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Abstract: This paper used a Holling-IV nutrient-plankton model with a network to describe algae’s
spatial and temporal distribution and variation in a specific sea area. The stability and bifurcation
of the nonlinear dynamic model of harmful algal blooms (HABs) were analyzed using the nonlinear
dynamic theory and de-eutrophication’s effect on algae’s nonlinear dynamic behavior. The conditions
for equilibrium points (local and global), saddle-node, transcritical, Hopf-Andronov and Bogdanov-
Takens (B-T) bifurcation were obtained. The stability of the limit cycle was then judged and the
rich and complex phenomenon was obtained by numerical simulations, which revealed the robustness
of the nutrient-plankton system by switching between nodes. Also, these results show the relationship
between HABs and bifurcation, which has important guiding significance for solving the environmental
problems of HABs caused by the abnormal increase of phytoplankton.
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1. Introduction

Differential equation models, such as infectious disease models [1–7] and neurodynamic
models [8, 9], are common tools for describing natural and social phenomena changes. They are
powerful tools for understanding, explaining, and predicting the behavior of complex systems in the
real world. The defensive behavior of a population plays a crucial role in its survival and reproduction
of the whole population. It is necessary to further study the intrinsic nature of predation systems with
defensive behavior (Holling-IV functional response function). The Holling-type IV predation model
has been a popular topic in biomathematics and the research mainly includes bifurcation, equilibria
and patterns. Some scholars performed bifurcation analysis in a Holling-type IV predation model and
showed that the system undergoes a Codimension-2 Bogdanov-Takens (B-T) bifurcation [10], B-T
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singularity of Codimension-4 and also multiple other nonhyperbolic and degenerate equilibria,
bistability, tristability or even tetrastability [11], as well as the Hopf bifurcation by choosing the level
of fear as a bifurcation parameter [12], the Hopf bifurcation of coexisting steady-state for both the
delayed and non-delayed systems [13] or supercritical Hopf bifurcation independently of the growth
rate of the prey [14]. While other researchers obtained the sufficient conditions for the existence of a
periodic solution [15], discussed the existence, uniqueness, non-negativity, and boundedness of the
solutions [16], or carried out the existence of equilibrium points and stability analysis for correlation
model [17], or considered predation model with combined continuous white noise and discontinuous
Lvy noise, and proved the global positive solutions’ existence and uniqueness [18]. Some scholars
derived the Turing instability condition for the spatial predation system [19].

Harmful algal blooms (HABs) are ecological anomalies caused by the explosive proliferation or
high aggregation of many plankton in seawater under certain environmental conditions. With the rapid
development of modern industrial and agricultural production and the increase in population in coastal
areas, a lot of industrial and agricultural wastewater and domestic sewage are discharged into the ocean,
resulting in an increasing degree of eutrophication in offshore and harbor areas [20]. At the same time,
the increase in the degree of coastal development and the expansion of mariculture has brought about
the pollution of the marine ecological environment and mariculture itself [21]. On the other hand, the
development of the maritime industry has led to the introduction of exotic and HABs species; global
warming has also led to the frequent occurrence of HABs [22]. The events of HABs cause significant
economic losses and threaten human health [23].

The paper gives the systematic-dynamical analysis of equilibria in section two. In section three,
we analyze conditions for several bifurcations (such as transcritical, saddle-node, Hopf and Bogdanov-
Takens bifurcation). Finally, we have some discussions in section four. Some interesting results are
obtained, which help us better learn the dynamics in the real world.

To better explain the causes of HABs, we next briefly consider the formation mechanism of HABs
from the differential equations perspective. We first consider the following equation

dx
ds = rx(1 − x

k ) − xy
a+bx+x2 + cx,

dy
ds =

µxy
a+bx+x2 − my,

(1.1)

where x is the concentration of nutrient at time s, y is the density of plankton at time s, r is the
conversion rate of inorganic nutrients into biomass, k is the carrying capacity of the nutrient, m > 0
is the mortality of plankton (natural death, predation, etc.), µ is the maximum plankton rate, x

a+bx+x2 is
the Holling-IV functional response, a is the half-saturation constant of nutrient concentration growth,
b is the denominator of the functional response [24] and c is the effect changes in the nutrient ratio of
seawater. Changes in the nutrient ratio of seawater directly change the composition and structure of
marine planktonic ecosystems [25]. For example, a low nitrogen-to-phosphorus concentration ratio is
conducive to Cyanobacteria blooms [26]. When the nutrient proportion of silicate in seawater is high,
the growth of plankton can be promoted. Diffusion and convection dominate the transfer of HABs
from one area to another. HABs, in many parts of the world, are due to the influence of ocean currents,
such as G. breve off the coast of West Florida and Diphysis sp off the coast of Sweden [27, 28]. In
addition, the results of population dynamics, especially the nonlinear population dynamics, show that
the complex dynamics of the food chain and food web structure can occur in plankton systems. HABs
are likely to be a reflection of such complex dynamics. We researched the system with the diffusion
network as follows:
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dxi
ds = rxi(1 − xi

k ) − xiyi

a+bxi+x2
i
+ cxi + d1

∑n
j Li jxi,

dyi
ds =

µxiyi

a+bxi+x2
i
− myi + d2

∑n
j Li jyi.

(1.2)

The description of the network Laplacian matrix L = {Li j} can be found in [29].

2. Systematic-dynamical analysis existence of equilibria

Theorem 1∗. All solutions {(x0, y0)|x0 > 0, y0 > 0} of (1.2) with positive initial values are uniformly
bounded.

Proof. For convenience, we define a function Ψ by

Ψ(t) = x(t) +
1
µ

y(t).

