con-
sidered weakly supervised salient object detection. The weak supervision mainly includes bounding
box labeling [19], image category labeling [20–22], scribble labeling [23], etc. In these weakly super-
vised methods, a category annotation based model can be trained with existing large-scale classification
datasets (e.g., ImageNet). It can largely reduce the annotation cost while satisfying the requirement for
massive data and attract the attention of many researchers.

Category label based weakly supervised methods usually first obtain the coarse location of the
foreground via classification network. This step can be implemented with class activation mapping
(CAM) [24], while CAM often only provides the most discriminative object part. Wang et al. [25]
proposed one method to jointly learn image feature and foreground mask, then performed mask on
image feature, which is followed by classification, the classification task guide, the mask and segment
foreground. To transform a spatial-dependent masked image feature to a position-independent classi-
fication feature, they integrated global max pooling (GMP) and global average pooling (GAP), which
needs high computational cost. Since GMP only focuses on the most discriminative object part and
often fails to discover the full objects, we propose one coarse object location network (COLN) that
only uses GAP. The COLN uses the image classification dataset with category labels to jointly train
a foreground inference network (FIN) and an image classification network and generate a FIN map,
which means coarse foreground location. Additionally, to conquer the shortcoming of GAP, which may
lead to overestimated object areas, we propose one method based on classification accuracy analysis to
generate the optimal FIN map that covers the object region and excludes the background region.

In category label based weakly supervised methods, coarse object locations need some refinement
to generate pixel-level pseudo-labels which are used to train saliency detection networks. The noise
in pseudo-label is a key factor for model performance. We propose one quality check strategy to
select high quality pseudo-labels. To this end, we use a slightly different model parameter to learn
COLN twice and to obtain one pair of pseudo-labels, when calculating the consistency of pseudo-label
pairs to select high quality labels. The high quality pseudo-labels are more robust to the choice of
model parameters. A slight adjustment on a model parameter leads to less influence on high quality
pseudo-labels and more influence on low quality pseudo-labels. The consistency calculation on two
pseudo-labels with a slightly different model parameter is helpful to select high quality pseudo-labels.

Learning one robust saliency detection model from pseudo-labels is also one important step of the
weakly supervised method. For this purpose, we propose one multi-decoder neural network (MDN)
for saliency detection supervised by a pseudo-label pairs. The MDN is designed to integrate different
saliency information from pseudo-label pairs generated by COLN. Each decoder branch is responsible
for one pseudo-label. The loss of each decoder and consistency between decoders are both considered.
Additionally, we also propose one pseudo-labels update strategy to further optimize the pseudo-labels
and improve performance of saliency detection.

Performance evaluation on four public datasets shows that the proposed method outperforms other
image category supervision based work.
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The main contributions of this work include:

• We propose one COLN to roughly locate the object of an image.
• We propose one novel quality check strategy to generate high quality pseudo labels for saliency

detection training.
• We propose one MDN for salient object detection, which is supervised by high quality pseudo-

label pairs simultaneously.
• We propose one pseudo-labels update strategy, which iteratively optimizes the pseudo-labels and

saliency detection model.

2. Related work

Over the past few decades, researchers have developed many methods for salient object detection. In
the early days, researchers [26–30] focused more on traditional features (e.g., color, texture, contrast) to
detect the salient region. Deep learning has achieved amazing results in computer vision in recent years,
and subsequently, various saliency detection methods based on deep learning have been proposed.
These methods mainly include fully supervised and weakly supervised methods.

2.1. Fully supervised salient object detection

The fully supervised method uses manual pixel-level annotation as a supervision signal to learn one
saliency detection model.

Some methods focused on fusion multi-scale features and enhancing image boundaries to improve
detection results. Tang et al. [31] decomposed the task into a low-resolution saliency classification
network which aims to identify explicit image regions, and a high-resolution refinement network to
precisely refine the saliency values of pixels in uncertain regions. Ma et al. [32] aimed to shrink pair-
wise aggregated neighboring feature nodes layer by layer so that the aggregated features fuse valid
details and semantics together, meanwhile discarding distracting information. Song et al. [33] intro-
duced an implicit function to simulate the equilibrium state of the feature pyramid at infinite depth, and
they also proposed a differentiable edge extractor that directly extracts edges from the saliency masks.
Zhuge et al. [34] aimed to learn more complete salient objects, aggregate multi-scale features and en-
hance salient objects. Wu et al. [35] proposed a dynamic convolutional kernel size to capture objects
with different sizes. Wu et al. [36] employed an extreme downsampling technique to effectively learn a
global view of the whole image and constructed an elegant decoder for recovering object details. Ma et
al. [37] designed an enhanced wider field of sensation framework, which allows the network to achieve
very significant improvements when dealing with objects with scale variations.

