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Abstract: This paper aims to explore the complex dynamics and impact of vaccinations on controlling
epidemic outbreaks. An epidemic transmission model which considers vaccinations and two different
infection statuses with different infectivity is developed. In terms of a dynamic analysis, we calcu-
late the basic reproduction number and control reproduction number and discuss the stability of the
disease-free equilibrium. Additionally, a numerical simulation is performed to explore the effects of
vaccination rate, immune waning rate and vaccine ineffective rate on the epidemic transmission. Fi-
nally, a sensitivity analysis revealed three factors that can influence the threshold: transmission rate,
vaccination rate, and the hospitalized rate. In terms of optimal control, the following three time-related
control variables are introduced to reconstruct the corresponding control problem: reducing social dis-
tance, enhancing vaccination rates, and enhancing the hospitalized rates. Moreover, the characteristic
expression of optimal control problem. Four different control combinations are designed, and compar-
ative studies on control effectiveness and cost effectiveness are conducted by numerical simulations.
The results showed that Strategy C (including all the three controls) is the most effective strategy to
reduce the number of symptomatic infections and Strategy A (including reducing social distance and
enhancing vaccination rate) is the most cost-effective among the three strategies.
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1. Introduction

Infectious diseases have always been an important part of human history, where various societies
and countries have all witnessed devastating epidemics that resulted in millions of casualties. A notable
example is the Spanish flu, which originated in Spain in 1918 and claimed the lives of around 40
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million people. The COVID-19 pandemic, which began at the close of 2019, was declared a major
global public health concern by the World Health Organization (WHO). Due to the virus’s rapid global
transmission, it has reached over 200 countries. As of July 22, 2023, there have been approximately
760 million confirmed cases of the virus worldwide, with approximately 6.9 million reported deaths.
This has posed a significant threat to the well-being of humans, giving rise to major public health
challenges and economic crises [1,2]. Furthermore, it has placed additional strain on global healthcare
systems [3].

Vaccinations stand as the most effective approach for curtailing the transmission of diseases within
a population, thus representing a long-term strategy in disease prevention. The introduction of vac-
cines has played a pivotal role in effectively managing several infectious diseases, including smallpox,
cholera, and plague. Notably, the oral polio vaccine, often referred to as the sugar pill, has been
instrumental in halting the spread of indigenous wild poliovirus, thereby safeguarding thousands of
children from physical disabilities. The field of mathematical epidemiology has witnessed significant
and remarkable advancements in modeling vaccination strategies. Lhimn et al. [4] developed a two-
group Susceptible-Infected-Recovered (SIR) mathematical model to assess the effectiveness of split-
dose vaccines in disease control. Their findings indicated that when vaccine efficacy reaches a certain
threshold, vaccines exhibit a positive impact on both reducing the size of epidemics and delay the peak
outbreak timing. Gao et al. [5] employed a two-sex mathematical model to assess the impact of vacci-
nations on Human Papilloma Virus (HPV) infection. Their research demonstrated that implementing a
variable vaccination strategy could substantially contribute to reducing HPV prevalence.

Along with the successful development of the COVID-19 vaccine, many authors have assessed its
impact on the transmission of novel coronaviruses. Thompson et al. [6] proposed a detailed math-
ematical model to study the impact of various preventive and control measures and vaccinations on
the spread of COVID-19. Harizi et al. [7] used data from Canada to discuss the impact of universal
vaccinations on the transmission of COVID-19. Diagne et al. [8] developed a mathematical model
to discuss the effect of the vaccination rate and vaccine inefficiency on the spread of epidemic. Paul
et al. [9] used a six-compartment Susceptible-Vaccinated-Exposed-Infected-Hospitalized-Recovered
(SVEIHR) model to analyze the effect of vaccines on the spread of COVID-19, and showed that vacci-
nation can help to reduce social stress, which, in turn helps to strengthen the immune system. Rocha et
al. [10] used an expanded version of the Susceptible-Infected-Recovered-Death (SIRD) model, includ-
ing the vaccination effect, to study the impact of vaccines on COVID-19 transmission and concluded
that vaccination results in a 5% relative reduction in the total number of deaths. Makhoul et al. [11]
evaluated the effect of vaccines against infection and disease and concluded that an increased vaccina-
tion rate plays an important role in controlling the spread of the disease. Furthermore, several studies
have used mathematical models to explore optimized vaccine distribution [12,13]. Brody et al. showed
that the best strategy is to prioritize for older adults and high-exposure populations [14]. Li et al. [15]
illustrated that universal booster injections are a cost-effective strategy in fully vaccinated persons aged
≥ 65 years.

Optimal control theory encompasses several crucial principles for guiding the management of epi-
demic spread through practical control measures. Numerous researchers have applied this theory to
explore the optimal strategy for epidemic models. Alrabaiah et al. [16] developed an optimized control
model with three control variables and found that an integrated control strategy, including isolation,
treatment and vaccination, is the most effective in eradicating Hepatitis B virus (HBV). Odionyenma
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et al. [17] employed optimal control theory to conclude that a control strategy combining treatment
and prevention is the most cost-effective approach in controlling Chlamydia trachomatis, as per a cost-
effectiveness analysis.

However, upon reviewing the aforementioned literature, it becomes apparent that most works tend
to focus on either vaccine failure rates or vaccine-induced immune decline while neglecting the pos-
sibility of asymptomatic infections progressing to symptomatic ones. Furthermore, there is limited
research on optimal comprehensive control strategies that consider multiple factors. In light of these
considerations, our study concentrates on evaluating the effects of reducing social distancing, increas-
ing vaccination rates, and enhancing hospitalization rates on an epidemic spread within the population.
We establish a transmission model that accounts for vaccination, distinct infection states, and varying
infectivity. Through an exploration of its dynamic behavior and numerical simulations, we propose
prevention and control strategies for infectious diseases with similar characteristics.

