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Abstract: Sketch image retrieval is an important branch of the image retrieval field, mainly relying on 
sketch images as queries for content search. The acquisition process of sketch images is relatively 
simple and in some scenarios, such as when it is impossible to obtain photos of real objects, it 
demonstrates its unique practical application value, attracting the attention of many researchers. 
Furthermore, traditional generalized sketch image retrieval has its limitations when it comes to 
practical applications; merely retrieving images from the same category may not adequately identify 
the specific target that the user desires. Consequently, fine-grained sketch image retrieval merits further 
exploration and study. This approach offers the potential for more precise and targeted image retrieval, 
making it a valuable area of investigation compared to traditional sketch image retrieval. Therefore, 
we comprehensively review the fine-grained sketch image retrieval technology based on deep learning 
and its applications and conduct an in-depth analysis and summary of research literature in recent years. 
We also provide a detailed introduction to three fine-grained sketch image retrieval datasets: Queen 
Mary University of London (QMUL) ShoeV2, ChairV2 and PKU Sketch Re-ID, and list common 
evaluation metrics in the sketch image retrieval field, while showcasing the best performance achieved 
for these datasets. Finally, we discuss the existing challenges, unresolved issues and potential research 
directions in this field, aiming to provide guidance and inspiration for future research. 

Keywords: fine-grained sketch image retrieval; deep learning; image retrieval 
 

1. Introduction 

Image retrieval, as a core research direction in the field of computer vision, is dedicated to 
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retrieving images highly similar to a given input image from vast image databases. In practical 
applications, obtaining actual images of the target objects might not be feasible in specific scenarios. 
For instance, in online shopping, consumers might not be able to provide actual photographs of certain 
footwear; however, they can articulate the basic visual appearance and features of the shoes through 
hand-drawn sketches. With the widespread adoption of touchscreen devices such as smartphones and 
tablets, the acquisition of user-drawn sketches has become more convenient. Consequently, methods 
for retrieval based on sketch images have gradually garnered attention within the academic community 
[1,2]. Figure 1 [3,4] provides some hand-drawn sketch images depicting a variety of common objects. 

 

(a)Chair      (b)Penguin      (c)Apple       (d)Cat 

Figure 1. Sketch images of common objects, where the images in (a) are from the 
ProSketch-3DChair [3] dataset and the images in (b), (c) and (d) are from the Sketchy 
dataset [4].  

 

Figure 2. The workflow of intra-domain retrieval. 
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Based on the scope of retrieval, existing image retrieval methods can be categorized into two 
classes: Intra-domain retrieval and cross-domain retrieval. Intra-domain retrieval necessitates that both 
the query data and the data within the retrieval dataset belong to the same modality type. A common 
instantiation of this retrieval paradigm is exemplified by content-based image retrieval, as depicted in 
Figure 2. Given the inherent similarity in data distribution between query and retrieval image data, this 
retrieval paradigm typically employs manual features (such as Histogram of Oriented Gradients, HOG 
and other conventional feature extraction techniques) or shallow-depth deep learning networks to 
extract semantically indicative features. Subsequently, through the application of metric learning, the 
extracted features from both sets are subjected to similarity computation, facilitating the identification 
of the most analogous retrieval data. This, in turn, enables the arrangement of results in descending 
order of similarity, thereby achieving the objective of image retrieval. 

 

(a)  Fine-grained                 (b)   Coarse-grained       (c) Different results were drawn by different 

painters on the same shoe 

Figure 3. Fine-grained sketch image retrieval and coarse-grained sketch image retrieval. 
Red means mismatch and green means correct match. The images in (a) and (c) are sourced 
from [4], the images in (b) are sourced from [5]. 

The realm of sketch image retrieval can be broadly categorized into two classes: coarse-grained 
retrieval at the category level and fine-grained retrieval at the instance level. This discussion 
particularly hones in on the intricacies of fine-grained sketch image retrieval. Noteworthy distinctions 
manifest exists between the tasks of coarse-grained and fine-grained retrieval. Within the realm of fine-
grained sketch image retrieval, the central concern revolves around ensuring that the input sketch 
image and the retrieved results not only share the same category but also align with subtle nuances 
within that category. For instance, as illustrated in Figure 3(a), notwithstanding the common theme of 
depicting shoes across all images, the outcomes indicated by the red arrows do not correspond to the 
anticipated specific style or model, hence being deemed erroneous matches. Conversely, as illustrated 
in Figure 3(b), in the coarse-grained retrieval task, the requirement is merely for the input sketch and 
the retrieved image to belong to the same overarching category, thus qualifying as a correct match. 
Consequently, relative to coarse-grained retrieval, fine-grained sketch image retrieval imposes higher 
technical demands and presents greater challenges in terms of methodologies. 

This exploration delves into the progress and application of deep learning techniques in the 
domain of fine-grained sketch image retrieval in recent years. Advanced algorithms within this field 
are meticulously categorized and summarized, offering insights into future research directions along 
with predictions and recommendations for the trajectory of the field. 
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Figure 4 serves as a visual representation, summarizing the intricate relationships and connections 
between the major approaches and topics discussed. This graphical overview lays the foundation for 
the subsequent sections, which are organized as follows: The subsequent sections are organized as 
follows: In Section 2, we provide an introduction to the background knowledge of fine-grained sketch 
image retrieval, emphasizing the key challenges encountered in its research. In Section 3, we 
enumerate and describe several prominent fine-grained sketch image retrieval datasets, delving into 
the fundamental issues currently confronted by research in this domain. Moving on to Section 4, we 
comprehensively expound upon recent representative approaches in fine-grained sketch image 
retrieval based on deep learning. We classify these approaches based on the types of datasets utilized 
and the research questions they address, while also showcasing their performance on well-established 
benchmark datasets. Finally, in Section 5, we present potential avenues for future developments in the 
field of fine-grained sketch image retrieval, outlining prospective research foci and directions to propel 
the field forward. 