Recent attention mechanisms [38–41], which focus on important regions of an image, are also
widely used in salient object detection tasks. Liu et al. [42] developed a new unified model based on
pure transformers, which also improves the performance for high-resolution images. Wang et al. [43]
proposed curiosity-driven network and fragment attention to generate enhanced detail-rich saliency
maps based on curiosity. Xie et al. [44] designed a framework extracting features from images at
different sizes and resolutions, as well as used transformers and convolutional neural network (CNN)
backbone independently to achieve promised results on high-resolution images. Fan et al. [45] pro-
posed a high-quality dataset and a data enhancement strategy to train the model to adapt to each
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different complex scene. Cheng et al. [46] proposed an extremely lightweight model that is about
0.2% parameters size of the current popular larger models and gains comparable performance. Tian
et al. [47] designed a selective object saliency module and an object-context-object relation module to
unify spatial attention and object-based attention for saliency ranking.

Although these fully supervised methods achieve satisfactory results, they require expensive and
time-consuming pixel-level annotations.

2.2. Weakly supervised salient object detection

To reduce the cost of image annotation, and enable larger datasets to be applied to salient object
detection tasks, weakly supervised methods have attracted the interest of researchers.

Image category is one widely considered weak supervision for salient object detection. Wang et
al. [25] designed one method that can only use image category annotation. They first divided the im-
age classification task into two subtasks: Image foreground inference and foreground classification. In
the image foreground inference task, they used a foreground inference network to obtain one roughly
salient foreground, which was refined into pseudo-labels for the network training. This work alleviates
the cost of annotation and allows the use of existing large-scale training sets with image-level labels. Li
et al. [20] proposed to use the combination of a coarse salient object activation map from the classifi-
cation network and saliency maps generated from unsupervised methods as pixel-level annotation, and
they developed a simple yet very effective algorithm to train fully convolutional networks for salient
object detection supervised by these noisy annotations. The algorithm is based on alternately exploiting
a graphical model and training a fully convolutional network for model updating. Piao et al. [21] pro-
posed a multi-filter directive network including a saliency network, as well as multiple directive filters.
The directive filter is designed to extract and filter more accurate saliency cues from the noisy pseudo
labels. The multiple accurate cues from multiple directive filters are then simultaneously propagated
to the saliency network with a multi-guidance loss. Piao et al. [22] observed pseudo-labels converted
from image-level classification labels always containing noise information and designed a noise-robust
adversarial learning framework and a noise-sensitive training strategy to mitigate this problem. Tian et
al. [48,49] proposed a novel weakly supervised network with category and subitizing labels for salient
instance detection problems.

However, compared to full supervision, image category labeling loses most of the detailed infor-
mation. Therefore, other researchers have also considered other forms of weak annotation. Zhang et
al. [23] trained one network using scribble labeling and designed an edge detection module and an
edge-structure-aware module to complement the scribble annotation. Liu et al. [19] proposed a novel
weakly supervised method by bounding boxes annotations. They first take the unsupervised methods
to generate initial saliency maps and address the over/under prediction problems to obtain the initial
pseudo-labels, then iteratively refine the initial labels by learning a multitask map refinement network
with saliency bounding boxes. Liang et al. [50] also used bounding boxes annotations on salient ob-
ject detection in light fields and proposed a fused attention module to utilize light field data from
multi-view. Zheng et al. [51] introduced saliency subitizing as the weak supervision. They proposed a
saliency subitizing module to generate the initial saliency masks using the subitizing information and a
saliency updating module to iteratively refine the generated saliency masks. Liu et al. [52] introduced
a label decoupling siamese network to more adequately use the scribble labels and the complementary
relationship between salient objects and backgrounds. Zeng et al. [53, 54] introduced a unified frame-
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work and learned image saliency from category labels, captions, web images, and untagged images,
respectively. They designed a classification network and a title production network to predict object
categories and generate titles, respectively, while highlighting potential foreground regions. Both net-
works are also encouraged to detect generally salient regions rather than task-specific regions. They
then used predicted foreground regions to generate pseudo-labels to train a saliency detection network.

Although these weakly supervised methods achieved some progress, they still suffer from inaccurate
detection of salient objects.

3. Methods
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Figure 1. The framework of proposed method including five steps. 1) Training COLN on
image classification datasets. 2) Generation high quality pseudo-labels on training dataset of
salient object detection. 3) Training MDN for salient object detection, which is supervised
by high quality pseudo-labels. 4) Pseudo-labels update, which further declines impact of
pseudo-labels noise and learns more robust model. 5) Testing salient object detection.

The framework of proposed method is shown in Figure 1, which contains five steps:
1) Training COLN. We use the image classification dataset with category labels to train a FIN jointly

with an image classification network and propose one method to generate the optimal FIN map, which
covers the object region and excludes the background.

