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Abstract: Aiming at the problems of local dehazing distortion and incomplete global dehazing of
existing algorithms in real airborne cockpit environments, a two-stage dehazing method PhysiFormer
combining physical a priori with a Transformer oriented flight perspective was proposed. The first
stage used synthetic pairwise data to pre-train the dehazing model. First, a pyramid pooling module
(PPM) was introduced in the Transformer for multiscale feature extraction to solve the problem of poor
recovery of local details, then a global context fusion mechanism was used to enable the model to better
perceive global information. Finally, considering that combining the physical a priori needs to rely on
the estimation of the atmosphere light, an encoding-decoding structure based on the residual blocks
was used to estimate the atmosphere light, which was then used for dehazing through the atmospheric
scattering model for dehazing. The second stage used real images combined with physical priori to
optimize the model to better fit the real airborne environment. The experimental results show that the
proposed method has better naturalness image quality evaluator (NIQE) and blind/referenceless image
spatial quality evaluator (BRISQUE) indexes and exhibits the best dehazing visual effect in the tests of
dense haze, non-uniform haze and real haze images, which effectively improves the problems of color
distortion and haze residue.
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1. Introduction

The aircraft cockpit is the main place for pilots to perform their tasks, and pilots must rely on the
information display in the cockpit to obtain flight tasks. Vision-based intelligent cockpit systems are
susceptible to the influence of bad weather, especially under hazy conditions, and the images displayed
in the cockpit are degraded to varying degrees in terms of object visibility, color fidelity and edge in-
formation, which can seriously affect the pilot’s judgment of the surrounding environment. Therefore,
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it is of great significance to study the dehazing method for the airborne cockpit environment to reduce
the influence of the hazy environment on flight operation.

Some of the earlier proposed dehazing methods are mostly based on the typical atmospheric scat-
tering model [1], which considers incident light attenuation and scattering medium effects as the main
factors leading to image quality degradation; atmosphere light coefficients and the transmission map
can be estimated to derive the dehazed image using this model. Traditional algorithms usually utilize
various images a priori knowledge to estimate the parameters in the atmospheric scattering model [2–5]
to obtain haze-free imaging. Although the algorithm is able to improve the visibility of hazy images to
a certain extent, the various a priori assumptions proposed are not sufficient to reflect the characteristics
of the real image, and the dehazing effect is often limited.

In recent years, researchers have proposed a large number of deep learning-based dehazing al-
gorithms, which usually use deep learning models such as convolutional neural networks (CNN) to
realize image dehazing. Although these algorithms can estimate the unknown parameters more ac-
curately compared to the traditional methods, they still essentially rely on the atmospheric scattering
model and cannot recover the image perfectly. In order to solve the problem of inaccurate estimation
of atmosphere light and transmission map, some CNN methods directly restore hazy images to clear
images, and common end-to-end dehazing algorithms include densely connected pyramid dehazing
network (DCPDN) [6], gated context aggregation network (GCANet) [7] and feature fusion attention
network (FFANet) [8]. However, they use convolution operations excessively, focus heavly on detailed
information and ignore global information, so the dehazing effect is not ideal.

Recently, some researches applied the Transformer to the image dehaze task. Gao et al. [9] designed
a Transformer-based channel space attention module in the dehazing network and used a multiscale
parallel residual network as a backbone to extract the feature information of different scales for feature
fusion. Li et al. [10] proposed a hybrid dehazing network that combined the CNN and the Vision Trans-
former hybrid dehazing network to capture the local and global features of haze images, respectively.
The DehazeFormer [11] method improves the normalization layer, activation function and spatial in-
formation aggregation strategy on the basis of the Swin Transformer [12], which makes the network
architecture based on the Transformer-based network architecture more suitable for dealing with the
dehazing problem. The above methods compared to the CNN dehazing can capture long-distance de-
pendencies, solving the problem of the lack of image details when image dehazing. This method is
used for real haze image dehazing, but the effect is poor; there is a color distortion produced on the
artifacts, especially for the on-board cockpit viewpoint of the fog concentration of the complex task of
the environment. The dehazing is not complete and will seriously affect the pilot’s ability to carry out
the flight task.