Differentiating Ψ with respect to t, together with (1.2), one has

dΨ
dt
+ mΨ = rx(1 −

x
k

) + (c + m)x =
k
4r

(r + c + m)2 −
r
k

(x −
k
2r

(r + c + m))2 ≤ Φ,

where Φ = k
4r (r + c + m)2. Via the theory of differential equations and inequalities, we obtain

0 < Ψ(t) ≤
Φ

m
[1 − e−mt] + Ψ(0)e−mt.

It is easy to know that the righthand limit of the above equation is Φm as t → ∞, from which Ψ(t) is
bounded. It can be further deduced that the solution of the system is bounded in R2

+.
The system (1.2) has a trivial equilibrium, an axial equilibrium and, at most, two internal

equilibrium, recorded as E0 = (0, 0), E1 = (k(1 + c
r ), 0), E∗1 = (x∗1, y

∗
1), E∗2 = (x∗2, y

∗
2), respectively. The

trivial equilibrium E0 always exists. The actual value of the function of nutrients should be positive,
so the axial equilibrium E1 exists when c

r > −1, x∗1 and x∗2 are determined by

mx2 + (bm − µ)x + am = 0. (2.1)

Note that ∆ = (bm − µ)2 − 4m2a. If ∆ > 0 and r(1 − x∗i
k ) + c > 0, then internal equilibria E∗1 and E∗2

exist with

x∗i =
µ−mb∓

√
(mb−µ)2−4m2a
2m (i = 1, 2)

and
y∗i =

µx∗i
m [r(1 − x∗i

k ) + c](i = 1, 2).

If ∆ < 0, then there is no internal equilibrium; especially if ∆ = 0, then there is one internal equilibrium
E∗.

Theorem 2∗.
(a) if a = (µ−mb)2

4m2 , the system (1.2) has one internal equilibrium E∗ given by E∗(x∗, y∗) = (
√

a, (2a +
b
√

a)[r(1 −
√

a
k ) + c]).
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(b) if a > (µ−mb)2

4m2 , the system (1.2) has no interior equilibrium point.

(c) if a < (µ−mb)2

4m2 and r(1 − x∗i
k ) + c > 0, the system (1.2) has two internal equilibrium.

We now analyze the equilibrium points’ stability by using the stability theory, and the Jacobian
matrix JiE (i = 1, ..., n) of the system (1.2) is

JiE =

 c + r − 2rxi
k +

yi(x2
i −a)

(bxi+x2
i +a)2

−xi
bxi+x2

i +a
µyi(a−x2

i )
(bxi+x2

i +a)2
µxi

bxi+x2
i +a − m

 .
Theorem 3∗.
If c + r < 0, the trivial equilibrium point E0 is globally asymptotically stable; E0 is saddle point

when c + r > 0.
Proof. The Jacobian matrix JiE0 (i = 1, ..., n) of the system (1.2) is

JiE0 =

[
c + r 0

0 −m

]
.

Clearly, the eigenvalue of the matrix JiE0 is λi1 = c + r and λi2 = −m. If λi1 < 0, E0 is stable and E0 is
saddle point when λi1 > 0.

Theorem 4∗.
If λi2 < 0, the axial equilibrium point E1 is locally asymptotically stable; E1 is a saddle point when

λi2 > 0, where λi2 =
krµ(c+r)

bkr(c+r)+k2(c+r)2+ar2 − m.
Proof. The Jacobian matrix JiE1 (i = 1, ..., n) of the system (1.2) is

JiE1 =

 −(c + r) −
kr(c+r)

bkr(c+r)+k2(c+r)2+ar2

0 krµ(c+r)
bkr(c+r)+k2(c+r)2+ar2 − m

 .
The eigenvalues of the matrix JiE1 are λi1 = −(c + r) < 0 and λi2 =

krµ(c+r)
bkr(c+r)+k2(c+r)2+ar2 − m. It follows

that for λi2 < 0, E1 is stable, and for λi2 > 0, E1 is a saddle point.
Now, let’s think about the stability of the internal equilibrium and assume that equilibrium points

E∗1, E∗2 exist.
Theorem 5∗.
(a) If tr(JiE∗1

) < 0, then the internal equilibrium point E∗1 is locally asymptotically stable and E∗1 is
unstable when tr(JiE∗1

) > 0;
(b) E∗2 is a saddle point in its existence interval.
Proof. The Jacobian matrix JiE∗1

(i = 1, ..., n) of the system (1.2) is

JiE∗1
=

 km2yi(b+2xi)−rx2
i µ

2

kµ2 xi
−m
µ

µmyi−m2yi(b+2xi)
µxi

0

 ,
from which one has tr(JiE∗1

) = kyim2(b+2xi)−rx2
i µ

2

kµ2 xi
and det(JiE∗1

) = yim2(µ−m(b+2xi))
µ2 xi

. The characteristic equation
is

λ2 − tr(JiE∗1
)λ + det(JiE∗1

) = 0.
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So, λ1 + λ2 = tr(JiE∗1
), λ1λ2 = det(JiE∗1

) and

det(JiE∗1
) =

yim2(µ − m(b + 2xi)
)

µ2xi
⇔

yim2

µ2xi

µ − m
(
b + 2

µ − mb −
√

(mb − µ)2 − 4m2a
2m

)
⇔

yim2

µ2xi

(
µ − mb −

(
µ − mb −

√
(mb − µ)2 − 4m2a

))
⇔

yim2

µ2xi

√
(mb − µ)2 − 4m2a;

since a < (µ−mb)2

4m2 , (mb − µ)2 − 4m2a > 0, one has

det(JiE∗1
) =

yim2

µ2xi

√
(mb − µ)2 − 4m2a > 0.