2) Generation high quality pixel-level pseudo-labels on training dataset of saliency detection. We
perform COLN inference on training data to obtain coarse object location followed by GrabCut, then
adopt one novel quality check strategy to generate high quality pseudo-labels pair.

3) Training MDN for salient object detection, which is supervised by a high quality pseudo-labels
pair simultaneously. The MDN network consists of an encoder and two decoders, and each decoder
and encoder forms a U-shaped structure.

4) Pseudo-labels update, which further declines impact of pseudo-labels noise and learns a more
robust model.

5) Testing salient object detection. In the testing mode, the average of two saliency results predicted
by MDN is regarded as the final saliency.
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3.1. COLN training

The salient region is often represented by the foreground of an image in classification task. To seg-
ment the foreground of an image by a classification task, inspired by [25], one COLN is first proposed,
as shown in Figure 2. Given one image with category label, the image is encoded with shared convo-
lutional layers then fed forward through a full convolutional network (FCN) and an FIN to obtain the
image feature map and the approximate foreground mask, respectively.

(a) Image

(h) Classification

(c) FCN Layer

(e) FIN Layer
(b) Shared Convolutional Layers

(d) Feature Map

(g) Masked Feature Map

(f) FIN Map

BirdGAP

Figure 2. The pipeline of COLN. FIN generates the approximate foreground mask, which
can be regarded as coarse object location.

Specifically, we adopt the shared convolutional layers on top of the 16-layer VGG [58] network,
including 13 convolutional layers with rectified linear unit (ReLU) nonlinear interleaved layers and
four max-pooling layers. FCN and FIN are two sibling sub-networks built on top of the shared layers.
The FCN includes a convolutional layer, a batch normalization (BN) layer and a ReLU layer to generate
feature map F with 512 channels. The FIN consists of a convolutional layer, a BN and a sigmoid layer
to yield a saliency mask M with single channel, which is used to obtain a masked feature map as
follows:

F̂k = Fk ⊙ M, (3.1)

where Fk denotes the k-th channel of the feature map obtained by FCN and F̂k is the k-th channel of
the masked feature map F̂. The ⊙ means the element point multiplication.

One GAP layer is used to aggregate the masked feature map F̂ into a 512-dimensional image-level
feature, which is then passed through a fully connected layer and softmax operation to generate the
category probabilities.

To prevent FIN from simply having high responses at all locations, a sparse regularization term is
added to the loss function to penalize the high response of FIN on the background. Given a training set
{Xi, li}

N
i=1 including N sample pairs (images Xi and label li), the loss function of this network consists

of two parts as follows:

L = −
1
N

N∑
i=1

∑
k∈li

log (pk (Xi)) +
∑
k<li

log (1 − pk (Xi)) − λ ∥M (Xi)∥1

 , (3.2)

where the first and second terms are cross-entropy loss to measure classification accuracy, the third
term is the L1 regularization on the saliency mask M predicted by FIN and pk(Xi) is the outputed
probability of k-th category.
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In loss function (3.2), λ is a predefined weight parameter to control the FIN map size. A larger λwill
result in more constraint on the response area of FIN, which will tend to detect incomplete objects. In
contrast, smaller λ reduces the constraint on the FIN response area, which allows FIN to overestimate
the object and brings the risk of high response on background. One example of FIN map with different
λ is shown in Figure 3. The optimal parameter λ is designed to get the optimal FIN map, which covers
the object region and excludes the background.

In this work, we propose one method to find the optimal parameter λ over the entire dataset. We
carefully analyze the relationship between parameter λ and the classification accuracy. The top-1
classification accuracy against parameter λ is shown in Figure 4. When λ value is very small, the con-
straint on the FIN response area is limited and the generated FIN contains both object and part of the
background, which leads to low classification accuracy. As the parameter λ increases gradually, more
penalty is carried on the FIN response area and the generated FIN mainly contains object and excludes
the background, which leads to higher classification accuracy. However, if the parameter λ value is too
large, increasing penalty on the FIN response area results in the generated FIN only containing incom-
plete objects and providing lower classification accuracy. Intuition, the optimal parameter λ, which
is designed to get the optimal FIN map that covers the object region and excludes the background,
obtains the highest classification accuracy. From Figure 4, the optimal parameter λ is set to 2.0 × 10−5.

(a) Image (b) Lower  λ (c) Higher  λ (d) Ground Truth

Figure 3. Given one input image in (a), the generated FIN map with different parameter λ is
shown in (b) and (c).

We train COLN classification network on one image classification dataset with category labels, then
use the COLN network to perform inference on one image without any annotation and obtain its FIN
map as the coarse object location.