The structure of this paper is as follows. In Section 2, we mainly make some basic assumptions
and introduce the model. In Section 3, we discuss the stability of the disease-free equilibrium, and
then conduct numerical simulations to discuss the effects of vaccine-related parameters on the control
reproduction number and the spread of an epidemic. In Section 4, we perform sensitivity analyses of
a control reproduction number, vaccinated individuals (V), and symptomatic infections (I) to derive
three parameters that influence most on-disease transmission. In Section 5, the corresponding optimal
control problem is considered, and several different control combinations are compared in terms of the
control effectiveness and the cost effectiveness. This paper ends with the conclusion and discussion.

2. Model formulation

Assuming that the vaccine, which is available and is partially effective on preventing infection, we
divide the total population (N) into susceptible (S ), vaccinated (V), exposed (E), asymptomatic (A),
symptomatic (I), hospitalized (H), and recovered (R). Based on the divided compartments, we will
formulate a transmission epidemic model.

It is assumed that susceptible individuals are recruited into the population at rate Λ, and receive
vaccinations at rate φ. Symptomatic and asymptomatic infections can transmit a disease at rates βεI

and βεA, respectively, where β is the basic transmission rate, and εI and εA are adjusted factors for the
transmission ability of symptomatic and asymptomatic infections, respectively. Although the hospi-
talized cases are infectious, we assume that they will not reinfect others due to the increased isolation
conditions. We assume that the vaccine may not offer complete protection and vaccinated individuals
can become infected with a rate σβ, where σ ∈ [0, 1] is the modified factor and denote σ = 1−σ. The
vaccinated individuals can return to be susceptible after the vaccine-induced immunity wanes at a rate
θ. After contact with infectious individuals, they will enter into an exposed compartment and experi-
ence an exposed period (1/α). Due to individual heterogeneity, exposed individuals with a fraction p
develop to be asymptomatically infectious while others with a fraction 1 − p become symptomatically
infectious. Furthermore, asymptomatic infections progress to symptomatic infections at a rate δ. The
asymptomatic and symptomatic infections can naturally recover at rates rA and rI , respectively. We
assume that asymptomatic infections do not need hospitalization and cannot cause an additional death.
Alternatively, symptomatic infections require hospitalization at a rate k, and has an additional death at
a rate dI . The hospitalized individuals can recover and may die at rates rH and dH, respectively. All
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recovered individuals enter the recovered compartment and have no secondary infections. Moreover,
individuals in all compartments have a natural death rate d. The detailed schematic diagram is shown
in Figure 1. Table 1 summarizes the model parameters. Based on the aforementioned assumptions
and Figure 1, we formulate the following transmission epidemic model in the form of a nonlinear
differential equations given by the following:
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Figure 1. Schematic diagram of model (2.1).



dS
dt
= Λ + θV −

β(εAA + εI I)S
N

− (φ + d)S ,

dV
dt
= φS −

σβ(εAA + εI I)V
N

− (θ + d)V,

dE
dt
=
β(εAA + εI I)S

N
+
σβ(εAA + εI I)V

N
− (α + d)E,

dA
dt
= pαE − (rA + δ + d)A,

dI
dt
= (1 − p)αE + δA − (rI + k + dI + d)I,

dH
dt
= kI − (rH + dH + d)H,

dR
dt
= rAA + rI I + rHH − dR,

(2.1)

with initial conditions X̄0 = (S (0),V(0), E(0), A(0), I(0),H(0),R(0)), where S (0) is positive and the
other initial values are non-negative. For simplicity, we introduce the notations in model (2.1) as
follows:

ι =
β(εAA + εI I)

N
, ϕ1 = φ + d, ϕ2 = θ + d, ϕ3 = α + d, ϕ4 = rA + δ + d, ϕ5 = rI + k + dI + d.

It should be noted that H and R are independent of the other equations in model (2.1). Therefore,
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we will focus on the following subsystem:

dS
dt
= Λ + θV − ιS − ϕ1S ,

dV
dt
= φS − σιV − ϕ2V,

dE
dt
= ιS + σιV − ϕ3E,

dA
dt
= pαE − ϕ4A,

dI
dt
= (1 − p)αE + δA − ϕ5I,

(2.2)

Denote the initial value of system (2.2) as X(0) = (S (0),V(0), E(0), A(0), I(0)).

Table 1. Summary of parameters for the epidemics model.

Parameter Definition Values Reference

Λ
The recruitment rate of
susceptible individuals

50 [18]

β Transmission rate 2.55 [19]
σ/εA/εI Modification factor 0.88/0.4775/0.695 [20]/ [21]/ [21]
φ Vaccination rate 0.038 [22]

θ
The waning rate of
vaccine-induced immunity

0.0057 [22]

1/α Exposed period 1/5 [23]

p
Proportion of exposed to
asymptomatic infections

0.5028 [24]

δ
Transition rate of asymptomatic
to symptomatic infections

0.078 [25]

rA/ rI/ rH Recovery rate 0.165/0.21/0.27 [26]/ [27]/ [28]
d Natural death rate 3.5 × 10−5 [29]
dI/ dH Disease-induced death rate 6.248 × 10−4 [26]
k Hospitalization rate 0.4 Asummed

3. Model analysis

In this section, we will focus on the mathematical analysis of model (2.2) and the associated simu-
lations to explore the influences of vaccine-related parameters on the spread of an epidemic.

3.1. Positive invariance

Clearly, system (2.2) with the non-negative initial conditions is wellposed. It is easy to check that
the solution of system (2.2) is always unique and non-negative in the region Ω = {(S ,V, E, A, I) ∈ R5

+ :
0 < N ≤ Λ/d} for all time t ≥ 0.

Lemma 3.1. The region Ω is positively invariant of model (2.2).
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It follows from model (2.2) that we can add all the equations and observe that the total population
satisfies dN/dt = Λ − dN − (dI I + dHH) ≤ Λ − dN, which implies that N ≤ Λ/d.