If tr(JiE∗1
) < 0, then eigenvalues λ1 and λ2 are negative and E∗1 is locally asymptotically stable; if

tr(JiE∗1
) > 0, then eigenvalues λ1 and λ2 are positive and E∗1 is unstable. It’s easy to calculate that

det(JiE∗2
) < 0, then in the existence range of E∗2, it is always a saddle point.

To sum it up theoretically, the stability of the system solution is conditional and the conditions for
stability are different between different equilibrium states. There is a phenomenon of overlapping
between different equilibrium states. The stability of the equilibrium state E0 is straightforward.
However, for E1, although there is a possibility of stability in theory, it is impossible in practice.

3. Bifurcation of the System

The linear part of (1.2) is(
ẋi

ẏi

)
=

(
a11 a12

a21 a22

) (
xi

yi

)
+

(
d1 0
0 d2

) ( ∑n
j Li jxi∑n
j Li jyi

)
, (3.1)

where a11 = r(1 − 2x
k ) + (x2−a)y

(a+bx+x2)2 + c, a12 = −
x

a+bx+x2 , a21 =
µy(a−x2)

(a+bx+x2)2 and a22 =
µx

a+bx+x2 − m. We
expressed the general solution as in [30]

xi = Σ
n
k=1ck

1eλktϕk
i ,

yi = Σ
n
k=1ck

2eλktϕk
i ,

(3.2)

where
∑n

j Li jϕ
k
j = Λiϕ

k
i . Plug (3.2) into (3.1) and the Jacobian matrix Bi (i = 1, ..., n) reads

Bi =

[
a11 + d1Λk a12

a21 a22 + d2Λk

]
,

where Λk (0 = Λ1 > Λ2 > · · · > Λn) denotes the eigenvalues of the matrix L.
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3.1. Transcritical bifurcation

Theorem 6∗.
For system (1.2), when a = − k(c+r)(r(bm−µ)+km(c+r))

mr2 � aTc and d2 = 0, the system (1.2) has a
transcritical bifurcation.

Proof. When a � aTc and d2 = 0, the Jacobian matrix JiE1 (i = 1, ..., n) of the system (1.2) is

JiE1 =

[
−(c + r) + d1Λk −

m
µ

0 0

]
.

Clearly, det(JiE1) = 0 and JiE1 has an eigenvalue λ = 0. Let its corresponding eigenvector be piT and
the eigenvector (λ = 0) of the transpose matrix JT

iE1
is qiT , then

piT =

(
piT1

piT2

)
=

( m
µ(d1Λk−(c+r))

1

)
, qiT =

(
qiT1

qiT2

)
=

(
0
1

)
.

Furthermore,

Ga(E1; aTc) =

 xiyi

(a+bxi+x2
i )2

−µxiyi

(a+bxi+x2
i )2


(E1;aTc)

=

(
0
0

)
,

∂Ga(E1;aTc)
∂(xi,yi)

piT =

 0 xi
(a+bxi+x2

i )2

0 −µxi

(a+bxi+x2
i )2

 ( m
µ(d1Λk−(c+r))

1

)
(E1;aTc)

=

 rm2

kµ2(c+r)
−rm2

kµ(c+r)

 ,
D2G(E1; aTc)(piT , piT ) =

 ∂2G1
∂x2 piT1 piT1 + 2∂

2G1
∂x∂y piT1 piT2 +

∂2G1
∂y2 piT2 piT2

∂2G2
∂x2 piT1 piT1 + 2∂

2G2
∂x∂y piT1 piT2 +

∂2G2
∂y2 piT2 piT2


(E1;aTc)

=

 −2m3(2k(c+r)+br)
kµ3(c+r)2

2m2(m(r(b+2k)+2kc)−µr)
kµ2(c+r)2

 .
It follows that

qT
iTGa(E1; aTc) = 0,

qT
iT
∂Ga(E1;aTc)
∂(xi,yi)

piT =
−rm2

kµ(c+r) , 0,

qT
iT [D2G(E1; aTc)(piT , piT )] = 2m2(m(r(b+2k)+2kc)−µr)

kµ2(c+r)2 , 0.

Therefore, the transcritical bifurcation condition is satisfied.

3.2. Saddle-node bifurcation

In section two, we researched the interior equilibrium point’s existence when ∆ > 0. The
system (1.2) has two distinct internal equilibria when ∆ = 0, i.e. a = (µ−mb)2

4m2 � a∗ and two equilibrium
points merged into one, which is called a degenerate equilibrium, denoted by E∗.

Theorem 7∗. When a = a∗ and d2 = 0, the system (1.2) exists a saddle-node bifurcation.
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Proof. When a = a∗ and d2 = 0, the Jacobian matrix JiE∗ (i = 1, ..., n) of the system (1.2) is

JiE∗ =

[
r + c − r(µ−mb)

km + d1Λk −
m
µ

0 0

]
.

Clearly, det(JiE∗) = 0 and JiE∗ has an eigenvalue λ = 0. Let its corresponding eigenvector be pis and
the eigenvector (λ = 0) of the transpose matrix JT

iE∗ is qis, then

pis =

(
pis1

pis2

)
=

 −km2

µ(m(k(c+r)+br)−µr)

1

 , qis =

(
qis1

qis2

)
=

(
0
1

)
.