Our proposed COLN is related to the network proposed by [25], while it exists two main differences:
1) Different global feature aggregation. In weak supervision with category-level labels, some

form of global pooling is required to transform a spatial related image feature to a position-independent
category feature. Both GMP and GAP have been intensively investigated in the literature. GMP only
focuses on the most discriminative object part and often fails to discover the full objects. Zhou et
al. [24] holds that GMP is not a suitable solution for the segmentation problem. In contrast, GAP
encourages the network to have the same response at all positions and leads to overestimated object
areas. The previous work WSS [25] uses a global smooth pooling (GSP) method, which integrates
GAP and GMP, while the integration of two feature aggregation methods increases computational
cost. Aiming at the deficiency of the method, we only use GAP in the proposed method. To avoid the
shortcoming of GAP, which tends to overestimate object areas, we propose one method to calculate the
optimal parameter λ for the FIN map which covers the object region and excludes the background.
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2) Double COLN training strategy. Locating the foreground of an image by a classification task
inevitably exists noise and leads to a significant performance drop. To conquer this problem, we train
COLN twice with a slightly different parameter λ and follow with a quality check to select high quality
results (presented in Section 3.2), while the network for FIN generation in WSS [25] is only trained
once and is difficult to eliminate noise.
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Figure 4. The top-1 classification accuracy with respect to different λ. As λ increases, the
classification accuracy slightly increases. When λ is too large, the classification accuracy
drops dramatically.

3.2. High quality pixel-level pseudo labels generation

We trained the COLN classification network on one image classification dataset with category labels
in Section 3.1, then used COLN to perform inference on the saliency training dataset DUTS-TR [25]
and obtained the FIN map of each image as coarse object location. The generated coarse object location
via the FIN map only has a 16 × 16 resolution, which not only lacks detail structure but also exists
noise. We further adopt the unsupervised image segmentation algorithm GrabCut [55, 56] to generate
a pixel-level pseudo-label, and propose one quality check strategy to select high quality pseudo-labels.

GrabCut [55] is one efficient interactive object segmentation method. In this work, the coarse
FIN map can be regarded as one interaction condition for GrabCut. Given one image with the FIN
map, we regard the mean map value as one threshold. For each pixel, the map value larger (smaller)
than the threshold will be initialized with probable foreground (probable background). Based on this
initial label, GrabCut algorithm estimates the color distribution of the foreground and background
via a Gaussian mixture model, constructs a graph over the entire image and applies a graph cut [56]
optimization to achieve the segmentation result as pseudo-labels. Two segmentation examples are
shown in step two of Figure 1.

The generated pseudo-labels with the FIN map and GrabCut still have noise and reduce the saliency
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detection performance. One solution is to select high quality pseudo-labels and remove low quality
parts. To this end, we learn COLN is twice followed by GrabCut refinement, the parameter λ is
selected as the optimal value 2.0 × 10−5 and one approximately optimal value 2.5 × 10−5 to obtain one
pair pseudo-labels, respectively. The slightly different selection on λ leads to these pair results as not
entirely equal. For each image I, it generates one pair pseudo-label Y1 and Y2. We find that Y1 and Y2

are often consistent if they both are high quality results and Y1 and Y2 are often largely different if they
contain low quality results. We calculate intersection over union (IOU) of the pseudo-label pairs as
their consistency measure:

IOU =
|Y1 ∩ Y2|

|Y1 ∪ Y2|
, (3.3)

where || means the area of the pseudo-label. Some examples are shown in Figure 5. In the top two
rows, the pseudo-labels pair contains low quality results and leads to a low IOU. In the bottom two
rows, the high quality pseudo-labels pair leads to high IOU.

(a) Image (b) GT (c) label1 (d) label2

0.2462

0.9963

(e)IOU of labels

0.0066

0.9970

Figure 5. The IOU examples of a pseudo-label pair. Given one input image in (a), the
generated pseudo-label pairs are shown in (c) and (d) and their IOU value is shown in (e).

To further analyze the relationship between IOU and quality pseudo-labels, for the pseudo-label
pairs of each image in saliency training dataset DUTS-TR [25], we calculate their IOU and average
root mean absolute error (MAE) to indicate absolute difference between pseudo-label pairs and ground-
truths. The pseudo-labels are divided into five groups according to IOU (0.0–0.2, 0.2–0.4, etc.) and
the image number and average MAE of each group is shown in Table 1. From this statistical result,
in general we can find the pseudo-labels with larger IOU ddemonstrating lower MAE, which means
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higher quality; the conclusion is consistent with Figure 5. Additionally, we can find the pseudo-
labels with IOU value in 0.6–0.8, and 0.8–1.0 show comparable MAE and occupy about 87% volume
of the dataset. On the other hand, the pseudo-labels with IOU value less than 0.6 show significant
deterioration in MAE.