3.2. Two reproduction numbers

Clearly, model (2.2) has a unique disease-free equilibrium E0 = (S 0,V0, 0, 0, 0), where S 0 =

Λϕ2/dD1, V0 = Λφ/dD1 and D1 = ϕ2 + φ.
By the next generation matrix approach [30, 31], we obtain the following two matrices:

F =


ι(S + σV)

0
0

 and V =


ϕ3E

−pαE + ϕ4A
−(1 − p)αE − δA + ϕ5I

 .
Furthermore, linearizing system (2.2) at E0 produces the following two sensitivity matrixes of F and
V:

F =


0 βεAD2

D1

βεI D2
D1

0 0 0
0 0 0

 and V =


ϕ3 0 0
−pα ϕ4 0

−(1 − p)α −δ ϕ5

 ,
where D2 = ϕ2 + σφ. TheℜV is obtained by the spectral radius of the next generation matrix (FV−1)
with the following expression:

ℜV = ρ(FV−1) =
D2

D1

(
pαβεA

ϕ3ϕ4
+

(1 − p)αβεI

ϕ3ϕ5
+

pαδβεI

ϕ3ϕ4ϕ5

)
.

It can be seen that D1 and D2 are vaccine-related parameters. If we do not take the vaccination strategy
into account, that is, φ = σ = θ = 0, we have D1 = D2 = d. In this case, we can obtain the
corresponding basic reproduction number, denoted byℜ0, as follows:

ℜ0 = βεA ·
pα
ϕ3
·

1
ϕ4︸          ︷︷          ︸

E→A

+ βεI ·
pα
ϕ3
·
δ

ϕ4
·

1
ϕ5︸                ︷︷                ︸

E→A→I

+ βεI ·
(1 − p)α
ϕ3

·
1
ϕ5︸                 ︷︷                 ︸

E→I

.

Clearly,ℜ0 consists of three parts, which implies that there are three transmission routes. Specifically,
the first item denotes the number of new, asymptomatic infections during his/her duration period. βεA

is the transmission rate of asymptomatic infections. The probability of survival and transfer from ex-
posed individuals to asymptomatic infections is pα/ϕ3, whereas 1/ϕ4 refers to the average duration of
transmission in asymptomatic infections. The second and third items denote the number of new, symp-
tomatic infections during his/her average duration period. There are two ways. βεI is the infection rate
of symptomatic infections. First, survival and transmission from exposed individuals to asymptomatic
infections is pα/ϕ3, and then transmission from asymptomatic infections to symptomatic infections is
δ/ϕ4. Alternatively, survival and transmission from exposed individuals to symptomatic infections is
(1 − p)α/ϕ3. 1/ϕ5 is the mean infection duration of symptomatic infections.
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3.3. The stability of E0

Theorem 3.1. The disease-free equilibrium E0 is globally asymptotically stable ifℜV < 1 and σ = 1.

Proof. Step1. Local stability.
The Jacobian of model (2.2) at E0 is as follows:

J(E0) =


−ϕ1 θ 0 −

βεAϕ2
D1

−
βεIϕ2

D1

φ −ϕ2 0 −
σβεAφ

D1
−
σβεIφ

D1

0 0 −ϕ3
βεAD2

D1

βεI D2
D1

0 0 pα −ϕ4 0
0 0 (1 − p)α δ −ϕ5


.

The associated characteristic equation of E0 is given by C(λ) = (λ + d)(λ + D2) f (λ) = 0, where
f (λ) = λ3 + Ψ1λ

2 + Ψ2λ + Ψ3 with

Ψ1 = ϕ3 + ϕ4 + ϕ5 > 0, Ψ2 = ϕ3ϕ5 + ϕ4ϕ5 + ϕ3ϕ4 − αβ
D2

D1
[(1 − p)εI + pεA],

Ψ3 = ϕ3ϕ4ϕ5(1 −ℜV) > 0 if ℜV < 1.

Clearly, λ1 = −d and λ2 = −D2 are two negative roots of C(λ) = 0, and the other three roots are
determined by f (λ) = 0. Now, we focus on f (λ) = 0. FromℜV < 1, one can obtain the following:

ϕ3ϕ4 > αβ
D2

D1

(
pεA +

(1 − p)εIϕ4

ϕ5
+

pεIδ

ϕ5

)
,

ϕ3ϕ5 > αβ
D2

D1

(
(1 − p)εI +

pεIδ

ϕ4
+

pεAϕ5

ϕ4

)
.

Thus, Ψ2 > 0. Since the only negative item ϕ3ϕ4ϕ5 can be counterbalanced by one of items in Ψ1Ψ2,
Ψ1Ψ2 − Ψ3 > 0 holds.

By Hurwitz criteria, one has that all eigenvalues of f (λ) = 0 have negative real parts. Moreover,
C(λ) = 0 has five roots with negative real parts. Hence, E0 is locally asymptotically stable ifℜV < 1.

Step2. Globally stability.
Define the Lyapunov function as follows:

L = p1E + p2A + p3I,

where

p1 = ϕ5 pαεA + ϕ4(1 − p)αεI + pαδεI , p2 = ϕ3(εAϕ5 + εIδ), p3 = ϕ3ϕ4εI .

It is easily seen that L is non-negative in Ω. The time differentiation of L along with the solution of
model (2.2) gives the following:

dL
dt
= p1

dE
dt
+ p2

dA
dt
+ p3

dI
dt

= (pαεAϕ5 + (1 − p)αεIϕ4 + pαεIδ)
(
β(εAA + εI I)

S + σV
N

− ϕ3E
)
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+ ϕ3(εAϕ5 + εIδ)(pαE − ϕ4A) + ϕ3εIϕ4((1 − p)αE + δA − ϕ5I)

= (εAA + εI I)ϕ3ϕ4ϕ5

([
pαβεA

ϕ3ϕ4
+

(1 − p)αβεI

ϕ3ϕ5
+

pϕ3δβεI

ϕ3ϕ4ϕ5

]
S + σV

N
− 1

)
= (εAA + εI I)ϕ3ϕ4ϕ5

(
ℜ0

S + σV
N

− 1
)
.