Furthermore,

Ga(E∗; a∗) =

 xiyi

(a+bxi+x2
i )2

−µxiyi

(a+bxi+x2
i )2


(E∗;a∗)

=

 −
√

(µ−mb)2(r
√

(µ−mb)2−2km(c+r))
4km2

µ
√

(µ−mb)2(r
√

(µ−mb)2−2km(c+r))
4km2

 ,
D2G(E∗; a∗)(pis, pis) =

 ∂2G1
∂x2 pis1 pis1 + 2∂

2G1
∂x∂y pis1 pis2 +

∂2G1
∂y2 pis2 pis2

∂2G2
∂x2 pis1 pis1 + 2∂

2G2
∂x∂y pis1 pis2 +

∂2G2
∂y2 pis2 pis2


(E∗;a∗)

=


−

km4(bm−µ)2((b+
√

(bm−µ)2
m )(5br−2k(c+r))m2−6mbµr+3µ2r))

µ2(b(b+
√

(bm−µ)2
m )m2−2bmµ+µ2)2(m((c+r)k+br)−µr)2

km4(bm−µ)2(m2(br−2k(c+r))(b+
√

(bm−µ)2
m )−2mbµr+µ2r)

µ(m((c+r)k+br)−µr)2(b(b+
√

(bm−µ)2
m )m2−2bmµ+µ2)2

 .
It follows that

qT
isGa(E∗; a∗) = µ

√
(µ−mb)2(r

√
(µ−mb)2−2km(c+r))

4km2 , 0,

qT
is[D

2G(E∗; a∗)(pis, pis)] =
km4(bm−µ)2(m2(br−2k(c+r))(b+

√
(bm−µ)2

m )−2mbµr+µ2r)

µ(m((c+r)k+br)−µr)2(b(b+
√

(bm−µ)2
m )m2−2bmµ+µ2)2

, 0.

Therefore, the saddle-node bifurcation condition is satisfied.

3.3. Hopf bifurcation

Theorem 8∗. For the system (1.2), we assume that the parameters satisfy the existence condition of
equilibrium point E∗1. Let

c =
r((bm − 2µ)2 − 4am2 + (m(b + 2k) − 3µ)

√
(bm − µ)2 − 4am2 − µ2 − 2kµm)

2km(2µ −
√

(bm − µ)2 − 4am2)
� c∗

be such that tr(JE∗1
)|c=c∗ = 0, then the stability of E∗1 changes and the system (1.2) exists a Hopf

bifurcation.
Proof. When c = c∗, the Jacobian matrix JiE∗1

(i = 1, ..., n) of the system (1.2) is

det(JiE∗1
) =

 r + c − 2rxi
k +

yi(x2
i −a)

(bxi+x2
i +a)2

−xi
bxi+x2

i +a
µyi(a−x2

i )
(bxi+x2

i +a)2
µxi

bxi+x2
i +a − m


(E∗1;c∗)

=
rm
√

(bm−µ)2−4am2
√

(bm−µ)2−4am2−2µ
> 0 ,

Mathematical Biosciences and Engineering Volume 20, Issue 12, 21337–21358.
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and it is easy to verify that

d
dc

tr(J)|c=c∗ = 2 −
1
µ

√
(bm − µ)2 − 4am2 , 0.

We then compute the first Lyapunov coefficient [31]. Let c = c∗, where the coordinates of the
internal equilibrium point are (x,y). Change variables

xi = Xi + x∗1,
yi = Yi + y∗1,

the Taylor expansion is performed and the system becomes

Ẋi = p10Xi + p01Yi + p20X2
i + p11XiYi + p02Y2

i + p30X3
i + p21X2

i Yi

+ p12XiY2
i + p03Y3

i + P(Xi,Yi),
Ẏi = q10Xi + q01Yi + q20X2

i + q11XiYi + q02Y2
i + q30X3

i + q21X2
i Yi

+ q12XiY2
i + q03Y3

i + Q(Xi,Yi),

where p10 + q01 = 0, p10q01 − p01q10 > 0, and
p01 = −

µ

m , p20 =
ky∗1m3(ab+3ax∗1−x∗31 )

µ3 x∗31
− r, p11 =

m2(x∗21 −a)
µ2 x∗21

, p30 =
y∗1m4((x∗21 −a)2−a(b+2x∗1)2)

µ4 x∗41
, p21 =

m3(ab+3ax∗1−x∗31 )
µ3 x∗31

, p10 = p12 = p02 = p03 = 0,

q10 =
m2y∗1(a−x∗21 )
µx∗21

, q20 =
m3y∗1(x∗21 −3ax∗1−ab)

µ2 x∗31
, q21 =

m3(x∗31 −3ax∗1−ab)
µ2 x∗31

, q11 =
m2(a−x∗21 )
µx∗21

, q30 =

m4y∗1(a(b+2x∗1)2−(a−x∗21 )2))
µ3 x∗41

, q01 = q02 = q12 = q03 = 0.
The expression of the first Lyapunov coefficient is

lc1 =
3πm

2µ(
my∗1(a−x∗21 )

x∗21
)3/2
{

m3y∗1
µ2 x∗41

(x∗21 − a)2(r − ky∗1m3

µ3 x∗31
(ab + 3ax∗1 − x∗31 ))

+
µ2

m2 (2m3y∗1
µ2 x∗31

(x∗21 − ab − 3ax∗1)(r − ky∗1m3

µ3 x∗31
(ab + 3ax∗1 − x∗31 ))

+
m5y∗1
µ3 x∗51

(x∗21 − a)(x∗21 − ab − 3ax∗1)) + my∗1
x∗21

(a − x∗21 )( m2

µx∗31
(x∗31 − ab − 3ax∗1)

+
3y∗1m3

µ3 x∗41
((x∗21 − a)2 − a(b + 2x∗1)2))},

if lc1 < 0 (resp. > 0), the limit cycle is stable(resp. unstable).