 

Figure 4. Overview of the structure of fine-grained sketch image retrieval based on deep learning. 
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2. Background 

This section primarily delves into the background knowledge of fine-grained sketch image 
retrieval. First, it reviews the historical evolution and typical applications of sketch image retrieval. 
Subsequently, it analyzes the intrinsic features of sketch images, delving into the challenges and 
potential opportunities encountered within the domain of fine-grained sketch image retrieval. 

2.1. Historical evolution and typical applications 

Early research on sketch image retrieval [6–9] mainly focused on coarse-grained sketch image 
retrieval. However, in recent years, the rapid development of deep learning techniques has provided 
researchers with powerful tools that enable them to explore the field of fine-grained image retrieval 
more deeply and tap the potential of fine-grained image representations. The intersection of deep 
learning and fine-grained sketch retrieval methods opens up new opportunities for research and 
practical applications. This retrieval approach holds significant practical value, particularly in 
scenarios where the need arises to identify target objects with specific attributes from vast datasets, 
albeit lacking corresponding reference images. For instance, in e-commerce, fine-grained sketch image 
retrieval empowers users to search for products similar to their memories of a particular item through 
rudimentary hand-drawn sketches. This approach not only enhances search convenience but also 
broadens the spectrum of user retrieval methods. In criminal investigations, instances may arise where 
only eyewitness descriptions are available due to blind spots in surveillance devices or other reasons, 
leading to an absence of actual images of suspects. In such contexts, sketch-based person re-
identification technology emerges as pivotal. This technique aims to match sketches drawn by 
professional artists based on eyewitness descriptions with personal images from surveillance videos, 
thereby furnishing robust technical support for investigative endeavors. 

Early research on sketch image retrieval tended to convert images into edge maps and then 
directly compare them with sketch images [8]. However, this approach performed well only in coarse-
grained sketch image retrieval tasks, facing challenges in fine-grained retrieval. This is primarily 
because fine-grained retrieval aims to distinguish highly similar objects within the same category. To 
address this, Li et al. [10] explored the use of deformable part models and graph-matching techniques 
for fine-grained sketch image retrieval in the presence of unaligned poses in 2014. With the 
advancement of deep learning techniques, Yu et al. [5] introduced the first deep learning-based model 
for fine-grained sketch image retrieval, where a deep triplet network was employed to learn a shared 
embedding space between photos and sketch images. To further enhance retrieval performance, 
researchers began to explore more advanced deep learning approaches. For instance, attention 
mechanisms with high-order retrieval loss were introduced [11], combining cross-modal image 
generation with joint discriminative learning [12], as well as leveraging text labels [13] and cross-
modal hierarchical attention [14]. 

Person re-identification is a typical application area for fine-grained sketch image retrieval, which 
has made significant progress[15–19] in recent years. However, in some specific contexts, it is difficult 
to obtain photos of target pedestrians. This leads to a research framework for fine-grained sketch-based 
character re-identification, originally proposed by Pang et al. [20] in 2018. Their pioneering work 
included the creation of the first sketch-based character re-identification dataset and the use of 
adversarial learning techniques to narrow the gap between sketch images and photographs of people. 
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This framework provides new perspectives and possibilities for exploring applications of fine-grained 
sketch image retrieval. Based on this dataset, Gui et al. [21] adopted a triplet-based classification 
network as the backbone and incorporated an embedded gradient reversal layer to mitigate the 
modality discrepancy between sketch images and photographs. Although these approaches yielded 
commendable results, the challenges inherent in matching sketch images with personal photographs 
persist without definitive resolution. The principal factors contributing to this conundrum include: (1) 
The limited scale of sketch-based person re-identification datasets and the scarcity of relevant research 
therein; (2) the substantial dissimilarity between sketch-based representations and authentic 
photographic images of persons, with sketches containing mere contour information while 
photographic representations feature not only precise contours but also vivid color and intricate 
background details; (3) the predominant portrayal of frontal-view subjects in sketches, whereas real-
world photographic images of persons stem from diverse camera angles and are consequently 
susceptible to the influences of camera perspectives, person postures and occlusions. 

2.2. Characteristics and challenges 

The major challenges in the field of fine-grained sketch image retrieval include cross-domain 
differences, i.e., significant differences between sketch images and photographs, and intrinsic 
differences within the same domain, i.e., high levels of similarity within sketch images. In addition, 
the abstract nature of sketch images and the scarcity of datasets are also challenges in this domain. 
Together, these factors affect the performance and accuracy of fine-grained sketch image retrieval 
algorithms. 

(1) Cross-domain discrepancy: A notable challenge in fine-grained sketch image retrieval resides 
in the significant cross-domain disparity between sketch images and photographs. Specifically, sketch 
images are characterized by sparse monochromatic lines, while photographs exhibit dense arrays of 
colored pixels, capturing the perspective projections of visual entities. Concurrently, sketch images 
encapsulate distinguishing features through subjectively abstract renderings of emblematic contours, 
whereas photographs meticulously represent images using a plethora of pixels. This cross-domain 
discrepancy problem hinders the performance of existing fine-grained sketch image retrieval. 

(2) High similarity between fine-grained sketch images: The complexity of the challenge in the 
field of fine-grained image retrieval is not only manifested in the significant differences across domains 
but also in the intrinsic differences within the same domain. In particular, it should be emphasized that 
fine-grained sketch image datasets usually exhibit significant internal similarity, mainly in the sense that 
these images have similar textural and structural features within them, which makes them show a high 
degree of similarity in local areas. The presence of this internal similarity poses a complex challenge to 
the performance of fine-grained sketch image retrieval algorithms. This is because this similarity may 
trigger mismatches and confusion during local feature matching, especially when dealing with a large 
number of sketch image retrievals. Therefore, solving this problem requires algorithms to more 
accurately capture and distinguish small feature differences within fine-grained sketch images to improve 
the accuracy and reliability of fine-grained sketch image retrieval. This may also require further research 
and development of techniques and methods specifically for fine-grained images. 