Table 1. Statistical analysis of IOU and MAE on pseudo-labels.

IOU Image Num MAE
0.8–1.0 5871 0.098
0.6–0.8 3338 0.110
0.4–0.6 125 0.173
0.2–0.4 403 0.171
0.0–0.2 816 0.201

Based on the above discussion, the pseudo-label pairs with high IOU probably are high quality
pseudo-labels, otherwise they contain low quality pseudo-labels. Inspired by this intuition, we compute
the IOU of each pseudo-labels pair. The pseudo-labels with IOU larger than one threshold θ (e.g., 0.6)
will be regarded as high quality pseudo-labels to train salient object detection model.

3.3. MDN for salient object detection

To implement robust saliency detection, we propose MDN, which is supervised by a high quality
pseudo-labels pair simultaneously.

The proposed network consists of an encoder and two decoders, which is shown in Figure 6. The
input image is first encoded by one shared encoder (e.g., VGGNet-16) and then passed through pyramid
pooling module (PPM) [57] to capture important global information of the input image. Taking the
VGGNet version of the shared encoder as an example, encoded feature maps corresponding to C =
{C2, C3, C4, C5} in the pyramid have downsampling rates of two, four, eight and 16 compared to
the size of the input image, respectively. For each decoder branch, the top feature C5 is first sent
through the feature aggregation module (FAM) [57] to fuse the coarse and fine level semantic features,
then upsampled by factor two, concatenated with upsampled PPM and feature C4 and finally passed
through a 3*3 convolution layer and get a fused feature. The operation on this fused feature is similar
to C5. This process will be repeated four times and predict one saliency map. The loss of MDN is
defined as:

L =
2∑

k=1

Lbce (Pk,Yk) + δ × Lss (P1, P2) , (3.4)

where Lbce is the binary cross entropy loss (BCE-loss) on one decoder branch, Lss is the similarity loss
between two decoders and δ is weight parameter.

Lbce (Pk,Yk) = −
1
n

n∑
i

[yki ∗ log pki + (1 − yki) ∗ log (1 − pki)], (3.5)

Lss (P1, P2) =
1
n

n∑
i

(p1i − p2i)2 , (3.6)
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where pki and yki represent the elements of the decoder predictions Pk and its pseudo-labels Yk.
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Figure 6. The proposed MDN contains a shared encoder and two decoders. Each decoder
and encoder form a U-shaped structure. The top and bottom part for edge detection is op-
tional.

Following the earlier work [57], we also jointly train salient object detection and edge detection to
further improve performance. We add an extra edge prediction branch built upon each decoder branch
to estimate the boundaries of the salient objects, which is shown on the top and bottom side of Figure 6.
Based on the FAM [57], we add three residual blocks followed by a 16-channel 3 × 3 convolutional
layer for feature compression and a one-channel 1 × 1 convolutional layer for edge prediction. We also
concatenate these three 16-channel 3 × 3 convolutional layers and feed them to three consecutive 3 × 3
convolutional layers with 48 channels to transmit the captured edge information to the salient object
detection decoder branch for detail enhancement.

3.4. Pseudo-labels update for iterative learning

The proposed dual decoder architecture adopts two high quality pseudo-labels for model learning.
However, in this straightforward approach, the noise in pseudo-labels still may exist and lead to a
decline of performance. To conquer the impact of noise, we propose one pseudo-labels update strategy
to learn a more robust model.

As described in the previous section, we adopt the COLN classification network to perform infer-
ence on saliency training dataset DUTS-TR [25], followed by GrabCut and a high quality pseudo-labels
selection strategy to get high quality pseudo-labels, then train an MDN saliency detection network.
Given one training image, its average of pseudo-labels pair (Y1 and Y2) is denoted as YA and its aver-
age of predictions by MDN (P1 and P2) is denoted as PA. The previous work WSS [25] found that
in classification network, the average of the score map across all the channels followed by refinement
can also be regarded as one saliency map, which is denoted as RCAM. MAE () is the mean absolute
difference between the two saliency maps. R f n is the pixel-level refinement algorithm GrabCut.

We first compare the average pseudo-labels YA and the average predicted saliency PA. Their MAE
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is lower than one small threshold α, meaning they both are confident. We regard their average as one
updated pseudo-label and regard the further result with R f n refinement as another updated pseudo-
label. If the MAE is higher than one large threshold β, it indicates that the pseudo-labels are probably
wrong and should be discarded from the training dataset. In other cases, we regard RCAM as reference,
select one more reliable result from YA and PA as one updated pseudo-label and regard the further result
with R f n refinement as another updated pseudo-label. The update strategy is shown in Algorithm 1
and α and β are experimentally set to 15 and 40, respectively.