3.4. Bogdanov-Takens bifurcation

Now, we will discuss the Bogdanov-Takens bifurcation of (1.2). Let d2 = 0 (meaning Plankton at
each node do not spread out due to human intervention), then the Jacobian matrix about E∗ is

JiE∗ =

[
r + c − r(µ−mb)

km + d1Λk −
m
µ

0 0

]
,

then tr(JiE∗) = r + c − r(µ−mb)
km + d1Λk, det(JiE∗) = 0. If tr(JiE∗) = 0, i.e. c = r(µ−mb)

km − r − d1Λk � c∗, then
JiE∗ has two zero characteristic roots. Now we will use the method given by Xiao and Ruan in [32] to
verify that E∗ is a cusp of codimensional two and that there exists B-T bifurcation in the neighborhood
of the equilibrium point E∗.

Mathematical Biosciences and Engineering Volume 20, Issue 12, 21337–21358.



21345

We select (a, c) as the bifurcation parameters to study the bifurcation of the system (1.2). (a, c)
changes in a small neighborhood near (a∗, c∗), where (a∗, c∗) is the B-T bifurcation point. We consider
the following system

dxi
ds = rxi(1 − xi

k ) − xiyi

(a∗−εa)+bxi+x2
i
+ (c∗ − εc)xi + d1Λkxi

dyi
ds =

µxiyi

(a∗−εa)+bxi+x2
i
− myi,

(3.3)

where (εa, εc) are small parameters. Through the following transformation

Xi1 = xi − x∗,
Yi1 = yi − y∗,

the system (3.3) becomes

Ẋi1 = a00 + a10Xi1 + a01Yi1 + a20X2
i1 + a11Xi1Yi1 + P1(Xi1,Yi1),

Ẏi1 = b00 + b10Xi1 + b01Yi1 + b20X2
i1 + b11Xi1Yi1 + P2(Xi1,Yi1),

(3.4)

where

a00 =
rεa(bm−µ)2

2k(bmµ+2 εa m2−µ2) +
εc
2m ,

a10 =
rmµεa(bm−µ)2

k(bmµ+2 εa m2−µ2)2 − εc,

a01 =
(µ−bm)m

bmµ+2 εa m2−µ2 ,

a20 = −
r(−µ6+2 bmµ5+6 m2µ4εa−2 bm3(b2+5 εa)µ3+m4(b2+6 εa)(b2−4 εa)µ2+2 bm5εa (b2+12 εa)µ+16 m6εa

3)
2k(bmµ+2 εa m2−µ2)3 ,

a11 =
4m4εa

(bmµ+2 εa m2−µ2)2 ,

b00 =
−µ rεa(bm−µ)2

2k(bmµ+2 εa m2−µ2) ,

b10 =
−rmεaµ2(bm−µ)2

k(bmµ+2 εa m2−µ2)2 ,

b01 =
−2m3εa

bmµ+2 εa m2−µ2 ,

b20 =
rµ2(bm−µ)2(µ3−2 bmµ2+m2(b2−6 εa)µ+2 bm3εa)

2k(bmµ+2 εa m2−µ2)3 ,

b11 =
−4µm4εa

(bmµ+2 εa m2−µ2)2 ,

P j(Xi1,Yi1) ( j = 1, 2) is a smooth function and P j(Xi1,Yi1) = O(| Xi1,Yi1 |
3).

Then, in the small neighborhood of (0, 0), we make the following C∞ transformation

Xi2 = Xi1,

Yi2 = a00 + a10Xi1 + a01Yi1 + a20X2
i1 + a11Xi1Yi1 + P1(Xi1,Yi1),

and system (3.4) becomes

Ẋi2 = Yi2,

Ẏi2 = p00 + p10Xi2 + p01Yi2 + p20X2
i2 + p11Xi2Yi2 + p02Y2

i2 + P3(Xi2,Yi2),
(3.5)
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where
p00 = a01b00 − a00b01,

p10 = a01b10 − a10b01 + a11b00 − a00b11,

p01 = −
a00a11−a01a10−a01b01

a01
,

p20 = a01b20 − a20b01 + a11b10 − a10b11,

p11 =
a00a2

11+2a2
01a20+a2

01b11−a01a01a11

a2
01

,

p02 =
a11
a01
,

P3(Xi2,Yi2) is a smooth function and P3(Xi2,Yi2) = O(| Xi2,Yi2 |
3). Introducing a new time variable τ

that satisfies ds = (1 − p02Xi2), and τ is still recorded as s, then system (3.5) becomes

Ẋi2 = Yi2(1 − p02Xi2),
Ẏi2 = (1 − p02Xi2)[p00 + p10Xi2 + p01Yi2 + p20X2

i2 + p11Xi2Yi2 + p02Y2
i2 + P3(Xi2,Yi2)].

(3.6)

Note that
Xi3 = Xi2,

Yi3 = Yi2(1 − p02Xi2).

The system (3.6) becomes

Ẋi3 = Yi3,

Ẏi3 = p00 + (p10 − 2p00 p02)Xi3 + p01Yi3 + (p20 − 2p02 p10 + p00 p2
02)X2

i3
+ (p11 − p01 p02)Xi3Yi3 + P4(Xi3,Yi3),

(3.7)

where P4(Xi3,Yi3) is a smooth function and P4(Xi3,Yi3) = O(| Xi3,Yi3 |
3). Note that the sign of p20 −

2p02 p10 + p00 p2
02 is difficult to determine. We consider the following two scenarios.