(3) Abstraction in sketch images: Similar to photographic images, grayscale images and sketch 
images all fall under the category of homogeneous images. Grayscale images and photographic images 
exhibit a certain resemblance, as both maintain the fundamental image structure to a considerable extent. 
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However, sketch images, being products of manual artistic rendering and imbued with a certain level of 
subjectivity, result in a heightened level of abstraction. As illustrated in Figure 3(c), a single shoe, when 
drawn by different artists, yields divergent outcomes. Considering the limited drawing capabilities of the 
majority, it becomes imperative that the creation of the dataset does not rely on professional illustrators 
for generating sketch images. This, in turn, impinges upon the precision of feature extraction for sketch 
images, thereby introducing complexities in fine-grained sketch images retrieval. 

(4) Scarcity of dataset: Despite the relative ease of acquiring sketch images, the number of sketch 
image datasets available for fine-grained retrieval tasks that require a high degree of accuracy is very 
limited. This limits the choices and variety available to researchers in developing and evaluating 
algorithms, thus putting some constraints on the progress of the field. Therefore, more work is needed 
to expand and enrich sketch image datasets to advance the field of fine-grained sketch image retrieval. 
This may include collecting more sketch images of different styles, subjects and qualities to cater to a 
variety of real-world applications and to improve the generalisability and performance of algorithms. 

3. Datasets and evaluation metrics 

This section provides a comprehensive summary of the dataset comprising sketch images, as 
depicted in Table 1. Additionally, a discourse on the challenges encountered during the acquisition of 
pertinent data for sketch images is presented. Moreover, an exposition of the prevalent evaluation 
metrics employed for the task of sketch image retrieval is offered. 

Table 1. Summary of fine-grained sketch image data sets. 

Dataset Number of photographs Number of sketch images Photograph-sketch images 

QMUL-Chair 297 297 1 to 1 

QMUL-Shoe 419 419 1 to 1 

QMUL-ChairV2 400 1275 1 to 3 

QMUL-ShoeV2 2000 6730 1 to 3 

PKU Sketch Re-ID 400 200 2 to 1 

3.1. QMUL ShoeV2 dataset 

The QMUL-ShoeV2 [5] dataset stands as one of the prevailing benchmarks in fine-grained image 
retrieval. Comprising a total of 2000 pairs of meticulously crafted sketch images and corresponding 
photographs, each pair encompasses a single RGB photograph matched with three distinct sketch 
images. All images are standardized to dimensions of 256 × 256 pixels. In the dataset, a subset of 1800 
pairs of data samples is earmarked for training, contributing to the iterative enhancement of the model. 
The remaining subset, consisting of 200 pairs, assumes the role of the testing dataset, exclusively 
employed during the evaluation phase. 

3.2. QMUL ChairV2 dataset 

The QMUL-ChairV2 [5] dataset is also a fine-grained image retrieval dataset. This dataset 
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encompasses a total of 1675 images, comprising a collection of 400 pairs of hand-drawn sketch images 
alongside their corresponding photographic images. All images are standardized to dimensions of 256 
× 256 pixels. Within this dataset, a subset of 300 pairs of data samples is earmarked for training, 
contributing to the iterative enhancement of the model. The remaining subset, consisting of 100 pairs, 
assumes the role of the testing dataset, exclusively employed during the evaluation phase. 

QMUL-ShoeV2 and QMUL-ChairV2 are advancements made by the QMUL laboratory upon the 
foundation laid by QMUL-Shoe and QMUL-Chair. In these developments, a deliberate emphasis has 
been placed on diversifying sketch styles. The initial paradigm, where each photograph corresponds 
to a single sketch image, has been augmented to encompass three sketch images. This augmentation 
serves the purpose of mitigating the uncertainties in retrieval that stem from the multifaceted nature of 
user stylistic preferences. 

3.3. PKU Sketch Re-ID dataset 

The PKU Sketch Re-ID dataset [20], established by the National Engineering Laboratory of Video 
Technology (NELVT) at Peking University, encompasses a collection of hand-drawn sketch images, 
conceived for re-identifying individuals. The dataset is composed of depictions of 200 distinct 
individuals, each portrayed through a single sketch image and two accompanying photographs. These 
photographs were captured under daylight conditions through the lenses of two orthogonal-view 
cameras. Prior to inclusion in the dataset, meticulous manual curation was undertaken, involving the 
extraction of subjects from original images or video frames, thereby ensuring the isolation of each 
individual within the frame. A noteworthy facet of this dataset is that all the sketch images, which 
encapsulate the artistic impressions of the subjects, were crafted by five distinct artists, each endowed 
with their unique stylistic approach to the portrayal. 

 

Figure 5. Examples in PKU Sketch Re-ID datasets [20] (the same box represents a 
pedestrian ID, including a personal sketch image and two photographs.).  

Figure 5 illustrates images from the PKU Sketch Re-ID dataset, revealing that sketch-based 
person re-identification (Sketch Re-ID) presents a notably challenging endeavor. The primary 
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difficulties encompass significant modality variations between person sketch images, instances of 
occluded person subjects, disparities in lighting conditions resulting from distinct camera sources and 
further compounded by the inherent diversity introduced by various sketch artists. These intricacies 
inherently differentiate sketch-based person re-identification from conventional image retrieval tasks. 
In the contemporary landscape of deep learning methodologies, apart from the conventional strategies 
of augmenting training data and refining network architectures, a concerted effort is directed towards 
devising algorithms tailored specifically for the challenges inherent in the Sketch Re-ID. 

The issue of retrieving specific photographs based on user-provided query sketch images has been 
addressed through the framework of fine-grained sketch image retrieval. The intricacy of fine-grained 
sketch image retrieval lies in the acquisition of distinguishing details essential for discerning specific 
targets. The extraction of discriminative detail features necessitates the support of vast datasets. 
Nonetheless, the present challenge resides in the limitation of performance attributed to the scarcity of 
extensive fine-grained sketch-image datasets. This scarcity stems from the fact that the creation of 
fine-grained sketches demands the involvement of artists, consequently entailing substantial time and 
cost expenditures in the collection of sketch images. Hence, how to obtain large-scale fine-grained 
sketch image retrieval datasets is a major challenge. 