Obviously,ℜV = ℜ0 if σ = 1. Hence, one has

dL
dt
= (εAA + εI I)ϕ3ϕ4ϕ5

(
ℜV

S + V
N
− 1

)
≤ (εAA + εI I)ϕ3ϕ4ϕ5

(
ℜV − 1

)
< 0,

if ℜV < 1. Moreover dL/dt = 0 only if A = I = 0. By LaSalle’s invariance principle, E0 is globally
asymptotically stable ifℜV < 1 and σ = 1.

3.4. The influences of vaccine on the spread of epidemic

In this section, based on the parameter values in Table 1, we perform several numerical simulations
to explore how the vaccine influences the control reproduction number and the infection size of the
epidemic.

First, Figure 2 shows the influence of vaccines on the control reproduction number. From Figure
2, one can observe the control reproduction number is positively correlated with the immune waning
rate, and negatively correlated with the effectiveness rate of the vaccine. Figure 2(a) implies that
solely increasing vaccination rate cannot reduce the value of ℜV to below 1. A clear observation is
that the vaccine effectiveness rate is more sensitive than the vaccination rate, as shown in Figure 2(b).
Concretely, when the value of the vaccination rate is fixed, the value of the control production number
decreases linearly with the increasing effectiveness of the vaccine. This suggests that promoting the
development of more effective and less wanning vaccines is a more important way to cope with the
epidemic.

Figure 2. The influences of vaccine-related parameters on the control reproduction number.
(a) Interpretation of φ and θ onℜV . (b) Interpretation of φ and σ onℜV .

Next, Figure 3 shows how the vaccination rate influences the finial size of vaccinated individuals and
symptomatic infections. In Figure 3, we set φ = 0.038 as the baseline value. We observe the changes
in behavior by increasing φ by 30%, 60% and 90%, which are summarized in Table 2. From Figure 3,
we observe that the finial size of vaccinated individuals increases as the vaccination rate is enhanced,
while the size of symptomatic infections does the opposite. Specially, a clear comparison from Table
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2 shows that a 30% increase in the vaccination rate leads to a 17.57% increase in the peak value of
vaccinated individuals and a 15.73% decrease in the peak value of symptomatic infections; however,
if the vaccination rate increases by 90%, the peak value of vaccinated individuals will increase by
47.2% and the peak value of symptomatic infections will decrease by 41.39%. Therefore, additional
measures, such as extensively advertising and more encouraging policies, are taken to increase the
vaccination rate, which will effectively reduce the peak value of infections and contribute to alleviating
the epidemic.

Finally, Figure 4 shows the influences of the immune waning rate on the finial size of epidemic. To
do so, we set θ = 0.0057 as the baseline value, and observe the changes by reducing θ by 30%, 60%
and 90%. Figure 4 shows that the effects on the peak value of vaccinated individuals and symptomatic
infections are not so significant. The additional simulation values are summarized in Table 2, which
shows that if the immune waning rate is reduced by 90%, the peak value of vaccinated individuals will
increase by 4.77% and the peak value of symptomatic infections will decrease by 4.87%. Comparing
Figure 3(b) and Figure 4(b), one can conclude that improving the vaccination rate is a more conductive
and effective measure to control the epidemic.
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Figure 3. The influence of vaccination rate on the size of vaccinated individuals (V) and
symptomatic infections (I).
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Figure 4. The influence of the immune waning rate on the size of vaccinated individuals (V)
and symptomatic infections (I).
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Table 2. The peak values of V and I under different scenarios.

Parameter V I
φ = 0.0380 (baseline value) 252, 170 102, 070
30% increment in φ 296, 490 86, 9010
60% increment in φ 336, 100 71, 950
90% increment in φ 371, 190 59, 820
θ = 0.0057 (baseline value) 252, 170 102, 070
30% reduction in θ 256, 040 100, 450
60% reduction in θ 260, 050 98, 790
90% reduction in θ 264, 190 97, 100

4. Sensitivity analysis

4.1. Sensitivity analysis ofℜV

A sensitivity analysis shows the importance of parameters in relation to disease transmission. This
information is essential not only for experimental design, but also for the reduction of complex non-
linear models. Two types of sensitivity analyses are used, namely local and global sensitivity analyses.
The local sensitivity analysis technique examines the local response of the output by changing one input
parameter at a time and keeping the other parameters at their central values [32]. The global sensitivity
analysis perturbs the input parameters of the model on a large scale to quantify the overall impact of
the model inputs on the model output [33, 34]. In this section, we employ a sensitivity analysis to
explore how parameters influence the control reproduction number. To do so, we only select eight key
parameters, β, σ, θ, α, rI , rA, φ and k, which can be interpreted by some actual measurements.

4.1.1. Local sensitivity analysis

The local sensitivity analysis can be quantified by the sensitivity index, which is defined as the
forward sensitivity index [33] calculated by γRV

ξ =
∂RV
∂ξ

ξ

RV
.

The analytical expressions of each parameter sensitivity index forℜV are as follows:

γℜV
β = 1, γℜV

α =
d
ϕ3
, γℜV

φ = −
(1 − σ)ϕ2φ

D1D2
, γℜV

θ =
(1 − σ)φθ

D1D2
, γℜV

k =
pkεA

ϑ
−

k
ϕ5
,

γℜV
σ =

σφ

D1
, γℜV

rA
=

(1 − p)εIrA

D3
−

rA

ϕ4
, γℜV

rI
=

prIεA

D3
−

rI

ϕ5
,

with D3 = pεAϕ5 + (1 − p)εIϕ4 + pεIδ.
It should be noted that some sensitivity indicators depend on one or more parameters, while partial

sensitivity indicators are constant and do not depend on any parameter value. Based on the parameter
values in Table 1, the calculated indicators are shown in Table 3 and the absolute sensitivity indicators
are shown in Figure 5(a).