Case I: If p20 − 2p02 p10 + p00 p2
02 > 0, then we make the following variable transformation

Xi4 = Xi3,

Yi4 =
Yi3√

p20−2p02 p10+p00 p2
02

τ = s
√

p20 − 2p02 p10 + p00 p2
02,

and τ is still recorded as s, then system (3.7) becomes

Ẋi4 = Yi4,

Ẏi4 = q00 + q10Xi4 + q01Yi4 + X2
i4 + q11Xi4Yi4 + P5(Xi4,Yi4),

(3.8)

where
q00 =

p00

p20−2p02 p10+p00 p2
02
,

q10 =
p10−2p00 p02

p20−2p02 p10+p00 p2
02
,

q01 =
p01√

p20−2p02 p10+p00 p2
02

,

q11 =
p11−p01 p02√

p20−2p02 p10+p00 p2
02

,

P5(Xi4,Yi4) is a smooth function and P5(Xi4,Yi4) = O(| Xi4,Yi4 |
3). Note that

Xi5 = Xi4 +
q10
2 ,

Yi5 = Yi4.
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The system (4.1) becomes

Ẋi5 = Yi5,

Ẏi5 = r00 + r01Yi5 + X2
i5 + r11Xi5Yi5 + P6(Xi5,Yi5),

(3.9)

where r00 = q00 −
q2

10
4 , r01 = q01 −

q10q11
2 , r11 = q11, P6(X5,Y5) is a smooth function and P6(Xi5,Yi5) =

O(| Xi5,Yi5 |
3). If p11 − p01 p02 , 0, then r11 = q11 =

p11−p01 p02√
p20−2p02 p10+p00 p2

02

, 0 and, hence, we make another

variable transformation as follows:

Xi6 = r2
11Xi5,

Yi6 = r3
11Yi5,

τ = s
r11
,

from which we are able to get the universal fold of the system (1.2)

Ẋi6 = Yi6,

Ẏi6 = ξ00 + ξ01Yi6 + X2
i6 + Xi6Yi6 + P7(Xi6,Yi6),

where ξ00 = r00r4
11, ξ01 = r01r11, P7(Xi6,Yi6) is a smooth function and P7(Xi6,Yi6) = O(| Xi6,Yi6 |

3).
(i) Saddle-node bifurcation curve S N = {(εa, εc) : ξ00(εa, εc) = 0, ξ01(εa, εc) , 0};
(ii) Hopf bifurcation curve H = {(εa, εc) : ξ00(εa, εc) < 0, ξ01(εa, εc) =

√
−ξ00(εa, εc)};

(iii) Homoclinic orbit bifurcation curve
HL = {(εa, εc) : ξ00(εa, εc) < 0, ξ01(εa, εc) = 5

7

√
−ξ00(εa, εc)}.

Case II: If p20 − 2p02 p10 + p00 p2
02 < 0, then we make the following variable transformation:

Xi4 = Xi3,

Yi4 =
Yi3√

−(p20−2p02 p10+p00 p2
02)
,

τ = s
√
−(p20 − 2p02 p10 + p00 p2

02),

and τ is still recorded as s, then system (3.7) becomes

Ẋi4 = Yi4,

Ẏi4 = q00 + q10Xi4 + q01Yi4 − X2
i4 + q11Xi4Yi4 + P5(Xi4,Yi4),

(10′)

where
q00 = −

p00

p20−2p02 p10+p00 p2
02
,

q10 = −
p10−2p00 p02

p20−2p02 p10+p00 p2
02
,

q01 =
p01√

−(p20−2p02 p10+p00 p2
02)
,

q11 =
p11−p01 p02√

−(p20−2p02 p10+p00 p2
02)
,

P5(Xi4,Yi4) is a smooth function and P5(Xi4,Yi4) = O(| Xi4,Yi4 |
3). Note that

Xi5 = Xi4 −
q10
2 ,

Yi5 = Yi4.

The system (10’) becomes
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Ẋi5 = Yi5,

Ẏi5 = r00 + r01Yi5 − X2
i5 + r11Xi5Yi5 + P6(Xi5,Yi5),

(11′)

where r00 = q00 −
q2

10
4 , r01 = q01 −

q10q11
2 , r11 = q11, P6(Xi5,Yi5) is a smooth function and P6(Xi5,Yi5) =

O(| Xi5,Yi5 |
3).

If p11 − p01 p02 , 0, then r11 = q11 =
p11−p01 p02√

−(p20−2p02 p10+p00 p2
02)
, 0, and we make another variable

transformation as follows:

Xi6 = −r2
11Xi5,

Yi6 = r3
11Yi5,

τ = − s
r11
,

from which one can get the universal fold of the system (1.2)

Ẋi6 = Yi6,

Ẏi6 = ξ00 + ξ01Yi6 + X2
i6 + Xi6Yi6 + P7(Xi6,Yi6),

where ξ00 = −r00r4
11, ξ01 = −r01r11, P7(Xi6,Yi6) is smooth function and P7(Xi6,Yi6) = O(| Xi6,Yi6 |

3).
(i) Saddle-node bifurcation curve S N = {(εa, εc) : ξ00(εa, εc) = 0, ξ01(εa, εc) , 0};
(ii) Hopf bifurcation curve H = {(εa, εc) : ξ00(εa, εc) < 0, ξ01(εa, εc) = −

√
−ξ00(εa, εc)};

(iii) Homoclinic orbit bifurcation curve
HL = {(εa, εc) : ξ00(εa, εc) < 0, ξ01(εa, εc) = −5

7

√
−ξ00(εa, εc)}.

4. Numerical simulation

To further discuss the stability of the solution of the model equation, considering the actual situation
of HABs occurrence and the critical influence of human behavior on the food chain model, taking a
and c as control variables, the stability of the equilibrium state of the model equation was studied by
using the bifurcation theory. We consider the following system (4.1)

dxi
ds = 2xi(1 − xi

120 ) − xiyi

a+0.2xi+x2
i
+ cxi + 0.01

∑n
j Li jxi,

dyi
ds =

0.4xiyi

a+0.2xi+x2
i
− 0.08yi, ∀i = 1, 2, · · · n.