3.4. Evaluation metrics 

In fine-grained image retrieval tasks, the evaluation process often relies upon two key metrics, 
namely Rank-K [22] and mean average precision (mAP) [23]. The Rank-K metric measures the 
proportion of correctly matched true labels relative to the first K retrieval results. Specifically, for a 
single sketch image Query, the library samples are ranked based on similarity from smallest to largest, 
with K representing the ordinal number that appears in the ranked list. Hence, the Rank-K metric is 
instrumental in assessing the algorithm’s capability to identify accurate labels within the top K 
outcomes. 

 
1

1εMRank K iM
      (3.1) 

where ε is the indicator function, which ε equal to 1 only the current top k-ranked list samples 
contain results consistent with the identity of the query image, otherwise ε is 0. 

Precision [24] and recall [25] are ways to measure two different dimensions of model performance. 
A threshold is needed to obtain four values in a multi-classification task: True positives (TP), false 
positives (FP), true negatives (TN) and false negatives (FN). Image retrieval can also be viewed as a 
multi-categorization task, aiming at correctly categorizing the query and the target. Then, precision 
and recall can be expressed as: 

           
TP TP

precision recall
TP FP TP FN

 
 

  (3.2) 

The mAP metric encompasses a more comprehensive evaluation strategy by aggregating the 
average precision (AP) scores from multi-class tasks and subsequently calculating their average. Thus, 
AP is calculated as 
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where   k
iprecision  and 

k
irecall  represent precision and recall respectively concerning query iq  

in the Rank-k ranked gallery items. The mAP is the mean of all queries and can be expressed as: 

 
1 N

ii
mAP AP

N
    (3.4) 

where N is the number of identities of the query sample. This approach facilitates a more holistic 
evaluation across all queries, capturing the algorithm’s performance at different recall levels. 
Furthermore, the mAP metric excels in its ability to depict the algorithm’s efficacy across queries of 
varying difficulty levels. 

4. Fine-grained sketch image retrieval methods based on deep learning 

The research field of fine-grained sketch image retrieval is mainly centered around three core 
datasets due to the scarcity of datasets, namely the QMUL ShoeV2, ChairV2 datasets and the PKU 
Sketch Re-ID dataset. Each dataset has its unique characteristics and research focus. The QMUL 
ShoeV2 and ChairV2 datasets have been widely used internationally since a long time ago, mainly for 
solving the problem of fine-grained sketch image retrieval in commercial applications. Different from 
this, the PKU Sketch Re-ID dataset focuses more on the research of fine-grained sketch person re-
identification. In the field of fine-grained sketch image retrieval, there are problems such as cross-
domain differences and dataset scarcity. To explore these challenges and corresponding solutions more 
clearly, we divide our research into three key directions. First, we focus on how to address cross-
domain differences to cope with the significant cross-domain differences between sketch images and 
photographs. Second, we investigate the problem of dataset scarcity, especially when the limited 
availability of datasets becomes a central issue when highly accurate fine-grained retrieval tasks are 
required. Finally, we explore stroke-based research, aiming to conduct research on fine-grained sketch 
image retrieval based on strokes using techniques such as reinforcement learning.  

4.1. Methods based on QMUL ShoeV2 and ChairV2 datasets 

4.1.1. Methods for cross-domain discrepancy 

As the field of deep learning continues to evolve, the conventional approach involving the training 
of two branches with edge maps and validation losses has been superseded by the utilization of triplet-
branch network incorporating ranking losses, as depicted in the illustrative diagram in Figure 6. Presently, 
research about fine-grained sketch image retrieval has embraced more intricate network architectures 
and sophisticated loss formulations to enhance performance and accuracy in the retrieval process. 
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Figure 6. Triplet-branch network. The images in the figure are from [5]. 

Yu et al. [5] pioneered the task of fine-grained image retrieval based on hand-drawn sketches. They 
established two fine-grained sketch image retrieval datasets, namely QMUL Chair and QMUL Shoe, and 
elaborated extensively on their data collection methodology. Furthermore, they introduced a triplet branch 
network for instance-level fine-grained sketch image retrieval, termed the deep triplet ranking model, and 
conducted empirical investigations on how deep learning models could attain enhanced performance from 
augmented datasets. Building upon the aforementioned model, Song et al. [11] have incorporated 
attention modules into each deep branch of the neural network, enabling the model to focus more on 
salient regions during the feature learning process. This approach facilitates the fusion of coarse and 
fine-grained semantic information through feature integration techniques. Additionally, they 
introduced a high-order learnable energy loss function, establishing correlations between two modal 
features. This enhancement enhances the robustness of the model to misaligned features across 
different modalities. Furthermore, the researchers expanded the scope of their study by augmenting 
the QMUL Chair and Shoe datasets, resulting in the creation of the more diverse QMUL-ShoeV2 and 
ChairV2 datasets. These enhancements yield three corresponding sketch images for each photographic 
image. Pang et al. [26] proposed a new mixed-modal puzzle-solving scheme as an effective pre-
training strategy. However, due to the serious misalignment problem between the sketch and the photo, 
resulting in local mismatch, the effect is not ideal in practical applications. Radenovi et al. [27] 
employed a technique of automated recovery from motion to acquire standard image edge maps for 
training their network, resulting in enhanced performance. However, a significant proportion of sketch 
images are produced and gathered by non-professional artists, rendering them inherently abstract, as 
illustrated in Figure 7. Substantial disparities persist between sketch images and edge maps. For the 
task of sketch image retrieval, the utilization of edge maps can at times yield counterproductive 
outcomes. This is primarily attributed to the fact that sketch images lack the well-defined boundaries 
characteristic of edge maps. Collomosse et al. [9] introduced a novel metric for measuring visual 
similarity in image retrieval, wherein the metric integrates both structural and aesthetic (i.e., stylistic) 
constraints. This metric exhibits a significant advancement in style recognition compared to preceding 
networks. Lin et al. [28] proposed a framework termed deep variational metric learning (DVML), 
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which explicitly models intra-class variance and addresses intra-class invariance. By leveraging the 
learned distribution of intra-class variance, it becomes feasible to generate discriminative samples 
concurrently, thereby enhancing robustness. Xu et al. [29] postulated that local features bear superior 
discriminative capabilities compared to global features. Consequently, they introduced the local 
alignment network (LANet), which addresses the challenge of fine-grained sketch image retrieval by 
aligning intermediate-level local features directly. DLA-Net [29] calculates the distance between the 
sketch at the same location and all the local features in the photo by this idea, but it increases the 
computational overhead. Sun et al. [30] proposed that DLI-Net eliminates the background features and 
only utilizes the foreground features for the matching, which can reduce the computational cost to 
some extent. However, this approach ignores an important point: The local spatial misalignment 
between sketches and photographs greatly limits the matching accuracy. Zhang et al. [31] proposed a 
new extended window local alignment weighted network (EWLAW-Net) based on this approach by 
using the extended window mechanism, which aligns the extracted local features with the same 
semantics between photographs and sketches. This innovative approach showcases the significance of 
emphasizing local features in tackling the intricacies of such retrieval tasks. In the work presented by 
Ling et al. [32], a multi-level region matching approach termed Multi-Level Region Matching (MLRM) 
is introduced for the retrieval of fine-grained sketch images. The methodology encompasses two 
essential components: The discriminative region extraction (DRE) module and the region and level 
attention (RLA) module. 