In summary, this paper proposes a two-stage dehazing method PhysiFormer for airborne cockpit
images that combines the Transformer with physical priori. The first stage uses synthetic pairwise data
to pre-train the dehazing model, and the second stage uses real haze images combined with physical a
priori to optimize the model with the trained model in a semi-supervised way in order to improve the
model’s robustness and generalization ability in real airborne scenarios. First, the Transformer model
is improved by introducing the pooling pyramid module (PPM) for multiscale feature extraction and a
global context fusion (GCBFusion) mechanism to enable the model to better perceive the global infor-
mation. Then, two convolutional layers are used for decomposition to generate the transmission maps.
And finally, considering that combining the physical a priori needs to rely on the atmosphere light pa-
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rameters, a residual block-based encoding-decoding structure is used to estimate the atmosphere light,
and the atmospheric scattering model is utilized for dehazing.

The main innovations are as follows: 1) We introduce the PPM in the Transformer model to obtain
multiscale haze image features and also use the GCBFusion module to model the global information
to fuse different levels of features, which is able to better recover the detail and texture information of
the image. 2) Semi-supervised training based on synthesized and real haze images are combined with
physical prior knowledge to make the model more conducive to real cockpit environment dehazing. 3)
The PhysiFormer image dehazing method is proposed, and the test results on dense haze, non-uniform
haze and haze images from aerial flight view show excellent performance, which can be used in real
airborne environments.

This paper is divided into five parts. Chapter 1 is the introduction where the background of the
dehazing algorithm for the airborne cockpit is introduced and the disadvantages of the existing dehaz-
ing methods are analyzed in detail so as to propose improvements. Chapter 2 is the related work and
existing domestic and international dehazing methods are analyzed from different perspectives with
advantages and disadvantages. Chapter 3 is the proposed methods, providing a detailed description of
the proposed improved method PhysiFormer, including the overall framework as well as the specific
implementation of each module and finally explaining the loss function design. Chapter 4 is the exper-
iments where the proposed method is experimentally analyzed in dense haze, non-uniform haze and
haze images from real aerial flight views to verify the effectiveness of the proposed method. Chapter 5
is the conclusions which summarizes and explains the next research plan of the proposed method.

2. Related work

2.1. Image dehazing

Early image dehazing methods were generally based on manual a priori [13–16], such as dark
channel prior (DCP) [2], color attenuation prior (CAP) [3], color line [4] and fog line [5]. These a
priori knowledge are derived from observations and certain assumptions about a specific scene, and
their generalizability needs to be improved. Therefore, the performance of these traditional model-
based methods can be inherently limited by the specificity of the a priori knowledge.

With the rapid development of deep learning [17], Cai et al. [18] proposed the DehazeNet dehazing
network to estimate the transmission map directly from hazy images using a three-layer CNN. Cai et
al. [19] proposed an All-in-one dehazing network (AOD-Net) to estimate a transmission map and at-
mosphere light alone, which generates cumulative errors that are not conducive to reconstructing clear
images and is a sub-optimal solution algorithm. Zhang et al. [6] proposed a densely connected pyrami-
dal dehazing algorithm based on the Generative Adversarial Network (GAN) structure to estimate the
transmission map, where the atmosphere light is estimated by a traditional method and the results are
obtained using a degenerate model. Since the use of a priori information has some limitations and the
reasonableness and subjectivity of a priori information selection will also affect the estimation of model
parameters and the final dehazing effect to a large extent, some methods do not rely on the estimation
of parameters and directly restore the hazy images to a hazy-free image. Qu et al. [20] proposed an
enhanced pix2pix dehazing network using the idea of coarse-to-fine learning. Qin et al. [8] proposed an
FFANet using channel and pixel attention mechanisms. Zhu et al. [21] proposed a multi-stream fusion
network (MSFNet) by fusing features from three resolution scales. Long et al. [22] proposed a Bi-Shift
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Network based approach to remove clouds from optical remote sensing images. Liu et al. [23] pro-
posed a new physical model based heavy haze network and a new augmentation network to supervise
the mapping from hazy domain to haze free domain.

Recent works [7, 24–29] tend to directly estimate the residuals between the hazy-free and hazy
images. However, when these methods are extended to real hazy images, the domain gap between the
synthetic and real data may lead to significant performance degradation.