The training of the MDN saliency detection network and pseudo-label update strategy is alternately
carried to improve the performance. We regard pseudo-labels as supervision for the training saliency
detection model, then use this trained model and Algorithm 1 to refine pseudo-labels, iteratively carry-
ing the above steps until the result converges.

Algorithm 1 Pseudo label update strategy
Input: initial pseudo-labels pair Y1 and Y2, MDN predicted saliency pair P1 and P2, classification

activated map RCAM

Output: updated pseudo-labels pair Y
′

1 and Y
′

2
1: YA = (Y1 + Y2)/2
2: PA = (P1 + P2)/2
3: if MAE(YA, PA) < α then
4: Y

′

1 = (PA + YA)/2
5: Y

′

2 = R f n((PA + YA)/2)
6: else if MAE(YA, PA) > β then
7: Remove image and pseudo-labels from training data
8: else if MAE(YA,RCAM) > MAE(PA,RCAM) then
9: Y

′

1 = PA

10: Y
′

2 = R f n(PA)
11: else
12: Y

′

1 = YA

13: Y
′

2 = R f n(YA)
14: end if

3.5. Testing salient object detection

The testing or inference of the saliency detection model is carried on the MDN network. Given one
input image, MDN predicts two saliency results using two decoder branches and we simply adopt an
average of two saliency outputs as a final saliency.

4. Experimental results

In this section, we first present the implementation details of the proposed method, then compare
the performance with the state of the arts methods on four datasets and finally carry an ablation study
to prove the effectiveness of our method.
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4.1. Experiment setup

COLN: The weight parameters of the shared layer are initialized using the weight parameters of
the pre-trained VGG model [58], while the weights of the other layers are initialized randomly. All
input images are downsampled to a resolution of 256 × 256. To increase the training samples, we
use random rotation and flipping data augmentation methods. We use small batch stochastic gradient
descent (SGD) to minimize the loss function with a batch size of 64 and a momentum of 0.9. The
learning rate is initialized to 0.01 and every 20 cycles decrease by a factor of 0.1. The parameter λ in
Eq (3.2) is set to 2.0 × 10−5 and 2.5 × 10−5 to generate one pair of pseudo-labels. The IOU threshold
parameter θ for high quality pseudo-labels selection is set to 0.6.

The training of this classification network includes two stages. In the first stage, we remove the
FIN branch and only learn the parameters of the shared encoder, FCN and classification. In the second
stage, we freeze the shared encoder, FCN and classification, then add the FIN branch and learn the
parameters of the FIN branch. The training is carried on the NVIDIA RTX3090i hardware platform.
The first stage trains 40 epochs consuming 30 hours and the second stage trains 10 epochs consuming
10 hours.

MDN: The training uses an Adam optimizer with weights decaying to 5 × 10−4 and an initial
learning rate of 5 × 10−5, divided by 10 after 15 epochs. The network was trained for a total of 24
epochs consuming four hours on the NVIDIA RTX3090i hardware platform. The backbone parameters
of our network VGG-16 were initialized with the corresponding models pre-trained on the ImageNet
dataset, and the rest of the models were initialized randomly. The parameter δ in Eq (3.4) is selected
with two.

4.2. Datasets

Train data: Compared with image classification datasets, which have only one annotation class per
object, the object detection datasets usually contain multiple objects of different classes and are more
suitable for the saliency detection task. Following previous work WSS [25], the training of the COLN
classification network is carried on the ImageNet object detection datasets, including 456 k objects
on more than 200 object categories. Note that we only use the category labels and discard bounding
box annotations.

For salient object detection model MDN, following the existing weakly supervised methods, we
take DUTS-TR [25] as training set, which contains 10,553 images. Although the training set already
has pixel-level annotation, we do not use pixel-level annotation.

Test data: The performance comparison was carried on a test set of four public datasets: DUTS-TE
[25], ECSSD [6], PASCAL-S [59] and HKU-IS [60]. The DUTS-TE dataset contains 5019 test images,
which contain important scenes for saliency detection. The ECSSD dataset contains more salient
objects under complex scenes. The PASCAL-S dataset contains 850 natural images with multiple
complex objects and cluttered backgrounds. The HKU-IS dataset contains 4447 images with high-
quality pixel-wise annotations.

4.3. Evaluation metrics

To compare the effectiveness of these different algorithms, this work adopts two widely used eval-
uation metrics:
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Maximum F-measure (Fβ): The performance metric is calculated by the weighted harmonic of the
precision and recall as below:

Fβ =
(1 + β2) × P × R
β2 × P + R

, (4.1)

where β is set as 0.3 to raise more importance on precision.
MAE: The difference between the saliency map S and the ground-truth G is shown below:

MAE =
1

W × H

W∑
x=1

H∑
y=1

|S (x, y) −G(x, y)|, (4.2)

where W and H are width and height of input image, respectively.