 

(a) photographs  (b) edge maps        (c)sketch images 

Figure 7. The comparison of photographs, edge maps and sketch images. The images in 
the figure are from [5]. 

The primary objective of investigating the issue of cross-domain disparity lies in the development 
of an efficient and accurate retrieval model. The endeavor to enable models to comprehend the essence 
of sketch images in a manner akin to human cognition underscores the significance of formulating a 
universal and proficient framework. Presently, the Transformer architecture has demonstrated 
commendable adaptability to vast datasets in fine-grained sketch retrieval tasks. This propensity can 
be attributed to its capacity to glean features through attention mechanisms, thereby capturing intricate 
interrelationships among elements. This affords the model a heightened universality, rendering it less 
reliant solely on the intrinsic characteristics of the data. Moreover, the Transformer is attuned not only 
to local details but also to holistic representations, facilitating an information flow from local to global 
scales. Conversely, convolutional neural networks (CNNs), predicated on convolutional operations, 
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are oriented towards preserving translational invariance in features. The pronounced divergence 
observed among instances of sketch images contributes to the relative inconspicuousness of CNNs in 
addressing the task of sketch image retrieval. 

4.1.2. Methods for dataset scarcity 

Pang et al. [33] introduced a novel unsupervised learning approach aimed at modeling the intrinsic 
manifold of prototype visual sketch image features. This manifold serves as a basic structure for 
parameterizing the representation of sketch images and photographs. Subsequently, by embedding new 
sketch images into this manifold and appropriately updating the representation and retrieval functions, 
adaptation of the model to new categories is achieved. This advance has significantly advanced 
research in zero-shot sketch retrieval. Sain et al. [34] proposed an innovative style-agnostic model for 
sketch image retrieval. Departing from the prevailing methods, their approach introduces a cross-
modal variational autoencoder (VAE) to explicitly decompose each sketch image into two distinct 
components: A semantic content segment shared with the corresponding photograph, and a stylistic 
segment specific to the sketch artist. This decomposition is achieved by incorporating adaptive 
components corresponding to the two different styles during the training process of the cross-modal 
VAE. Ling et al. [35] proposed an unsupervised stroke disentangling algorithm that shows remarkable 
performance in stroke extraction and sketch image enhancement. Furthermore, two weaknesses of the 
triplet ranking model are identified and a dual-anchor loss is introduced to mitigate the cosine distance 
between sketch and photo image pairs. Bhunia et al. [36] introduced an innovative semi-supervised 
cross-modal retrieval framework that provides a novel solution to data scarcity problems by exploiting 
a large corpus of unlabelled photographs. In addition, they incorporated discriminator-guided 
mechanisms to control image synthesis and introduced a regularisation component based on distillation 
loss. This regularisation component enhances the framework’s ability to tolerate noisy training samples. 
By treating generation and retrieval as two related but distinct problems, they establish a symbiotic 
relationship between the two. Bhunia et al. [37] have introduced a novel framework based on model-
agnostic meta-learning (MAML), which aims to improve the adaptability of fine-grained sketch image 
retrieval models across different categories/styles. This approach entails using meta-learning to 
facilitate the rapid adaptation of the model to different user-specific drawing styles with minimal 
sample input from the user. 

One of the barriers to progress in fine-grained sketch image retrieval is data scarcity. Existing 
hand-drawn sketch image datasets do not comprehensively cover all categories encountered in 
everyday life, thereby perpetuating the occurrence of zero-shot scenarios. In such cases, users search 
for objects during the retrieval process that do not fall into the categories present in the dataset used 
for training. Zero-shot sketch retrieval has gradually gained traction in current research; however, its 
retrieval accuracy remains relatively constrained, exhibiting a notable disparity from practical 
applications. 

