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Abstract: Starting from the idea of constructing the standard incidence rate, we take the effective
contact times of individuals in the population per unit time as a contact function, T (·), which depends
on the population size. Considering the influence of disease on the contact function, the influence
intensity factor of the disease affected by the infected person is integrated into the nonlinear incidence
rate. We propose an epidemic model with a class of disease-related contact functions. Then, we analyze
the well-posedness of the solutions of the model. By using the next generation matrix method, we get
the basic reproduction number R0. We find that the existence and stability of the equilibria are not only
related to R0, but also to the intensity of the disease affected for the infected person, η, and the contact
function, T (·). We obtain some stability results under different assumptions about the contact function.
Finally, we use MATLAB to simulate the system for several different contact functions. The numerical
simulation results agree with our qualitative study. At the same time, we also prove that the system
may have a Hopf bifurcation when the contact function T (·) satisfies some corresponding conditions.
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1. Introduction

During disease transmission, most pathogens are transmitted by person-to-person contact.
Therefore, establishing mathematical models to study infectious diseases, especially infection links, is
a very important research goal. The rate at which new compartments of infected persons are added to
a model is usually referred to as the incidence of disease. Different infectious diseases have different
transmission routes, so the selection of disease incidence rate in the infectious disease model cannot
be studied in the same form. Many infectious diseases break out repeatedly in large numbers of
people. Mechanisms that can explain this phenomenon include seasonal change [1, 2], transmission
rate, infection or the time delay in the process of recovery [3] and heterostructure of host
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population [4], etc. As research continues, many scholars have focused on no periodicity of bilinear
transmission research [5–10]. Through the study of different nonlinear incidence, more abundant
dynamics are obtained, which can be used to describe and explain some periodic epidemic
phenomena in reality.

The contact form within the population has an important influence on the disease transmission
process [11]. In [12], a mixed proportion of infection incidence was proposed and the number of
effective contacts per population is considered to be a fixed constant number. However, with the
change of population within the population and the development of society, the contact pattern
between populations will also change. It is not very effective to take the number as a constant. We
consider it as a function dependent on population size. In a population, it is assumed that the members
are evenly distributed and the number of contacts between each member in unit time is the same.
Because the population is homogeneous, we take the contact function as T (N), where N is the total
number of the population.

For the effective contact function T (N), we propose assumptions (A1)–(A3) described below. Since
the function represents the number of effective contacts per unit time of each member of the population,
it is non-negative. Thus, the first assumption is as follows:

(A1) ∀N ∈ [0,+∞), 0 = T (0) ≤ T (N) < +∞.

Considering that the effective contact times of each member of the crowd in unit time will not
decrease with the increase of the population, T (N) is a monotone undecreasing function. Thus, we
give the second assumption:

(A2) ∀N ∈ [0,+∞),T ′(0) > 0,T ′(N) ≥ 0.

We make the third assumption of T (N) regarding the growth rate N as follows:

(A3) ∀N ∈ [0,+∞),T ′(N)N − T (N) ≤ 0.

Table 1 shows two special cases of the effective contact function T (N) that satisfy assumptions
(A1)–(A3). These two types of contact functions correspond exactly to the standard incidence rate and
the bilinear incidence rate.

Table 1. The effective contact function T (N).

Function T (N) The type of disease incidence rate The previous achievements
T (N) = c Standard incidence rate [12]
T (N) = cN Bilinear incidence rate [13]

The disease we are concerned with may affect the contact times of the infected person (measures
taken by the infected person or the disease itself will cause a behavior change of the infected person).
At the same time, we regard susceptible persons S as a reference group, and record the ratio of the
number of contacts of infected person I to S as η, η ∈ [0,∞). Also, we say that η is an intensity factor
of disease affecting the behavior of the infected person.

Considering η as the observed variable, we have the following description

1. η = 0. This can be regarded as the disease can not be transmitted or infected through regular contact.
Infected persons are completely isolated;
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2. η ∈ (0, 1). It can be seen that when the susceptible person gets sick, the disease will reduce (or the
infected person has taken some measures) the number of contacts of the infected person compared
to the susceptible person;

3. η = 1. The disease has no effect on the effective contact function T (N);

4. η ∈ (1,+∞). It can be seen that when the susceptible person gets sick, the disease will increase the
number of contacts of the infected person compared to the susceptible person.