From Table 3, the parameters with positive sensitivity indicators are β, σ, θ, and α, which means
that they have a positive effect on ℜV , that is, the value of the control reproduction number will in-
crease/decrease as parameters β, σ, θ, and α increase/decrease. Furthermore, the sensitivity indicators
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show that the transmission rate β is the most sensitive positive parameter. The parameters with negative
sensitivity indicators are rI , rA, φ and k, which means that they have a negative effect on ℜV , that is,
the increase of these parameters will decrease the value of ℜV , and vice versa. Sensitivity indicators
show that the hospitalization rate k is the most sensitive negative parameter.

Table 3. Sensitivity indicators of the control reproduction number.

Parameter Sensitivity index Parameter Sensitivity index
β 1 rI -0.2773
σ 0.4468 φ -0.3600
θ 0.4233 rA -0.4576
α 0.00017 k -0.5269

4.1.2. Global sensitivity analysis

Compared to the local sensitivity analysis, the global sensitivity analysis extends the range of model
input parameters. A global sensitivity analysis is performed by calculating the partial rank correction
coefficient (PRCC) [35, 36] to sample by the Latin hypercube sampling (LHS) method.

The PRCC of the control reproduction number is described in Figure 5(b). One can observe that
the parameters β, σ, θ, and α are positively correlated withℜV , and the parameters k, φ, rA and rI are
negatively correlated with ℜV . We can further find that the transmission rate β is the most sensitive
positive indicator, and the hospitalization rate k and the vaccination rate φ are the most sensitive nega-
tive indicators. Therefore, in order to effectively reduce the value of the control reproduction number,
it is necessary to carry out control measures to deduce the transmission rate, and increase the hospital-
ization and vaccination rates, which is consistent with the results of the local sensitivity analysis.

Figure 5. (a) Radar plot of the absolute sensitivity index ofℜV . (b) PRCC ofℜV evaluated
at the baseline parameter values given in Table 1.

4.2. Sensitivity analysis of V and I

To assess the importance of parameters on the entire duration of the epidemic, we focus on the state
variables V and I. Based on the parameter values in Table 1, we chose a time range from 0 to 100 for
the PRCCs, which is plotted in Figure 6, where the gray region indicates that there is no significant
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difference from zero.

From Figure 6(a), one can observe that the parameters fall into three categories. The parameters
φ and β belong to the first category, where φ is always positively correlated with V and β is always
negatively correlated with V . The parameter θ belongs to the second category, where θ is negatively
correlated with V at the beginning, then enters the grey region and leaves it again as time changes, and
finally remains negatively correlated with V and eventually stabilizes. Any additional parameters fall
into the third category, where they start in the gray region, either increase or decrease over time, then
leave the gray region and eventually stabilize.

From Figure 6(b), the parameters are also divided into three categories. The first category includes
β, α, rI and k, where β is always positively correlated with I and parameters rI , α and k are always
negatively correlated with I. The second category contains σ, θ and rA, which start in the gray region,
either increase or decrease over time, and then leave the gray region. The third category is the parameter
φ, which is initially negatively correlated with I and moves into the grey region over time and is
uncorrelated with I.

 (a)

r
A

r
I

v

k

 (b)

Figure 6. Time-varying PRCCs sensitivity indexes of V and I.

5. Model with optimal control

From the above analysis, we can observe that the three most important parameters affecting the
transmission threshold are the transmission rate β, the vaccination rate φ and the hospitalization rate
k. Thus, an optimal control problem to mitigate the COVID-19 epidemic is proposed by introducing
three time-varying control measures denoted by ui(t) (i = 1, 2, 3), where u1(t) denotes reducing social
distance to decrease the transmission ability, u2(t) denotes enhancing the vaccination rate, u3(t) denotes
enhancing the hospitalization rate. Thus, the transmission rate is reduced to (1−u1(t))β, the vaccination
rate is increased to (1+ u2(t))φ and the hospitalization rate is adjusted as (1+ u3(t))k. Therefore, model
(2.1) with an integrated control strategy is given by the following system:
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dS
dt
= Λ + θV − (1 − u1(t))ιS − (1 + u2(t))φS − dS ,

dV
dt
= (1 + u2(t))φS − (1 − u1(t))σιV − ϕ2V,

dE
dt
= (1 − u1(t))ιS + (1 − u1(t))σιV − ϕ3E,

dA
dt
= pαE − ϕ4A,

dI
dt
= (1 − p)αE + δA − ϕ̄5I − (1 + u3(t))kI,

dH
dt
= (1 + u3(t))kI − ϕ6H,

dR
dt
= rAA + rI I + rHH − dR,

(5.1)

where ϕ̄5 = rI + dI + d. Denote three control measures as U(t) = (u1(t), u2(t), u3(t)) and the control
set as Θ = {ui(·) ∈ (L∞[0,T ],R)|0 ≤ ui(t) ≤ 1, i = 1, 2, 3}. Thus, we define the objective functional as
follows:

J(U) =
∫ t f

0
L(A, I, u1(t), u2(t), u3(t))dt,

where the integrand function is given by the following:

L(A(t), I(t), u1(t), u2(t)) =A1A(t) + A2I(t) +
1
2

(B1u2
1(t) + B2u2

2(t) + B3u2
3(t)).

The objective of optimal control is to find the optimal control U∗ such that the number of infections
(asymptomatic and symptomatic ) is minimized with the smallest cost of the control measures. Here,
A1 and A2 represent the weights of asymptomatic and symptomatic infections, respectively. Bi (i =
1, 2, 3) denote the weight coefficients standing for the cost associated with the control variables ui(t)
(i = 1, 2, 3), respectively.

In the following, we will analyze the existence of optimal control and its characteristics by Pontrya-
gin’s Maximum Principle [38, 39].

5.1. Existence of optimal control

Theorem 5.1. There exists an optimal control U∗ = (u∗1, u
∗
2, u
∗
3) ∈ Θ such that J(U∗) = min

U∈Θ
J(U).