(4.1)

To get the model dynamics in the neighborhood of the Transcritical, Saddle-node, Hopf, Bogdanov-
Takens bifurcations, we give a series of simulations to illustrate the emergence of complex patterns that
arise for the system (4.1). We choose some parameter values for which (4.1) attains these bifurcations
(see Figures 1a,2a,4a,7a). To observe the peculiarities of patterns that arise in the neighborhood of
these bifurcations, we choose two sets of parameter values (see Figures 1b,2b) and four sets of network
connection probability values (see Figures 5 and 8).
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Figure 1. The phase portrait and time series diagram (the left one) and pattern formation
(the right one) of the system (1.2) at E1, where c = −1.962; aTc = 5.7456; p = 0.001; E1 =

(2.28, 0). (a) a = 5.7456 = aTc. (b) a = 4.7456 < aTc. (c) a = 6.7456 > aTc.
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Figure 2. The phase portrait and time series diagram (the left one) and pattern formation (the
right one) of the system (1.2) at E∗, where c = −1.95; a∗ = 5.76; p = 0.001; E∗ = (2.4, 0.12).
(a) a = 5.76 = a∗. (b) a = 4.76 < a∗. (c) a = 6.76 > a∗.

4.1. Transcritical bifurcation

When transcritical bifurcation occurs, it can be seen from the comparison that the equilibrium
point’s stability has changed in Figure 1 (left). In general, the distribution of plankton is uneven and
will vary due to regional differences, as shown in Figure 1a (right). When a < aTc, the equilibrium
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point E1 of (1.2) is in a stable state in Figure 1b (left), and the nodes of the network decrease first and
then increase successively in Figure 1b (right). When a > aTc, the equilibrium point E1 of (1.2)
becomes unstable in Figure 1c (left), and the nodes of the network tend to another stable equilibrium
point in different ways in Figure 1c (right).

Regarding biological mechanism, the physical meaning is the idealized initial level for the
equilibrium point E1; that is, the population density of plankton is zero. The half-saturation constant a
can be used as the critical concentration to maintain the practical form of nutrients in the water for the
average growth of algal cells. It can also be used to compare the ability of different phytoplankton to
absorb nutrients. When light intensity, water temperature and other conditions were suitable but
nutrient content was low (a < aTc), phytoplankton with a smaller a value were likelier to become the
dominant species. The growth of phytoplankton with a higher a value was limited due to the need for
more nutrients. However, when nutrients are too abundant (a > aTc), the community structure of
phytoplankton will change significantly, which may lead to the rapid reproduction of some harmful
phytoplankton; that is, transcritical bifurcation occurs (transition from one equilibrium point to
another equilibrium point). It’s also how organisms choose profitable ways to adapt to their
environment.

4.2. Saddle-node bifurcation

For the equilibrium point E∗, the cell density of plankton is not zero; E∗ > 0 is necessary for
HABs to occur. As can be seen from Figure 2 (left), c = −1.95 < 0 means de-eutrophication of
effluent wastewater when the parameter crosses the critical value a∗ (other parameters were fixed)
and the equilibrium points number goes from zero to one. Then, it splits into two, and their stability
changes accordingly. With a = a∗, there is one stable positive equilibrium in Figure 2a (left). Due to
the network’s action, each node region’s stable point is different. That is, turing instability occurs in
Figure 2a (right). As a < a∗, there is one stable positive equilibrium point and one unstable positive
equilibrium point in Figure 2b (left). Due to the effect of the network, almost all nodes simultaneously
tend to be stable in an exponential decay way in Figure 2b (right). With a > a∗, the positive equilibrium
point disappears in Figure 2c (left). In this case, plankton tends to be extinct in this environment,
resulting in too abundant nutrients. However, nutrients will not grow indefinitely. Still, it will reach a
stable state, and under the action of the network, this stabilization is synchronous in Figure 2c (right).
Similarly, the simulation showed that the network connection probability still could not affect the
pattern.

4.3. Hopf bifurcation

In the following, a is selected as Hopf bifurcation parameters. Using the MATCONT toolbox
for analysis, it is observed that the system has a Branch point (labelled as BP), Limit point (fold)
bifurcation (labelled as LP) and two Hopf bifurcations (labelled as H), as shown in Figure 3. Obtained
in the MATLAB command window,

label = H, x = (1.891533, 0.374282, 5.501461),

First Lyapunov coefficient = −1.289975 × 10−2,

label = LP, x = (2.400000, 0.373200, 5.760000), a = −5.585490 × 10−2,
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label = BP, x = (4.266000, 0.000000, 2.278044),

label = H, x = (−0.225533,−0.084416,−1.133425),

First Lyapunov coefficient = −6.228478 × 10−2.

Figure 3. Hopf bifurcation points (a, c) = (5.5014609,−1.9289).

First Lyapunov coefficient = −1.289975 × 10−4 < 0, so the Hopf bifurcation is supercritical. When
the bifurcation value a = 5.5015, the stability of the system changes abruptly, a limit cycle “pops out”
around it and the system oscillates violently and continuously, as in Figure 4a. It can be seen from
Figure 4 that if HABs break out at this time, the explosive growth of HABs must be related to the
Hopf bifurcation behavior of the system. The periodic outbreak period at each node is different in the
Nutrient-Plankton network due to the different environments in each region. However, the system at
each node is periodic in Figure 4b for the whole network. With the increase of the network connection
probability(p = 0.01, 0.05), it is evident that the outbreak period of each node gradually tends to be
consistent in Figure 5.
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Figure 4. c∗ = −1.9289; a = 5.5015; p = 0.001; E∗1 = (1.8901, 0.3742). (a) The phase
portrait and time series diagram of the system (1.2) at E∗1. (b) The pattern formation of the
system (1.2) at E∗1.
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Due to the limitation of environmental factors and physiological characteristics of algae, algae
growth shows periodicity. When the surrounding environment is suitable, a specific population
density of algae simultaneously begins to multiply and consume nutrients from the surrounding
environment. The first HABs occur when the thickness of algae is above a particular value. When
algae concentrations first peak (when the effects of HABs are most severe), they reach their limits.
Due to nutrient restriction (Figure 4, nutrient concentrations decreased to low values during the same
period), algal densities declined sharply until they reached deficient levels. Nutrient concentrations
gradually recover due to the dramatic decrease in algae density, the degradation of algae metabolism
and dead algae and the diffusion effect of ocean currents. Under these conditions, algae enters a
period of rapid growth, forming the second HABs (the appearance of the second peak).