For the intensity factor, we propose assumptions (A4)–(A5) described below.

(A4) η ∈ (0, 1] .

(A5) η ∈

0, 1 + µd
 .

Based on the above discussion, we have established the following system (1.1).
dS
dt
= Λ − dS −

ηβT (S + ηI)S I

S + ηI
+ γI,

dI
dt
=
ηβT (S + ηI)S I

S + ηI
− (d + µ + γ)I,

(1.1)

where S (t) is the number of susceptible persons in the population. I(t) is the number of infected persons
in the population. Λ is the number of constant increase (birth and immigration) of the population in unit
time. d is migration (death and emigration) rate of population. β is the probability that a susceptible
person will get sick when an effective contact occurs between a susceptible person and an infected
person. µ is the case fatality rate. γ is the recovery rate of the disease. η is the intensity factor.

By using N(t) = S (t) + I(t), we can easily obtain a system equivalent to system (1.1).
dN
dt
= Λ − dN − µI ≜: P(N, I),

dI
dt
=
ηβT (N + ηI − I)(N − I)I

N + ηI − I
− (d + µ + γ)I ≜: Q(N, I).

(1.2)

where N(t) is the total number of the population. The other parameters are the same as the system (1.1).
Let

X0 := {(ϕ1, ϕ2)|ϕ1 ≥ 0, ϕ2 ≥ 0, ϕ1 + ϕ2 > 0} ,
Y0 := {(ϕ1 + ϕ2, ϕ2)|(ϕ1, ϕ2) ∈ X0} .

From a biological perspective, it is clear that the dynamics of system (1.1) is a dynamical system in
X0. We obtain the dynamics of (1.1) by studying the dynamics of the equivalent system (1.2) in Y0.

In Section 2, we analyze the dynamics of system (1.1). First, we calculate equilibra and the basic
reproduction number. Then, we study the asymptotic stability of equilibria. We show that there exists
a limit cycle. In Section 3, we provide some numerical simulation results which show the existence of
a Hopf bifucation. In Section 4, we give some conclusions, discuss the effective contact function and
propose future research directions.
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2. Dynamics of the model

In this section, we study the dynamics of the model (1.1).

2.1. Equilibra and basic reproduction number

Simple calculations quickly show that system (1.2) admits a disease free equilibrium (DFE) E0 =

(Λ/d, 0).
For system (1.2), we use the next generation matrix method [14] to calculate the threshold R0. LetF = (ηβT (Λ/d)) ,

V = (d + µ + γ) .

By calculating, we have

FV−1 =

(
ηβT (Λ/d)
d + µ + γ

)
.

So, we define the threshold of system (1.2) as

R0 = ρ(FV−1) =
ηβT (Λ/d)
d + µ + γ

. (2.1)

It is simple to get that E0 also is the DFE of the system (1.1), and R0 also is the threshold of (1.1).

Remark 2.1. β is the probability that a susceptible person will get sick during one active contact with
an infected person. ηT (N0) is the number of effective contacts with susceptible persons in unit time
when an infected person is introduced into a DFE state. 1/(d+µ+γ) is the average duration of illness
for an infected person. Therefore, the threshold R0 is the basic reproduction number of systems (1.1)
and (1.2).

Theorem 2.1. Assume (A1) and (A2) hold. Then we have the following two conclusions:
(I) The DFE E0 always exists for system (1.1). Furthermore, if R0 ≤ 1, assume (A3) or (A5) holds,

then the DFE E0 is the unique equilibrium for system (1.1).
(II) If R0 > 1, then system (1.1) has at least one endemic equilibrium (EE). Furthermore, if R0 > 1,

assume (A3) or (A5) holds, then system (1.1) has a unique EE, E∗.

Proof. Obviously, the DFE E0 always exists. We let the endemic equilibria of (1.1), E∗ = (S ∗, I∗),
where S ∗ = Λ/d − (1 + µ/d)I∗, and I∗ satisfies the following equation

ηβT (Λ/d + (η − 1 − µ/d)I∗)(Λ/d − (1 + µ/d)I∗)

Λ/d + (η − 1 − µ/d)I∗
− (d + µ + γ) = 0.