Proof. Note that following: (i) the state variables and control variables are non-negative; (ii) the control
set Θ is closed and convex; (iii) the optimal system is bounded, which implies the compactness of the
optimal control; (iv) the integrand of the objective functional J(U) is convex on Θ; and (v) there exist
constants a1, a2 > 0 and q > 1 such that J(U) satisfies the following:

J(U) ≥ a1(|u1|
2 + |u2|

2 + |u3|
2)q + a2.

Therefore, it follows from the results in [37] that system (5.1) exists an optimal control U∗ =
(u∗1, u

∗
2, u
∗
3) ∈ Θ such that J(U∗) = min

U∈Θ
J(U).
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5.2. Characterization of the optimal control

To find the characteristic express of optimal control, we denote X = (S ,V, E, A, I,H,R)T and λ =
(λ1, ..., λ7) and then define the Hamiltonian function as follows:

G(X, λ) = L +
7∑

i=1

λi
dX
dt
. (5.2)

Here, λi is called to be adjoint functions. When taking the state system (5.1) with Hamiltonian function
(5.2) together, the adjoint system is derived by dλi/dt = −∂λi/∂Xi (i = 1, 2..., 7), that is

dλ1

dt
= −
∂G
∂S
=λ1

[
(1 − u1(t))ι

(
1 −

S
N

)
+ (1 + u2(t))φ + d

]
− λ2

[
(1 + u2(t))φ + (1 − u1(t))ι

σV
N

]
− λ3(1 − u1(t))ι

(
1 −

S + σV
N

)
,

dλ2

dt
= −
∂G
∂V
= − λ1

[
θ + (1 − u1(t))ι

S
N

]
+ λ2

[
(1 − u1(t))σι

(
1 −

V
N

)
+ ϕ2

]
− λ3

[
(1 − u1(t))ι

(
σ −

S + σV
N

)]
,

dλ3

dt
= −
∂G
∂E
= − λ1(1 − u1(t))ι

S
N
− λ2(1 − u1(t))ι

σV
N
+ λ3

[
(1 − u1(t))ι

S + σV
N

+ ϕ3

]
− λ4 pα − λ5(1 − p)α,

dλ4

dt
= −
∂G
∂A
= − A1 + λ1(1 − u1(t))S

(
βεA

N
−
ι

N

)
+ λ2(1 − u1(t))σV

(
βεA

N
−
ι

N

)
− λ3(1 − u1(t))(S + σV)

(
βεA

N
−
ι

N

)
+ λ4ϕ4 − λ5δ − λ7rA,

dλ5

dt
= −
∂G
∂I
= − A2 + λ1(1 − u1(t))S

(
βεI

N
−
ι

N

)
+ λ2(1 − u1(t))σV

(
βεI

N
−
ι

N

)
− λ3(1 − u1(t))(S + σV)

(
βεI

N
−
ι

N

)
+ λ5((1 + u3(t))k + ϕ̄5)

− λ6(1 + u3(t))k − λ7rI ,

dλ6

dt
= −
∂G
∂H
= − λ1(1 − u1(t))ι

S
N
− λ2(1 − u1(t))ι

σV
N
+ λ3(1 − u1(t))ι

S + σV
N

+ λ6ϕ6 − λ7rH,

dλ7

dt
= −
∂G
∂R
= − λ1(1 − u1(t))ι

S
N
− λ2(1 − u1(t))ι

σV
N
+ λ3(1 − u1(t))ι

S + σV
N

+ λ7d.

(5.3)

The transversality conditions are as follows:

λi(T ) = 0, i = 1, ..., 7. (5.4)

Combining system (5.1), adjoint system (5.3) and transversality conditions (5.4) forms an optimal
control problem. By Pontryagin’s Maximum Principle, one can have the following theorem.

Theorem 5.2. For any optimal control U∗ ∈ Θ and solution of system (5.1), the optimal control solution
of optimal control problem can be obtained as follows:

u∗i = min{1,max{0, uc
i }}, i = 1, 2, 3,
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where

uc
1 =
λ3 − λ1

B1
ιS +

λ3 − λ2

B1
σιV, uc

2 =
λ1 − λ2

B2
φS , uc

3 =
λ5 − λ6

B3
kI.

Proof. The optimal control solution can be obtained by solving the following equations:

∂G
∂u1
= B1u1(t) + λ1ιS + λ2ισV − λ3ι(S + σV) = 0,

∂G
∂u2
= B2u2(t) − λ1φS + λ2φS = 0,

∂G
∂u3
= B3u3(t) − λ5kI + λ6kI = 0.

Thus, one has the following:

uc
1 =
λ3 − λ1

B1
ιS +

λ3 − λ2

B1
ισV, uc

2 =
λ1 − λ2

B2
φS , uc

3 =
λ5 − λ6

B3
kI,

which, together with the upper and the lower bounds of ui(t) (i = 1, 2, 3), derive the characteristic
expression of the optimal control solution.

5.3. Numerical simulations

All parameter values are shown in Table 1 and the control period is set as 80 days. Furthermore, we
assume that the values of the weight coefficients are A1 = 20, A2 = 50, B1 = 10, B2 = 20 and B3 = 30.
The initial state variables are chosen as S (0) = 500, 000, V(0) = 80, 000, E(0) = 140, A(0) = 40,
I(0) = 28, H(0) = 19 and R(0) = 0.

5.3.1. Constant control
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Figure 7. The influence of constant controls on the peak value and peak timing of vaccinated
individuals (V) and symptomatic infections (I).