(a) (b)

Figure 5. The pattern formation of the system (1.2) at E∗1, where c∗ = −1.9289; a =
5.5015; E∗1 = (1.8901, 0.3742). (a) p = 0.01. (b) p = 0.05.

Figure 6. Bogdanov-Takens bifurcation point.
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4.4. Bogdanov-Takens bifurcation

In this section, (a, c) are selected as Bogdanov-Takens bifurcation parameters. Using the
MATCONT toolbox for analysis, we can get that (1.2) has a Bogdanov-Takens bifurcation point
(labelled as BT) and a Cusp bifurcation point (labelled as CP), as shown in Figure 6. Obtained in the
MATLAB command window,

label = BT, x = (2.400000, 0.480003, 5.760000,−1.920000),

(a, b) = (6.400040e − 04,−1.733323e − 02),

label = CP, x = (2.400000,−0.000021, 5.760000,−1.960002), c = −6.409387e − 03.

According to the previous analysis on the existence of the internal equilibrium point (Theorem 2),
we know that when ∆ = 0, the two positive equilibrium points of (1.2) merge into one equilibrium
point. The only positive equilibrium point E∗ is a cusp of codimension two, and the system state is
shown in Figure 7. The positive equilibrium point E∗ is unstable in Figure 7a. Moreover, when the
connection probability is small, as can be seen from the figure Figure 7b, the orbits near the equilibrium
point far away from the equilibrium point are almost out of sync, which means eutrophication of
effluent wastewater at each node in the network almost does not affect each other. However, with
the increase of the connection probability (p = 0.035, 0.04), this lack of mutual influence has almost
disappeared in Figure 8.
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Figure 7. (a, c) = (5.76,−1.92); p = 0.001; E∗ = (2.4, 0.48). (a) The phase portrait and time
series diagram of system (1.2) at E∗. (b) The pattern formation of the system (1.2) at E∗.

Ultimately, we conclude the relationship between harmful algal blooms and bifurcation. First,
marine eutrophication is the essential condition leading to the outbreak of HABs; when the nutrient
concentration is low, there will be no HABs (nutrient concentration is below the threshold). Second,
the explosion of HABs also depends on the point of algae concentration. On one hand, the location of
bifurcation changes with the change of parameters. If the bifurcation location reaches the threshold of
HABs occurrence, it may trigger HABs. On the other hand, it is often determined that the equilibrium
point of the system loses stability and bifurcations occur (such as transcritical bifurcation,
saddle-node bifurcation, Hopf bifurcation, B-T bifurcation), which causes a significant change in the
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concentration of algae. Once the threshold of the concentration of algae required for the occurrence of
HABs is reached at some time, it will lead to an outbreak of HABs. Therefore, using the nonlinear
dynamics theory to discuss the stability and bifurcation behavior of the model near the equilibrium
point helps us study the HABs generation mechanism and explore the HABs outbreak’s internal
mechanism and the dependence on dynamic parameters and environmental factors. The study of the
stability and bifurcation behavior of the plankton ecosystem plays an essential role in the prediction
and early warning of HABs.

(a) (b)

Figure 8. The pattern formation of the system (1.2) at E∗, where (a, c) = (5.76,−1.92); E∗ =
(2.4, 0.48). (a) p = 0.035. (b) p = 0.04.

5. Conclusions

The paper deals with equilibria (local and global), Saddle-node, Transcritical, Hopf-Andronov and
B-T bifurcation of the Nutrient-Plankton system on networks. In the numerical simulations, by
controlling the change of parameters and observing the transformation process of the pattern, we
observed several types of dynamics and the evolution process of the population of each node, which
will bring great reference value to scientific research. When the system produces transcritical or
saddle-node bifurcation, the change of parameters a and c will lead to changes in the number of
equilibrium points or stability of (1.2), and the corresponding pattern will also change greatly.
Moreover, in the simulation process, it was found that the change in network connection probability
will not affect the changing trend of the pattern. The pattern does not change much before, after or on
the critical value of the transcritical bifurcation (saddle-node bifurcation). The simulation results also
show that when Hopf or B-T bifurcation was generated in (1.2), the network connection probability
greatly influenced the pattern.

Regarding biological mechanism, the half-saturation constant a and de-eutrophication of effluent
wastewater c < 0 directly affect the occurrence of HABs. When transcritical bifurcation (saddle-node
bifurcation, B-T bifurcation) occurs, the system tends to be stable. The nutrient was relatively
deficient and a limiting environmental factor at this time. Therefore, the growth rate of plankton is
slow, the mortality rate and environmental loss rate are more significant than the growth rate and the
concentration of plankton decreases or even tends to extinction. When Hopf bifurcation occurs, the
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nutrient is relatively sufficient so that the plankton multiply rapidly and the concentration increases
quickly, thus causing periodic HABs outbreaks. Due to the influence of diffusion, convection etc. and
under the network’s action, the stabilization or the periodic outbreak of HABs will reach
synchronization.
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