Let Im = Λ/(d + µ). For S ∗ > 0, we have I∗ ∈ [0, Im). In [0, Im], we let

H(I) :=
ηβT (Λ/d + (η − 1 − µ/d)I)(Λ/d − (1 + µ/d)I)

Λ/d + (η − 1 − µ/d)I
− (d + µ + γ).
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About the continuous function H(I), we have the following conclusions:

H(0) = ηβT (Λ/d) − (d + µ + γ) = (d + µ + γ)(R0 − 1),
H(Im) = −(d + µ + γ) < 0,

dH
dI
= (η − 1 − µ/d)

ηβT ′
(
N
η

)
(Im − I)

dN
η

−
η2βT

(
N
η

)
N0

N2
η

= −
(d + µ)2 ηβT ′

(
N
η

)
(Im − I)

d2N
η

−
η2β(d + µ)IT ′

(
N
η

)
dN

η

−
η2βN0

(
T

(
N
η

)
− N

η
T ′

(
N
η

))
N2
η

,

where N
η
= Λ/d + (η − 1 − µ/d)I > 0, I ∈ (0, Im).

If R0 > 1, we have H(0) > 0. If R0 ≤ 1, we have H(0) ≤ 0. Assume (A3) or (A5) holds. Then,
dH/dI < 0.

By the properties of the continuous function H(I), we have the following conclusions:

(a) If R0 > 1, then H(I) = 0 has at least one root in (0, Im).

(b) R0 ≤ 1. If assume (A3) or (A5) holds, then H(I) = 0 has no roots in (0, Im).

(c) R0 > 1. If assume (A3) or (A5) holds, then H(I) = 0 has a unique root, I∗, in (0, Im).

Therefore, (I) and (II) are proved. □

It is simple to get that if E∗ = (S ∗, I∗) is the EE of system (1.1), then Ē∗ = (S ∗ + I∗, I∗) is the EE of
system (1.2).

2.2. Local stability of equilibria

We give the local stability of all equilibria of (1.1).

Theorem 2.2. Assume (A1) and (A2) hold. The following statements are valid for system (1.1).
(I) If R0 < 1, then E0 is local asymptotically stable. If R0 > 1, then E0 is unstable (Saddle).
(II) If R0 > 1, assume (A3) or (A4) holds, then E∗ is local asymptotically stable.

Proof. In order to analyze the local stability of the DFE E0 = (Λ/d, 0) of (1.1), by using Eq (2.1), we
linearize system (1.2) at the DFE E0,

dS
dt
= −dS + (γ − ηβT (Λ/d))I,

dI
dt
= (d + µ + γ)(R0 − 1)I.

(2.2)

The Jacobian matrix at E0 is

J(E0) =
(
−d γ − ηβT (Λ/d),
0 (d + µ + γ)(R0 − 1)

)
.
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It is easy get that λ1 = −d and λ2 = (d + µ + γ)(R0 − 1) are the characteristic roots of J(E0). It
follows that all eigenvalues of J(E0) have negative real parts if and only if R0 < 1.

Therefore, if R0 < 1, E0 is local asymptotically stable; if R0 > 1, then E0 is unstable. The proof of
(I) is completed.

The E∗ = (S ∗, I∗) satisfies the following equation

ηβT (S ∗ + ηI∗)S ∗

S ∗ + ηI∗
= d + µ + γ. (2.3)

We take T ∗ = T (S ∗ + ηI∗), T
′∗ = T ′(S ∗ + ηI∗). In order to analyze the local stability of E∗ of (1.1), by

using E∗ and (2.3), we linearize system (1.1) at E∗,
dS
dt
= a11S + a12I,

dI
dt
= a21S + a22I,

(2.4)

where 

a11 = −
ηβT

′∗S ∗I∗

S ∗ + ηI∗
−
η2β(I∗)2T ∗

(S ∗ + ηI∗)2 − d,

a12 = −
η2βT

′∗S ∗I∗

S ∗ + ηI∗
−
ηβ(S ∗)2T ∗

(S ∗ + ηI∗)2 + γ,

a21 =
ηβT

′∗S ∗I∗

S ∗ + ηI∗
+
η2β(I∗)2T ∗

(S ∗ + ηI∗)2 ,

a22 =
η2βT

′∗S ∗I∗

S ∗ + ηI∗
+
ηβ(S ∗)2T ∗

(S ∗ + ηI∗)2 − (d + µ + γ).