To better visualise the dependence of peak value and peak timing of vaccinated individuals and
symptomatic infections on three constant controls, we designed four different constant values for ui

(i = 1, 2, 3): (1) no control u1 = u2 = u3 = 0; (2) weak control u1 = u2 = u3 = 0.1; (3) moderate
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control u1 = u2 = u3 = 0.2; and (4) strong control u1 = u2 = u3 = 0.3. Figure 7 illustrates the
effect of the different control intensities on the peak value and peak timing of vaccinated individuals
and symptomatic infections, where the numerical results summarized in Table 4. As can be seen in
Figure 7 and Table 4, the peak value of vaccinated individuals significantly increases with increasing
control intensity, whereas the peak value of symptomatic infections significantly decreases. Addition-
ally, it can be seen that the peak timing of vaccinated individuals and symptomatic infections gradually
increases as the control intensity increases. Specifically, for the peak value of vaccinated individuals
(symptomatic infections), there is an increase (decrease) about 13.2% (26.1%) for weak control, 28.8%
(68.9%) for moderate control, and 47.5% (71.9%) for strong control. In addition, with the increase of
control intensity, the peak timing of vaccinated individuals and symptomatic infections are delayed.

Table 4. The comparison of the spread of COVID-19 under different control strengths.

Control No Weak Medium Strong

Peak Value
V 252,170 285,390 324,690 371,890
I 102,070 75,380 50,550 28,670

Peak timing
V 15 17 21 27
I 20 23 26 39

5.3.2. Optimal control

In this section, we combine the forward-backward sweep method [40] and the Runge-Kutta scheme
to conduct a numerical simulation of the control problem. To investigate the effectiveness of control
strategies, we designed four different strategies:

• Strategy A: (u1, u2).
• Strategy B: (u1, u3).
• Strategy C: (u1, u2, u3).
• Strategy D: Black group (No control).

Strategy A includes the control combination of reducing social distance and improving the vac-
cination rate. Figure 8(a) shows the optimal curve of Strategy A, where both u1 and u2 are at their
maximum values at the beginning, and u1 and u2 decreases from day 64 and day 24, respectively. As
shown in Table 5, a comparison between Strategy A and D shows that Strategy A can significantly re-
duce the peak value of symptomatic infections by 99.91% and shorten the peak timing of symptomatic
infections from 20 days to 4 days .

Strategy B combines reducing social distance and improving the hospitalization rate. It follows
from Figure 8(b) that both u1 and u3 display the maximum intensity for about 64 days and 38 days,
respectively, and then gradually and slowly decrease till they hit 0. Using data from Table 5 to compare
Strategy B and D, the results show that Strategy B significantly reduces the peak value of symptomatic
infections by 99.93% and shortens the peak timing to 2.4 days.

Strategy C contains three control measures. In the beginning, u1 is at its maximum value for 56 days
and then starts to decrease, u2 is at its maximum value only for 18 days and then begins to decrease
slowly, and u3 remains at its maximum value for 37 days and then begins to decrease. From Table 5,
one can see that Strategy C has the best effect on reducing the peak value and delaying the peak timing
of symptomatic infections.
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The comparison between the control effects of Strategies A–C is shown in Figure 8(d). Compared
to both Strategies A and B, Strategy B has a better effect on reducing the peak value of symptomatic
infections. This implies that improving the hospitalization rate is more important than enhancing the
vaccination rate. If the effectiveness of the vaccine can be greatly raised and the vaccine immunity wan-
ing can be enormously lowered, the situations may undergo completely different changes. Compared
to both Strategies A and C, Strategy C adds the control measure of improving the hospitalization rate
control measure and has a lower peak value of symptomatic infections. Compared to both Strategies B
and C, Strategy C adds the control measure of improving the vaccination rate, in which one can see the
peak value of symptomatic infections is reduced but not significantly changed. This shows that increas-
ing the hospitalization rate has a more remarkable impaction on curbing the spread of the epidemic.
The more effective vaccine should be quickly developed to improve the role of epidemic prevention.
Thus, Strategy C is the most effective strategy to reduce the number of symptomatic infections.
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Figure 8. The time series of Strategies (A)–(C) and their effects on the number of symp-
tomatic infections.

Table 5. The comparison of different strategies.

Strategies A B C D
Peak value of I 91 62 58 102, 070
Peak timing of I 4 2.4 2 20
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5.3.3. Cost-effectiveness analysis

The impact of an intervention should not only refer to its effectiveness, but also the corresponding
control cost. Hence, to further quantify the benefits of different strategies, we introduce the incremental
cost-effectiveness ratio (ICER) [41, 42], which is defined as ICER(Y) = ∆1/∆2, where ∆1=Cost of
Strategy Y − Cost of Strategy X, and ∆2=Number of infections averted under Strategy Y − Number of
infections averted under Strategy X.

Furthermore, the cost of the strategy can be calculated by
∫ t f

0
(B1u1+B2u2+B3u3)dt, and the number

of symptomatic infections averted is
∫ t f

0
(I − Ĩ)dt, where Ĩ is the optimal solution under the correspond-

ing strategy. Based on the numerical simulation results, the difference in the number of symptomatic
infections averted and the cost are shown in Tables 6 and 7.

Table 6. Total costs and averted infections for Strategies A and B.

Strategy Controls Total infections averted Total costs ICER
A u1, u2 1,772,784 1,214,700 0.685
B u1, u3 1,773,322 1,978,800 1420

A clear observation from Table 6 is that if ICER(A) < ICER(B), then Strategy B is less effective
than Strategy A. Moreover, Strategy B has a higher cost and a lower benefit compared to Strategy A.
Therefore, Strategy B is excluded.

The next step is a comparison of the ICER values for Strategy A and Strategy C. From Table 7, one
can have ICER(A) < ICER(C). Therefore, Strategy C is excluded and Strategy A is more effective.

Table 7. Total costs and averted infections for Strategies A and C.

Strategy Controls Total infections averted Total costs ICER
A u1, u2 1,772,784 1,214,700 0.685
C u1, u2, u3 1,773,532 2,351,000 1519

From the aforementioned comparisons, we can conclude that Strategy A is the most cost-effective
among the three strategies.