2.2. Transformer

Transformer [30] is a deep neural network based entirely on the attention mechanism, which has
led to many breakthroughs in the field of natural language processing (NLP). Influenced by the pow-
erful representational capabilities of the Transformer, researchers have tried to apply the Transformer
to vision tasks [31–33]. The computational complexity of the Vision Transformer (ViT) [33] is the
square of the number of pixels, and the huge computational cost limits its development in vision tasks.
To solve the above problem, Swin Transformer [12] utilizes local prior knowledge to decompose fea-
tures of original size by non-overlapping windows and performing region self-attentive computation
only within each window, which reduces the computational complexity to a linear scale of the number
of pixels. However, the window-based design limits the integration of contextual feature information
within the local region and still does not allow effective modeling of global dependencies. Based
on this, Zamir et al. [34] proposed Restormer, which utilizes a deep convolutional multi-head trans-
pose attention mechanism (MDTA). However, this mechanism does not directly compute self-attention
on pixels but models the global contextual relations in the channel dimension, which greatly reduces
the time complexity. Qiu et al. [35] proposed a new multi-branch linear Transformer network MB-
TaylorFormer, through the multi-branch and multiscale structure to extract with a multiscale sensory
field. Thus, multi-level semantic information can effectively and efficiently carry out the image dehaz-
ing task. The DehazeFormer [11] improves the normalization layer, activation function, and spatial in-
formation aggregation scheme on top of the Swin Transformer, making the Transformer-based network
architecture more suitable for handling the dehazing problem. Due to the superiority of DehazeFormer
compared to other image dehazing tasks, it is used as the backbone network in this paper.

3. Proposed methods

3.1. Overall architecture

The proposed two-stage dehazing framework PhysiFormer of Transformer combined with physical
prior is shown in Figure 1. The first stage is based on synthesizing a dehazing model pre-trained on
paired data. First, multiscale features are extracted by PPM, which is a module that can capture the
details and overall information in the image through different scales and then input into the backbone
network to output the feature maps; feature fusion is then carried out by using the GCBFusion mecha-
nism so that the model can better perceive the global information and finally it is decomposed by using
two convolutional layers in order to generate the transmission maps. Since the physical prior is re-
lated to the three parameters atmosphere light, haze-free image and transmission maps, an independent
residual block-based encoding-decoding structure is designed to estimate the atmosphere light. In the
second stage, the model is optimized in a semi-supervised manner using real hazy images combined
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with physical prior, and the model is optimized by DCP loss, Bright Channel Prior (BCP) loss and
Contrast Limited Adaptive Histogram Equalization (CLAHE) loss using real hazy images as inputs,
and by optimizing the loss function in order to make the generated hazy-free image closer to the real
image. The specific algorithm is described below. The training process of PhysiFormer is shown in
Algorithm 1.

Algorithm 1: The training procedure for our network
Stage1 :
Input : The hazy image set, Xn, The clear image set, Yn

Output: The dehazed image: Y1

1 Initialization parameters: training network, dataset preprocessing, batch size, learning rate;
2 for e← 1 to epoch do
3 (x, y) = Crop size (x, y)← Flip and crop the dataset to a fixed;
4 for x ∈ Xn, y ∈ Yn do
5 x, y to Physi f ormer;
6 J, t = PhysiFormer (x, y)← Dehaze with PhysiFormer;
7 Ã = A − net (x, y)← Calculating Atmosphere light;
8 I = J̃ ⊙ t̃ + Ã(1 − t̃)← Reconstructing the original input;
9 LRec1(J, y)← Rec Loss1;