4.1.3. Methods based on stroke 

As the field of reinforcement learning continues to evolve, researchers have commenced 
investigating the interrelationships among strokes and employing reinforcement learning 
methodologies to delve into fine-grained sketch image retrieval. This endeavor conceptualizes the 
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process of fine-grained sketch image retrieval as an ongoing sequence of successive decisions. Ha et 
al. [38] conducted an in-depth exploration involving recurrent neural networks (RNNs) for sketch 
generation, thereby proposing a comprehensive framework for both conditional and unconditional 
sketch image synthesis. The study further elucidated a novel methodology geared towards cultivating 
the robust training of RNNs, specifically tailored for the generation of coherent sketch images in vector 
format. This pioneering approach established a foundational bedrock for subsequent research 
endeavors in stroke analysis pertinent to sketch image retrieval. Muhammad et al. [39] proposed the 
first stroke-level abstraction model for sketch images. This model involves a delicate balance between 
the recognizability of sketch images and the number of strokes employed in rendering them. 
Specifically, the model employs reinforcement learning through stroke removal strategies to train a 
generative framework for abstract sketch image synthesis. The framework learns to predict the strokes 
that can be safely eliminated without compromising recognizability. Bhunia et al. [40] have introduced 
a dynamic approach to design wherein retrieval commences as users initiate the drawing process. They 
have further devised a cross-modal retrieval framework based on reinforcement learning, aimed at 
refining the ranking of authentic sketch images directly across the entire sketch image dataset. 
Additionally, a novel reward scheme has been introduced to mitigate issues associated with strokes in 
unrelated sketch images. Sain et al. [14] designed a novel network that is capable of cultivating sketch-
specific hierarchies and exploiting them to match sketches with photos at corresponding hierarchical 
levels. In a recent contribution by Wang et al. [41], a novel framework has been introduced, which 
leverages a uniquely designed deep reinforcement learning model to undertake a dual-level exploration 
aimed at addressing the challenges posed by partially sketched images during training, as well as the 
selection of attention regions. By directing the model’s attention towards pivotal areas within the 
original sketched images, it demonstrates robustness against superfluous stroke noise, thereby 
substantially enhancing retrieval precision. Dai et al. [42] posit that during the sketching phase of 
generating outline images from photographs, significant correlations exist among these incomplete 
sketch representations. To glean a more efficacious shared joint embedding space between photographs 
and their corresponding incomplete sketch depictions, they introduce a multi-scale associative learning 
framework. This framework subsequently refines the embedding space for all partial sketch 
illustrations. Furthermore, to mitigate the impact of noisy strokes, Bhunia et al. [43] devised a stroke 
subset selector aimed at identifying strokes with noise, retaining only those strokes that positively 
contribute to the successful retrieval process. Leveraging a reinforcement learning framework, they 
quantified the significance of each stroke within a given subset by formulating its contribution to 
retrieval effectiveness.  

The exploration of fine-grained sketch image retrieval based on strokes holds significant potential 
for commercial applications. However, the translation of this potential into practical problem-solving 
remains a pivotal challenge. This challenge primarily stems from the difficulty in establishing a 
universal reward scheme across disparate datasets due to the domain gap issue. The formulation of a 
suitable reward function, which guides agents in reinforcement learning to acquire desired behaviors, 
proves to be a formidable task. There exists no definitive optimal approach for constructing a reward 
function for reinforcement learning, and in certain instances, attempts at formulating such functions 
can inadvertently lead models astray from intended objectives. Furthermore, as reinforcement learning 
is tailored to specific data distributions, it fails to accommodate the distinct variability in data 
distributions among different users for real-world fine-grained sketch image retrieval tasks. The 
efficient realization of a real-time online system for hand-drawn fine-grained sketch image retrieval, 
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capable of effectively retrieving images aligned with user requirements from the vast expanse of 
internet imagery, emerges as a promising avenue for future research endeavors in the domain of sketch 
image retrieval. 

Table 2 Comparison of methods based on QMUL ShoeV2 and ChairV2 datasets. 

 QMUL ChairV2 QMUL ShoeV2 

Methods Rank-1(%) Rank-5(%) Rank-10(%) Rank-1(%) Rank-5(%) Rank-10(%) 

Triplet SN[5] 47.4 —— 84.3 28.7 —— 71.6 

HOLEF SN[13]  50.7 —— 86.3 31.2 —— 74.6 

SN-RL[9]  51.2 —— 86.9 30.8 —— 74.2 

Triplet Attn[11]  53.4 —— 87.6 31.7 —— 75.8 

CC-Gen [33] 54.2 —— 88.2 33.8 —— 77.9 

Triplet RL[40]  51.2 76.34 89.6 34.1 —— 78.8 

CMHM[14]  62.5 —— 90.7 36.3 —— 80.7 

Edgemap[27]  53.9 —— 87.7 33.8 —— 80.9 

Edge2sketch[39]  54.3 —— 87.5 34.2 —— 81.2 

DVML[28]  52.8 —— 85.2 32.1 —— 76.2 

SSL[36]  53.3 —— 87.5 33.4 —— 80.7 

StyleMeUp[34]  62.9 —— 91.1 36.5 —— 81.8 

DARP-SBIR[41]  —— 35.65 —— —— 60.02 —— 

MGAL[42]  —— 81.73 92.56 —— 65.31 78.22 

SWNT[43]  64.8 79.1 —— 43.7 74.9 —— 

DLA-Net[29]  —— —— —— 50.15 —— —— 

DLI-Net[30] 77.81 —— —— 50.0 —— —— 

EWLAW-Net[31] 81.48 —— —— 53.0 —— —— 

CSR[35]  —— —— —— 52.1 —— 87.9 

MAML[37]  —— —— —— 38.3 76.6 —— 

MLRM[32]  74.3 —— 98.2 50.4 —— 87.9 

SketchTrans[46] 81.7 —— 97.4 38.7 —— 80.9 

CCSC[47]  74.3 —— 97.4 33.5 —— 80.2 

As evident from Table 2, the current research methodologies have exhibited promising outcomes 
on the relatively modest dataset QMUL ChairV2. Nevertheless, when applied to the more expansive 
dataset, QMUL ShoeV2, there remains significant room for improvement. The above three research 
methods have their advantages and disadvantages. The research method based on cross-domain 
differences mainly focuses on the processing of complete images, which enables fast image retrieval 
and has a low research threshold. However, in practical research, it is extremely expensive to collect 
the fine-grained sketch image data to integrate it, and the trained dataset may not perform well in 
unknown fields, so it becomes crucial to solve the dataset scarcity problem. In addition, in commercial 
applications, users prefer the immediate retrieval process to reduce the waiting time. Such research 
methods are called stroke-based methods, and they mainly rely on training strategies for reinforcement 
learning. However, due to domain gap problems, it is difficult to establish universal reward schemes 
on different datasets, so it also has some limitations. Currently, fine-grained sketch image retrieval 
algorithms based on deep learning have surpassed humans in accuracy and speed, indicating significant 
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progress in this field. We firmly believe that with the continuous development of deep learning 
technology, more excellent algorithms will emerge to provide more convenience and innovation for 
the practical application of fine-grained sketch image retrieval. 