4.4. Evaluation results

Table 2. The results quantitative evaluation on weakly supervised methods, where ↑ ( ↓)
means the larger (smaller) value is better. The best result of category supervised methods is
highlighted in bold.

Supervision Method
DUTS-TE PASCAL-S ECSSD HKU-IS

Max-F↑ MAE↓ Max-F↑ MAE↓ Max-F↑ MAE↓ Max-F↑ MAE↓

Fully supervised

SAMNet [61] 0.836 0.058 0.856 0.113 0.927 0.051 0.914 0.044
PAGRN [62] 0.778 0.055 0.765 0.151 0.871 0.064 0.863 0.045
PFAN [63] 0.764 0.060 0.754 0.137 0.875 0.046 0.871 0.042
UCF [64] 0.663 0.112 0.787 0.140 0.844 0.070 0.818 0.062

Bounding-box WSB [19] 0.736 0.079 - - 0.860 0.072 0.853 0.058

Subitizing SOS [51] - - 0.803 0.131 0.858 0.108 0.882 0.080

Scribble
SAE [23] 0.746 0.062 0.788 0.139 0.865 0.061 0.857 0.047
LDS [52] 0.755 0.066 0.793 0.094 0.873 0.056 0.860 0.048

Category

WSS [25] 0.630 0.099 0.697 0.184 0.823 0.109 0.821 0.084
ASMO [20] 0.614 0.116 0.752 0.145 0.837 0.112 0.846 0.088
MSW [53] 0.684 0.091 0.713 0.133 0.840 0.096 0.814 0.084
MFNet [21] 0.710 0.076 0.751 0.115 0.854 0.084 0.851 0.059
NSAL [22] 0.729 0.074 0.753 0.111 0.853 0.081 0.859 0.053
Ours 0.749 0.067 0.785 0.125 0.871 0.063 0.861 0.049

We compare our approach with the state of the arts weakly supervised methods, which are shown
in Table 2. To make fair comparison, we use the implementation or inference results provided by the
authors. Our method is based on image category supervision, compared with other image category
supervision based work like WSS [25], ASMO [20], MSW [53], MFNet [21] and NSAL [22], and
our method demonstrates significantly better performance on all datasets except a slightly worse MAE
performance in the PASCAL-S dataset. Compared with the bounding boxes supervision based work
WSB [19], we also show slightly improved performance when compared with the scribble supervision
based works SAE [23] and LDS [52]. Compared with the subitizing supervised method SOS [51], we
show better MAE and a slightly worse FMeasure. Compared with fully supervised methods [62–64],
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our method shows worse performance, while fully supervised methods need a large number of pixel-
level annotations.

A few saliency quality comparison examples are shown in Figure 7. Our method achieves promised
results in both simple and complex scenes. Compared to WSS [25] and ASMO [20], which both adopt
a network that relies on a single pseudo-label training, and MF-Net [21], which only relies on different
refinement algorithms to obtain multiple pseudo-labels, our method can greatly reduce the noise of
pseudo-labels and, thus, achieves better results.

Image WSS ASMO MFNet SAEGT Ours

Figure 7. A visual comparison of our approach with other state of the arts methods.
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4.5. Ablation studies

To further validate the effectiveness of our method, we carry an evaluation on the DUTS-TE [25]
dataset with different training strategies, which are shown in Table 3.

The result of the training saliency detection network using a single pseudo-label and two pseudo-
labels is denoted as MDN-SP and MDN-MP, respectively. The MDN-MP shows significantly better
performance and FMeasure increased from 0.675 to 0.718, while MAE decreased from 0.118 to 0.096.
Based on MDN-MP, we further jointly learn saliency and edge detection, adopt pseudo-labels updating
strategy and the results are denoted as MDN-Edge and MDN-Update, respectively. Using edge joint
training and updating the pseudo-label both further achieve performance improvement.

Table 3. Evaluation results of ablation experiments on DUTS-TE dataset, where ↑ ( ↓) means
the larger (smaller) value is better.

Metrics MDN-SP MDN-MP MDN-Edge MDN-Update

Max-F↑ 0.675 0.718 0.722 0.749
MAE↓ 0.118 0.096 0.077 0.067

4.6. Hyper-parameter settings

4.6.1. The weight parameter λ

To select high quality pseudo-labels for the training saliency detection model, we learn COLN twice
and generate two pseudo-labels for each image, the parameter λ is selected as the optimal value λ =
2.0 × 10−5 and one approximately optimal value λ2 = 2.5 × 10−5, respectively. Then, the consistency
between two pseudo-labels is calculated to measure the quality of pseudo-labels. The optimal param-
eter λ = 2.0 × 10−5 is selected from the classification accuracy curve in Figure 4. We carry different
selection strategy on the approximately optimal value λ2 to select high quality pseudo-labels, then train
saliency detection model MDN-MP and compare their performance against baseline MDN-SP, which
is shown in Table 4.