We obtain that the Jacobian matrix at E∗ is

J(E∗) =
(

a11 a12,

a21 a22

)
.

Thus,
tr(J(E∗)) = a11 + a22

= −d − a21 + a22

= −d − (1 − η)
ηβT

′∗S ∗I∗

S ∗ + ηI∗
−
η2βT ∗I∗(S ∗ + I∗)

(S ∗ + ηI∗)2 ,

(2.5)

det(J(E∗)) = a11a22 − a21a12

= −da22 + (d + µ)a21

= (µ + d − ηd)
ηβT

′∗S ∗I∗

S ∗ + ηI∗
+
η2βT ∗I∗(dS ∗ + (µ + d)I∗)

(S ∗ + ηI∗)2 .

(2.6)

As T (N) required in (A1)–(A3), we may take

T ∗ > 0, T
′∗ > 0, (S ∗ + ηI∗)T

′∗ − T ∗ ≤ 0.
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Therefore, we have a21 > 0 and

a22 =
η2βS ∗I∗

(
(S ∗ + ηI∗)T

′∗ − T ∗
)

(S ∗ + ηI∗)2 ≤ 0.

.
If (A1)–(A3) hold, then we have tr(J(E∗)) < 0 and det(J(E∗)) > 0. According to the Routh-Hurwitz

criteria, we get that, if the conditions (A1)–(A3) hold, E∗ is local asymptotically stable.
Of course, if we replace condition (A3) with (A4), we have

T ∗ > 0, T
′∗ > 0, 1 − η > 0, µ + d − ηd > 0.

Then we easily get tr(J(E∗)) < 0 and det(J(E∗)) > 0. Thus, E∗ is local asymptotically stable. The
proof of (II) is completed. □

2.3. Global stability of equilibria

Lemma 2.3. Assume (A1), (A2) hold. If R0 > 1, assume (A3) or (A4) holds, then Ē∗ is globally
asymptotically stable for system (1.2) in Y0\N-axis.

Proof. For system (1.2), we take the Dulac function B(N, I) as

B(N, I) = I−1, (N, I) ∈ Y0\N-axis.

∂(BP)
∂N

+
∂(BP)
∂I

= −
d

I
− (1 − η)

βηT ′(N + ηI − I)(N − I)

N + ηI − I
−
βη2T (N + ηI − I)N

(N + ηI − I)2

= −
d

I
−
βηT ′(N + ηI − I)(N − I)

N + ηI − I
−
βη2IT ′(N + ηI − I)

(N + ηI − I)

−
βη2N

(N + ηI − I)2
(T (N + ηI − I) − (N + ηI − I)T ′(N + ηI − I)) .

Assume (A1), (A2) hold, we have

T (N + ηI − I) > 0, T ′(N + ηI − I) > 0, (N, I) ∈ Y0.

If R0 > 1, assume (A3) or (A4) holds, then Ē∗ is the unique EE and local asymptotically stable.
Also, we obtain that

∂(BP)
∂N

+
∂(BP)
∂I

< 0, (N, I) ∈ Y0\N-axis.

By Theorems 2.1 and 2.2, system (1.2) has only one equilibrium, E0, in Y0 ∩ N-axis. We have E0

is unstable. According to the Bendixson-Dulac criteria, the conclusion in the theorem holds. □

So, we have the condition for the stability of equilibria of (1.1).

Theorem 2.4. Assume (A1), (A2) hold. The undermentioned statements are valid for system (1.1).
(I) The DFE E0 always exists.
(II) If R0 < 1, then the DFE E0 is locally asymptotically stable.
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(III) If R0 < 1, assume (A3) or (A5) holds, then the DFE E0 is the unique equilibrium and globally
asymptotically stable in X0.