10 LRec2(I, x)← Rec Loss2;
11 Ldehaze = LRec1 +LRec2 ← Loss;
12 end
13 end

Stage2 :
Input : The hazy image set, X′n
Output: The dehazed image: Y2

14 Initialization parameters: training network,Pre-trained models, dataset preprocessing, batch
size, learning rate;

15 for e← 1 to epoch do
16 (x, y) = Crop size (x, y)← Flip and crop the dataset to a fixed;
17 for x′ ∈ X′n do
18 x′ to Physi f ormer;
19 J, t = PhysiFormer (x′)← Dehaze with PhysiFormer;
20 Ã = A − net (x, y)← Calculating Atmosphere light;
21 Ĩ = J̃ ⊙ t̃ + Ã(1 − t̃)← Reconstructing the original input;
22 LDCP(x′, t)← DCP Loss;
23 LBCP(x′, t)← BCP Loss;
24 Lrec(I, x′)←Rec Loss;
25 LCLAHE(Ĩ, t)← CLAHE Loss;
26 Lsky(x′, J)← S ky Loss;
27 Ldehaze = λdLDCP + λbLBCP + λcLCLAHE +Lsky +LRec;
28 end
29 end
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Figure 1. Overall framework of PhysiFormer.

3.2. Specific module

3.2.1. Feature extraction and fusion

The traditional single input tends to lead to the loss of many useful details and local features. In
this paper, the haze features are extracted using a PPM with the structure shown in Figure 2, with a
total of four layers of structure, each of which is divided into 1 × 1, 2 × 2, 3 × 3 and 6 × 6 in terms of
the size of each layer. First, it goes through a down-sampling convolution operation, and then features
are extracted at different scales by adaptive averaging pooling and convolution layers. Second, the
feature maps at each scale are resized to the same size as the input feature maps by the up-sampling
operation. Finally, the up-sampled feature map is stitched with the original down-sampled feature
map and processed by a convolution layer, batch normalization layer, and activation function, and then
the fused feature map is obtained. The module is able to extract features from spatial information at
different scales by performing spatial pyramid pooling and convolution operations on feature maps of
different sizes. Through the fusion of multiscale features, the model can better perceive the information
of objects of different sizes and improve the perceptiveness and accuracy of the dehazing effect.

For feature fusion, the selective kernel fusion (SKFusion) mechanism is used in the Transformer’s
approach. Since the dehazing task requires the processing of the entire image, including the processes
of sensing fog density, estimating transmittance, and recovering hazy-free images, SKFusion’s spatial
attention mechanism is based on pixel-level selection and fusion, which can limit SKFusion’s perfor-
mance for global contextual information across long distances. In image dehazing, global contextual
information is important for the correct estimation of transmittance and the recovery of hazy-free im-
ages. Therefore, this paper uses the GlobalContextBlock (GCBlock) module instead of the original
fusion module to introduce global context information. The GCBlock module structure diagram is
shown in Figure 3. First, the global information relationship vector is obtained by Wk, then the two-
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layer 1 ∗ 1 convolution can reduce the number of parameters and further extract information, and
finally, the global contextual information is multiplied with the input feature map at the element level
to obtain the final feature map output. The GCBFusion module consists of several GCBlock modules,
each used to enhance the model’s ability to perceive global contextual information. The input multiple
feature maps are stacked and shape-transformed to obtain a stacked feature map, and then the final
output feature map is obtained through a series of computation and fusion operations, which can better
handle global information and improve the accuracy of transmittance estimation and the recovery of
hazy-free images.

Figure 2. Pyramid pooling module.

Figure 3. GCBlock structure.
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3.2.2. Atmosphere light estimation network

In the second stage of the PhysiFormer, we combine the dehazing model with the physical method
to improve the accuracy and robustness of the dehazing effect. Since the physical method needs to rely
on the estimation of atmosphere light, we designed an atmosphere light estimation network based on
the residual block-based encoding-decoding structure in hazy images to improve its generalization to
different scenes.

The mathematical description of the atmospheric scattering model can be expressed as:

I(x) = J(x)t(x) + A(1 − t(x)), (3.1)

where I is the captured hazy image, J is the latent haze-free image, A is the global atmospheric light and
t is the medium transmission map. According to the image degradation model, for a given image we
assume that the atmospheric light map A is homogeneous and the predicted atmospheric light A is a 2D
map where each pixel has the same value. Thus, it has the same feature size as the input image and the
two-layer convolution in A is filled with the same values. Atmospheric light as a network-independent
module is shown in Figure 4 with an 8-block U-net [7] structure, where the encoder consists of 4 Conv
blocks and the decoder consists of symmetric Conv−BN−Relu blocks. Establish connectivity between
the backbone and subnets through reconfiguration losses.

Figure 4. Structure of atmospheric light estimation network.