The approximately optimal value λ2 is selected as slightly smaller, equal and slightly larger than the
optimal value λ. Note that even λ2 is equal to λ, which means even when training COLN twice with
the same parameter λ, the learned two COLN models still show little difference due to the randomness
of neural network training and generates two different pseudo-labels for each image. This is useful
in selecting high quality pseudo-labels, leading to limited performance improvement against MDN-
SP. If the approximately optimal value λ2 is selected as slightly smaller or larger than the optimal
value λ, they both achieve more performance improvement. This phenomenon can also be explained
from another view. The high quality pseudo-labels are more robust to the choice of parameters, and
the slight adjustment on weight parameter λ leads to less influence on a high quality pseudo-label
and more influence on a low quality pseudo-label, The consistency calculation on two pseudo-labels
with a slightly different weight parameter λ is helpful to select high quality pseudo-labels and leads to
performance improvement.
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Table 4. The weight parameter λ analysis on DUTS-TE dataset. The best results are marked
in boldface.

Network Parameter
DUTS-TE

Max-F↑ MAE↓

MDN-SP 0.675 0.118

MDN-MP
λ = 2.0 × 10−5, λ2 = 1.5 × 10−5 0.710 0.099
λ = 2.0 × 10−5, λ2 = 2.0 × 10−5 0.702 0.108
λ = 2.0 × 10−5, λ2 = 2.5 × 10−5 0.718 0.096

4.6.2. IOU threshold parameter θ

In Section 3.2, we compute the IOU of each pseudo-labels pair. The pseudo-labels with IOU larger
than one threshold θ will be regarded as high quality pseudo-labels to train the salient object detec-
tion model. In order to analyze the influence of threshold θ, we use different threshold parameter
settings to select high quality pseudo-labels and train the MDN-MP model, then evaluate the model
performance on the DUTS-TE dataset. The threshold θ setting, image number of training dataset and
saliency detection performance are shown in Table 5. The larger threshold parameter θ means a more
strict pseudo-label selection condition, which can generate pseudo-labels with a higher reliability and
achieve performance improvement. On the other hand, the excessively strict condition also decreases
the training image number and diversity of training data, which leads to performance drop. The pa-
rameter θ with 0.6 shows the best performance, which is selected as the best parameter.

Table 5. The IOU threshold parameter θ analysis on DUTS-TE dataset. The best results are
marked in boldface.

θ Training image num
DUTS-TE

Max-F↑ MAE↓

0.8 6464 0.637 0.124
0.6 9209 0.718 0.096
0.4 9335 0.679 0.099
0.2 9447 0.661 0.103

4.6.3. The parameter α and β in iterative learning

In Section 3.4, to further conquer the impact of noise, we propose one pseudo-labels update strategy
using parameter α and β.

In order to analyze the influence of parameter α and β, we use different parameter settings to up-
date pseudo-labels and train final model MDN-Update, then evaluate the model performance on the
DUTS-TE dataset, which is shown in Table 6. The parameter α with 15 and β with 40 shows the best
performance, which is selected as the best parameter.
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Table 6. The parameter α and β analysis on DUTS-TE dataset. The best results are marked
in boldface.

α β
DUTS-TE

Max-F↑ MAE↓
10 25 0.739 0.071
10 40 0.743 0.071
10 55 0.740 0.072
15 25 0.746 0.068
15 40 0.749 0.067
15 55 0.733 0.077
20 25 0.746 0.070
20 40 0.737 0.075
20 55 0.735 0.076

5. Conclusions

In this work, we proposed one weakly supervised salient object detection method with category
annotation. To this end, we proposed COLN to roughly locate the object of an image, then generated
pixel-level pseudo-labels and adopted one quality check strategy to select high quality pseudo labels,
which supervised the training of MDN saliency detection networks. One pseudo-labels update strategy
also was presented to iteratively optimize the pseudo-labels and saliency detection model. The pro-
posed method outperforms other image category supervision based work. Additionally, the proposed
method can be applied for other computer vision tasks such as object segmentation, object tracking
and video scene understanding. However, the proposed method contains many steps and it is difficult
to achieve global optimization. In the future, we will consider one end-to-end method to solve this
problem. Although the weakly supervised method can decrease the cost of manual annotation, it still
shows a performance gap with a fully supervised method. The trade-offs between annotation cost and
accuracy should also be considered in future work.
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