(IV) If R0 > 1, then the DFE E0 is unstable.
(V) If R0 > 1, then system (1.1) has at least one EE.
(VI) If R0 > 1, assume (A3) holds, then the EE E∗ is the unique EE and globally asymptotically

stable in X0\S -axis.
(VII) If R0 > 1, assume (A5) holds, then the EE E∗ is the unique EE. Furthermore, assume (A4)

holds, then E∗ is globally asymptotically stable in X0\S -axis.

2.4. Hopf bifurcation

From Theorem 2.4, we can find that complex dynamics in system (1.1) are only possible when
the assumption (A3) of the contact function is not valid. We construct a series of simple polynomial
functions to satisfy assumptions (A1) and (A2), but assumption (A3) does not hold. Then, we conduct
numerical simulations to see if periodic solutions can be found. In the next section, we provide a
contact function and corresponding parameter values that enable system (1.1) to discover periodic
solutions. In order to analyze how parameter affects the direction of Hopf bifurcation, we may choose
η as a bifurcation parameter.

From Theorem 2.2, we obtain that the Jacobian matrix at E∗ is

J(E∗) =
(

a11 a12,

a21 a22

)
.

The characteristic equation is

λ2 − tr(J(E∗))λ + det(J(E∗)) = 0,

where tr(J(E∗)) is as shown in (2.5), det(J(E∗)) is as shown in (2.6). If there is an E∗ that makes
tr(J(E∗)) = 0, det(J(E∗)) > 0, then there exists a periodic solution around the EE E∗ for Γ1 > 0.

Γ1 =
dtr(J(E∗)(η))

dη
. (2.7)

For η, the Hopf bifurcation point is a solution that holds at the following conditions

H(I∗) = 0,
tr(J(E∗)) = 0,

det(J(E∗)) > 0,
Γ1 > 0.

(2.8)

The Lyapunov number can be computed by [15]

Γ2 =
1√

det(J(E∗))

(∂2 f (S , I)
∂S 2

)2

−

(
∂2 f (S , I)
∂I2

)2
∣∣∣∣∣∣∣
(S ∗,I∗)

, (2.9)

where

f (S , I) =
ηβT (S + ηI)S I

S + ηI
.

Now, we are able to state the results for the Hopf bifurcation.
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Theorem 2.5. If R0 > 1, tr(J(E∗)) = 0, det(J(E∗)) > 0, then system (1.1) has a subcritical
(supercritical) Hopf bifurcation at E∗ if Γ2 > 0 (Γ2 < 0).

3. Numeric simulations

In this section, the influence of stability of equilibria of the model on the basic reproduction number
R0, the contact function T (N) and the intensity factor η is investigated. The numerical simulations are
performed using MATLAB (R2018a) software. The set of parameter values given in Table 2 and the
initial conditions (S (0), I(0)) = (1, 0.5) are used for the simulations.

Table 2. Parameter values used in numerical simulations, the units are dimensionless.

Parameter Description Value

Λ
The number of constant increase (birth and
immigration) of the population in unit time 2

d The migration (death and emigration) rate of population 1
µ The case fatality rate 1
γ The recovery rate of the disease 1

β

The probability that a susceptible person will
get sick when an effective contact occurs
between a susceptible person and an infected
person

0.8

From Theorems 2.1, 2.2 and 2.4, we find that the relationship between the threshold R0 and 1
determines the equilibria of the system, but the stability of the equilibriia is also influenced by the
selection of contact functions and parameter η. About contact function T (N), we choose T (N) as

T (N) =
N4 − 8N3 + 18N2

9.6
, (3.1)

where this T (N) satisfies assumptions (A1) and (A2), and does not satisfy assumption (A3). Because
these functions are too broad, the contact function (3.1) is just an example of the complex dynamic
behavior where the system (1.1) will exhibit periodic solutions when the conditions in Theorem 2.4 are
not met.

Figures 1 and 2 show the simulation of susceptible person S (t) for the connect function T (N) = 2,
T (N) = 2N, with η being a variable, the given initial conditions and other parameter values in Table 2.
From the figure, when R0 < 1, susceptible individuals ultimately reach their maximum scale. When
R0 > 1, susceptible individuals ultimately reach a stable value. As R0 increases (R0 > 1), the final size
of susceptible individuals also gradually decreases. These results are consistent with the conclusions
in Theorem 2.4.