4.2. Research based on PKU Sketch Re-ID dataset 

In the realm of person re-identification, the utilization of professional sketch images to query 
databases for novel personal information holds paramount significance, which means using sketch 
photos to find the best matching pedestrian from a large number of pedestrian photos, which is an 
extremely challenging task of fine-grained sketch image retrieval. Sketch-based person re-
identification constitutes a pivotal technology within security systems, facilitating the identification of 
persons from diverse camera sources. This technique efficiently addresses scenarios in which 
comprehensive facial sketch information cannot be obtained, thus serving as a complementary approach. 
A framework for sketch-based person re-identification is illustrated in Figure 8. Pang et al. [20] initially 
introduced the PKU Sketch Re-ID dataset, providing a foundational dataset for research in sketch-
based person re-identification. Moreover, they proposed a cross-domain adversarial framework to filter 
out domain-sensitive information, aiming to learn domain-invariant features, thereby narrowing the 
modality gap and enhancing model retrieval performance. However, this approach incurred the loss of 
certain modality-specific information conducive to pedestrian identity discrimination. It failed to 
jointly optimize the representation capacity of sketch and pedestrian photograph features, and the 
feature extraction network was incapable of achieving effective semantic alignment across multiple 
modalities. 

 

Figure 8. A sketch-based person re-identification framework. The images in the figure are from [20]. 

Yang et al. [44] attempted to enhance the generalizability of the sketch-to-photo model through 
domain adaptation techniques, introducing a specialized framework designed for instance-level 
heterogeneous image retrieval tasks. They overcame the limitations of conventional fine-tuning 
strategies and traditional domain adaptation methods. Gui et al. [21] delved into the multi-level feature 
representation of sketch and photo images, employing a triplet classification network as the 
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foundational architecture. By incorporating spatial attention modules, they amalgamated high-level 
and intermediate CNN-generated features to represent the input images. Additionally, they employed 
gradient reversal layers to address domain discrepancies, leading to performance improvements. 
However, the challenge of modality discrepancy remains intricate and unresolved. Gong et al. [45] 
proposed a strategy for bias elimination termed Random Color Dropout (RCD). This strategy 
postulates the existence of color bias between query images and database images. It aims to mitigate 
the influence of color bias by discarding a portion of color information from the training data. This, in 
turn, serves to balance the weight between color-specific features and color-agnostic features within 
the neural network. However, it is noteworthy that for photographic images, the presence of diverse 
color information enables a more nuanced focus on finer-grained details. In a different vein, Chen et 
al. [46] introduced a novel asymmetric disentanglement and dynamically synthesized learning 
approach within the Transformer framework. This approach operates with the intent to explore a shared 
embedding space across modalities. Notably, they introduced a dynamic updatable auxiliary sketch 
(A-Sketch) modality generated from the photographic modality. This auxiliary modality guides the 
process of asymmetric disentanglement within a singular framework. In the context of a multi-modal 
joint learning framework, the incorporation of this auxiliary modality imparts heightened diversity to 
the training samples and diminishes inter-modal disparities. Drawing upon the principles of non-
exclusive transplantation, Zhang et al. [47] proposed an innovative method within the framework of a 
dual-path Transformer. This approach introduces a cross-compatible embedding technique, enabling 
cross-modal exchange at a local token level, thereby facilitating the extraction of modal-compatible 
features and mitigating the disparities between them. Furthermore, they introduce a scheme for 
constructing semantically coherent features, which serves to enhance feature recognition and greatly 
bolster feature robustness, ultimately attaining the most state-of-the-art performance to date. Zhu et al. [48] 
introduced a novel cross-domain attention mechanism that employs distinct strategies to partition 
feature maps within two separate branches, subsequently computing the relationships between distinct 
segments of sketched images and person photographs. Additionally, a cross-domain center loss was 
devised, surpassing the constraints of conventional center loss that necessitates domain consistency 
within datasets. This innovation effectively mitigates the gap between the two domains, promoting 
proximity among features about the same identity. Rachmadi et al. [49] leveraged three distinct target 
dropout regularizations, encompassing per-block dropout, horizontal per-block dropout and vertical 
horizontal per-block dropout. Consequently, an augmentation in the performance of deep neural 
network classifiers was achieved. Yuan et al. [50] devised an unbiased feature extractor aimed at 
mitigating the bias stemming from modality-specific information, thus enhancing the capacity of the 
extracted features in bridging inter-domain disparities. Furthermore, a multi-stream classifier was 
introduced to ensure the comprehensive attainment of intra-class consistency by the feature extractor.  

The Comparison of methods based on the PKU Sketch Re-ID dataset is shown in Table 3. 
Notwithstanding, due to the relatively limited scale of the utilized PKU Sketch Re-ID dataset, 
achieving favorable recognition outcomes in authentic scenarios might prove challenging. The 
prospect of training and deploying models on diminutive datasets for real-world applications remains 
an objective for prospective advancement. 
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Table 3 Comparison of methods based on PKU Sketch Re-ID dataset. 

Methods Rank-1(%) Rank-10(%) mAP(%) 

Dense-HOG+LBP+rankSVM [20] 5.1 28.3 —— 

Triplet SN [10] 9.0 42.6 —— 

GN Siamese [4] 28.9 62.4 —— 

AFLNet [20] 34.0 72.5 —— 

RCD [45] 42.5 87.5 —— 

LMDF [21] 49.0 80.2 —— 

UFE [50] 57.1 89.8 —— 

CDAC [48] 60.8 88.8 —— 

FT-SwinTrans-VHDPL [49] 73.2 99.6 72.5 

SketchTrans [46] 84.6 98.2 —— 

IHDA [44] 85.6 98.0 —— 

CCSC [47] 86.0 100.0 83.7 

5. Future research directions 

In this section, we will provide a synopsis from the perspective of prospective applications and 
foundational research value, outlining several potential research directions deemed promising for the 
future. 