6. Conclusions and Discussion

6.1. Conclusions

To investigate the impacts of vaccinations and varying infectivity across different infection statuses,
we developed a mathematical epidemic model and conducted a comprehensive mathematical analysis
of its dynamic behaviors and optimal control. This involved establishing the well-posedness of the
solution, deriving the expression for the control reproduction number, and demonstrating the existence
and global stability of the disease-free equilibrium.

Furthermore, we conducted two types of sensitivity analyses to identify which parameters have the
most significant influence on the threshold and the spread of infections. This information serves as the
theoretical foundation for devising corresponding control strategies. Notably, the top three parameters
found to be most influential are the transmission rate, the vaccination rate, and the hospitalization
rate. Consequently, we proposed and rigorously analyzed a time-varying optimal control problem,

Mathematical Biosciences and Engineering Volume 20, Issue 12, 20914–20938.



20932

thus providing specific expressions for optimal control strategies. These strategies hold the potential to
assist public health efforts in effectively preventing and controlling epidemics.

Our findings indicated that the control reproduction number plays a pivotal role in determining the
global stability of the disease-free equilibrium. The results of the sensitivity analyses are valuable for
guiding the control strategy implementation. When controls remain constant, higher control intensi-
ties lead to larger final sizes of vaccinated individuals, thus suggesting that a robust control strategy
offers the most effective means of reducing the peak value and delaying the peak timing of infections.
In the case of time-varying controls, we compared various optimal control combinations in terms of
minimizing control costs. The results underscore the effectiveness of an integrated control strategy in
curtailing epidemics, with increased vaccine protection rates significantly hastening the suppression of
infections. Additionally, we conducted a cost-effectiveness analysis to identify the most economically
efficient strategy, which involves a combination of reducing social distance and enhancing vaccination
rates, which is distinct from the integrated optimal control strategy. This discovery guides devising
strategies that align with limited resources and economic considerations.

6.2. Discussion

In this section, we will discuss the influence of several key factors. As for model (2.1), it in-
corporates the natural births and deaths (NBD), while ignoring natural-immunity waning (NIW). If
either ignoring NBD or considering NIW, one must discover what changes will occur in the long-term
dynamic behavior. To understand the influences of such factors, we set the following four cases to
perform the numeral simulations:

• Case 1: Model (2.1)
• Case 2: Model (2.1) without NBD
• Case 3: Model (2.1) without NIW
• Case 4: Model (2.1) without NIW and with NBD

First, we compare Case 1 and Case 2 to explore the influence of NBD on the long-term dynamics.
Based on the parameter values in Table 1, we can observe from Figure 9 that NBD takes a slight
influence in the time-horizon of an epidemic. To be specific, there are some little changes in the peak
value of each compartment. When considering NBD, the peak values of each compartment (except S)
are higher than those not considered, which is consistent with the reality for the long-time behavior.

Then, we compare Case 1 and Case 3 to understand how NIW affects the dynamical behavior. Based
on the previous work in [46], we set the NIW rate as 0.005. Combined with the parameter values in
Table 1, we plotted the time series diagrams of each subpopulation. From Figure 10, one can observe
that NIW can obviously influence the long-time behavior of susceptible and vaccinated populations,
but only has a slight influence on the other populations. It is undeniable that considering NIW within
the model will cause non-monotonicity in the proposed system, which will make the analysis on the
global dynamical behavior difficult. Our future work will include how to deeply analyze the impact of
NIW on the global dynamical behavior.

Finally, we compare Case 1 and Case 4 to investigate the joint influence of NBD and NIW. It follows
from Figure 11 that there is an obvious influence on the dynamic behavior of each subpopulation. In the
absence of NBD, NIW has the most obvious impact on susceptible and vaccinated individuals, whose
numbers significantly increase in the later stage of the epidemic; however, there was a slight influence
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on the number of other populations (i.e., exposed, asymptomatic, symptomatic, and hospitalized).
Furthermore, comparing Figure 10 and Figure 11, one can observe that NBD still has little influence
on disease transmission, even in the presence of NIW. This implies that NBD can only slightly affect
the long-term dynamic behavior, and perhaps this phenomenon is related with either the proposed
model or the parameter values.
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Figure 9. The influence of NBD on the long-term dynamics.

0 20 40 60 80 100

Time/day

0

1

2

3

4

5

S

10
5

Case1

Case3

0 20 40 60 80 100

Time/day

0.5

1

1.5

2

2.5

3

3.5

V

10
5

Case1

Case3

0 20 40 60 80 100

Time/day

0

2

4

6

8

10

12

14

E

10
4

Case1

Case3

0 20 40 60 80 100

Time/day

0

2

4

6

8

10

12

I

10
4

Case1

Case3

0 20 40 60 80 100

Time/day

0

2

4

6

8

10

12

14

H

10
4

Case1

Case3

0 20 40 60 80 100

Time/day

0

2

4

6

8

10

12

14

R

10
5

Case1

Case3

Figure 10. The influence of NIW on the long-term dynamics.
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Figure 11. The joint influence of NBD and NIW on the long-term dynamics.

Dynamical systems have consistently served as valuable tools in the advancement of life sciences
and infectious disease research [43–45]. Nonetheless, several complex issues warrant deeper consid-
eration. (i) The formulation of suitable Lyapunov functions and the application of LaSalle’s invariant
principle demonstrate the global stability of the endemic equilibrium when the control reproduction
number exceeds one. (ii) The impact of virus mutations leading to either multiple or super-infections
and the modeling of vaccines with varying protection rates against different virus variants. (iii) In the
case of diseases like COVID-19, where vaccines may render a significant proportion of individuals
as asymptomatic carriers, it is essential to develop a more detailed description and model of this phe-
nomenon. (iv) Acknowledging that both vaccinated and unvaccinated individuals experience natural
immune waning after a certain period of recovery from infection, we must explore how secondary in-
fections among the population influence vaccine scheduling, resource allocation, and control strategies.
These considerations represent potential directions for future research and analyses.
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