Mathematical Biosciences and Engineering Volume 20, Issue 12, 20795–20808.
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0
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0
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0
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Figure 1. Simulation results illustrating the number of susceptible persons for the connect
function T (N) = 2, η as variable, the given initial conditions and other parameter values in
Table 2.
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1
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2

2.5

3

S

=0.5, R
0
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=5,  R
0
=16/3

=7,  R
0
=112/15

=9,  R
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Figure 2. Simulation results illustrating the number of susceptible persons for the connect
function T (N) = 2N, η as variable, the given initial conditions and other parameter values in
Table 2.
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Figure 3 shows the simulation of susceptible person S (t) for the connect function T (N) in (3.1),
with η being a variable, the given initial conditions and other parameter values in Table 2. From the
figure, it can be seen that as η increases, the basic regeneration number R0 linearly increases. and
the disease progresses from extinction to epidemic, while there may be periodic epidemics. And as
η increases, the final size of susceptible individuals continues to decline, and the scale of disease
outbreaks is increasing.

0 5 10 15 20 25

Time t

0

0.5

1

1.5

2

2.5

3

S

=1, R
0
=2/3

=3,  R
0
=2

=5,  R
0
=10/3

=5.4,  R
0
=3.6

=5.8,  R
0
=58/15

=7,  R
0
=14/3

Figure 3. Simulation results illustrating the number of susceptible persons for the connect
function T (N) using (3.1), η as variable, the given initial conditions and other parameter
values in Table 2.

Figure 4 is a bifurcation diagram drawn using Matcont, where η = 5.5273 and η = 6.0396 are Hopf
bifurcation points, and their first Lyapunov exponents are 22.6683 and −23.1353 respectively. It can
be seen that when system (1.1) is at η ∈ (5.5273, 6.0396), other parameter values in Table 2 and the
connect function T (N) using (3.1), the equilibrium of endemic disease disease is unstable, and there is
a stable limit cycle, that is, the disease will eventually circulate periodically.

4. Conclusions and discussion

In this paper, we have studied an SI model that has the general contact function and the impact of
diseases on infected persons. We have provided some sufficient conditions for the ultimate extinction
or epidemic of the disease. This model admits two types of equilibria and the global dynamics are
determined by the basic reproduction number R0 and the intensity factor η. It must be pointed out that
the results obtained in this paper only apply to simple cases where the contact function T (N) satisfies
the assumptions (A1) and (A2), as well as partially satisfies (A3).

From a biological perspective, assumptions (A1) and (A2) are usually valid. From Theorems 2.1,
2.2 and 2.4, if assumption (A3) holds, system (1.1) will only have two types of the equilibria, E0 and
E∗, and their global dynamics are determined by the basic reproduction number R0. If assumption
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(A3) does not hold, assumption (A5) and the relationship between the threshold R0 and 1 are sufficient
conditions for Theorem 2.1 (Theorems 2.2 and 2.4) to hold. The necessary and sufficient conditions
for the theorems to hold true regarding the range of η are work that needs to be further studied.

3

20

H

0

I

0.5

H
5

1 1

S

1.5

10

2

BP

2.5 0

15

3

Figure 4. Bifurcation diagram of system (1.1) regarding parameters η, where other parameter
values are in Table 2, and the connect function T (N) uses (3.1).

Numerical simulations were conducted to show that if the contact function T (N) satisfies
assumptions (A1) and (A2), and does not satisfy assumption (A3), system (1.1) may have a Hopf
bifurcation, resulting in a stable periodic solution. Whether there will be other bifurcations is still a
question that needs to be studied. This reveals that the epidemic of the disease cycle may be related to
the mode of disease transmission and the impact of the disease on patient behavior patterns. When a
disease is prevalent, behavioral constraints on potential carriers may be more efficient public
health policies.

T (N) describes the effective number of contacts between individuals within a population, and the
population activity habits at different times and regions are usually not consistent. Therefore, when
studying practical problems, it is necessary to analyze them in a specific manner and not use the same
contact function T (N) without thinking. The dynamic behaviors of models where the contact functions
do not satisfy assumption (A3) require further study. Our main research in the future is to find a type
of contact function that makes Hopf branches widely exist.
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