In recent years, notable breakthroughs have been achieved in the domain of scene-level fine-
grained sketch image retrieval, notably by works such as SketchyCOCO [51] and SceneSketcher [52]. 
These contributions have been instrumental in furnishing extensive datasets of scene-level fine-grained 
sketch images, thereby laying the foundation for the exploration of novel research avenues. Particularly, 
investigations into novel topics have been undertaken, including image generation predicated on scene-
level fine-grained sketch image retrieval [53], as well as data retrieval anchored in fine-grained scene 
contexts [54]. These research trajectories hold significant practical import, as they proffer the technical 
feasibility of effectuating scene retrieval employing fine-grained sketch images, thereby engendering 
pronounced appeal among end-users. 

The advent of novel data acquisition devices has substantially facilitated the collection of 3D 
sketch images, thereby lending substantial support to various compelling research avenues in 3D 
sketch image analysis. Notably, this technological advancement has paved the way for synergistic 
integration with immersive technologies like virtual reality (VR) [55] and augmented reality (AR) [56]. 
Delving into the domain of 3D sketch image investigations holds the potential to extend the horizons 
of human-computer interaction rooted in 2D planar touchscreens towards the expanse of 3D spatial 
environments, consequently affording a heightened level of immersive experience. While extant 
repositories of sketch image datasets and applications primarily concentrate on depictions of objects 
through sketch imagery, it is noteworthy that in practical scenarios, users might evince a keen interest 
in the machine’s comprehension of a broader spectrum of sketch image concepts. Such concepts 
encompass but are not limited to diagrams, curves, histograms [57], maps [58], engineering sketch 
images [53] and prototypes of User Interfaces [54]. 

The advancement of deep learning in sketch image analysis is predominantly propeled by the 
accumulation of progressively expansive sketch image datasets. However, the exigency for manual 
curation in generating sketch images engenders a scarcity of such datasets in comparison to their 
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photographic counterparts. Consequently, the efficacy of methodologies addressing pivotal tasks 
encompassing sketch image analysis, ranging from recognition to retrieval, bears paramount 
significance. Optimal avenues for achieving this efficacy manifest through judicious approaches such 
as few-shot learning, self-supervised learning, or intermodal knowledge transfer originating from the 
domain of photographic images. 

As for the future research direction, it is considered from the following aspects, and some possible 
solutions are given: 

(1) Establishing a high-quality standard fine-grained sketch dataset more adapted to realistic 
environments: Currently, fine-grained sketch image datasets are relatively limited in size, and there is 
a significant quantitative gap compared to those datasets with millions of sketches of facial data. In 
addition, existing datasets lack diverse scene coverage, and data can usually be collected only under 
limited environmental conditions and over relatively short periods. In addition, there are significant 
differences between the fine-grained sketch data drawn by different artists, which significantly degrade 
the model performance when applied to different datasets and underperform in real-world applications. 
To comprehensively evaluate the robustness of the algorithm under different conditions, there is an 
urgent need to establish large-scale, high-quality and diverse fine-grained sketch datasets. 

(2) Interpretability of deep learning for fine-grained sketch image retrieval: Even though deep 
learning methods have demonstrated excellent performance in fine-grained image retrieval tasks, the 
pursuit of higher accuracy is accompanied by a relatively limited understanding of the key factors 
affecting fine-grained sketch image retrieval. This leads to a lack of interpretability of the model 
decision-making process, making it difficult to understand in practical applications. Therefore, 
researchers need to delve into the inner workings [59] of deep learning models to improve the 
interpretability and understandability of fine-grained sketch image retrieval. 

(3) Few shot learning for fine-grained sketch image retrieval: The human brain can reason from 
very little knowledge to unknown knowledge domains through instances, and the most advanced fine-
grained sketch image retrieval algorithms nowadays are not able to have this reasoning ability. For 
fine-grained sketch image retrieval, large-scale instance-level dataset collection is an unsolvable 
problem, and because fine-grained sketch images need to be drawn by professional painters and labeled 
by professionals to collect, it is both time-consuming and labor-intensive to collect the data. Thus, fine-
grained sketch image retrieval using few shot learning [60] will be one of the mainstream ways of 
future research. 

(4) Semi-supervised learning for fine-grained sketch image retrieval: In semi-supervised learning, 
we can use a small number of samples that have been labeled and a large number of unlabeled samples 
for training [34], thus reducing the burden of fine-grained sketch images on the collection. This type 
of semi-supervised method can enhance the performance of the model and improve the accuracy of 
fine-grained sketch image retrieval by utilizing the features of the unlabeled data [61], the use of semi-
supervised or fine-grained small number of samples sketch image retrieval research is a more realistic 
research significance. 

(5) Cross-domain knowledge transfer: Given the substantial differences between sketch images and 
photographic counterparts, the exploration of cross-domain knowledge transfer, drawing insights from 
photographic image analysis, holds promise in advancing the capabilities of fine-grained sketch image 
retrieval algorithms. This approach can facilitate the transfer of expertise from the domain of photographic 
images to improve the performance and robustness of fine-grained sketch image retrieval methods. 

It is anticipated that these research directions hold the potential to lay the foundational framework 
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for more efficient and enlightening methodologies. This, in turn, is expected to enhance scholarly 
interest in the field of fine-grained sketch image retrieval, thereby catalyzing its development. 

6. Conclusions 

In the past seven years, fine-grained sketch image retrieval based on deep learning has made 
remarkable progress, showing great research value and potential. This paper comprehensively 
describes the relevant concepts, problems, evaluation metrics, methods and datasets, optimal 
performance, and future research directions in recent years regarding deep learning-based fine-grained 
sketch image retrieval, aiming to provide readers with a comprehensive understanding of the current 
state of the art of research in this field. It is worth emphasising that all images or datasets mentioned 
in the paper are for academic purposes only. 

The field of fine-grained sketch image retrieval based on deep learning is continuing to show 
vigorous vitality, and we are optimistic about its prospects. The future development of this research 
direction will hopefully further expand our understanding of fine-grained sketch image retrieval and 
provide new insights for research in related fields. As we continue our in-depth research, we encourage 
researchers in academia and industry to work together to promote more in-depth and reliable results in 
this field. 
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