3.3. Loss function

In the second stage, the model is optimized using physical losses, starting with the DCP, which is
a loss designed for the dehazing task, exploits the statistical laws in the hazy image, and is able to
effectively estimate the degree of haze in the image so as to recover more details of the image. Its loss
function can be expressed as:

LDCP = E(t, t̃) = tT Lt + λ(t − t̃)T (t − t̃), (3.2)

where t and t̃ represent the transmission estimates for the DCP and backbone networks. Although
LDCP greatly improves the performance of the model on real blurred images, it has the side effect that
the dehazing results are usually darker than expected. Therefore, we add a BCP.
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BCP addresses the problem of image quality degradation due to insufficient light and helps to make
the resulting image brighter and enhance contrast. Its loss function can be expressed as:

LBCP =
∥∥∥t − t̃

∥∥∥
1
, (3.3)

where t and t̃ represent the transmission estimates for the BCP and backbone networks. LBCP compen-
sates for the drawbacks associated with LDCP by significantly improving the global illumination of the
recovered image and restoring more detail.

In order to strike a balance between LDCP and LDCP, CLAHE is added to rebuild the loss to com-
pensate for the difference between DCP and BCP, and to balance the effect between DCP and BCP
which can maintain the clarity and detail of the image and make the image dehazing process more
comprehensive.The loss function of the network output t̃, Ã and the result of JCLAHE is reconstructed
as the original input by the scattering model (1), which can be expressed as:

LCLAHE = ∥I − ICLAHE∥1, (3.4)

where I is the original input.
Then, the loss function is redefined as:

Lcom = λdLDCP + λbLBCP + λcLCLAHE (3.5)

where λd, λb and λc are the tradeoff weights.
Physical priors usually do not handle the sky in the image correctly, which leads to artifacts and

color shifts. Therefore, the original pixel values of the sky region should be preserved as much as
possible by introducing the following loss function:

Lsky =
∥∥∥Msky ⊙ (J − Jo)

∥∥∥
1
, (3.6)

where M is a binary mask representing the sky region, and J and Jo are images recovered from m
and Mo.

In order to update both atmosphere light and transmission maps, the reconstruction loss Lrec is
introduced, the network outputs J, t and A are aggregated by a physical scattering model and the
original inputs are reconstructed Ĩ = J̃ ⊙ t̃ + Ã(1 − t̃) , integrating the various modules of the network
for simultaneous optimization. The Lrec is defined as:

LRec =
∥∥∥I − Ĩ

∥∥∥
1
, (3.7)

where I is the original input.
Finally, the total loss function can be expressed as:

L = Lcom +Lsky +LRec. (3.8)

4. Implementation

4.1. Implementation details

Dataset: Since large-scale accurate paired haze datasets are difficult to obtain in real airborne, a
synthetic paired dataset was used for training in the first phase. We randomly choose 6000 synthetic
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pairs of outdoor training sets (OTS) from the RESIDE Dataset [36] and 45 pairs of images from the
non-homogeneous hazy (NH-HAZE) [37] real hazy images dataset as the training data for the first
stage, and choose the real hazy images from unannotated real hazy images (URHI) for the second
stage. Tests were performed on the synthetic objective testing set (SOTS), NH-HAZE and realworld
task-driven testing set (RTTS) datasets, and in addition, real aerial video frames with different cockpit
viewpoints were selected for the tests.

Training parameters: The first stage network was trained for 100 epochs using the Adam optimizer,
with β1 = 0.9 and β2 = 0.999. The initial learning rate was set to 10−4 with a decay rate of 0.75 per
10 epochs. The second stage network was trained with 20 epochs and the initial learning rate is set to
10−4, decaying by 0.5 every two epochs. The tradeoff weights in the loss function are set to λd = 10−3,
λb = 0.05, λc = 1.

Comparison of methods: A priori based methods (e.g., DCP [2]); methods based on deep learn-
ing for direct haze-to-clear map conversion (e.g., GCANet [7], FFA-Net [8], Multi-Scale Boosted
Dehazing Network (MSBDN) [38]) and Transformer-based methods (e.g., Dehazeformer [11], U2-
Former [39], MB-TaylorFormer [35]). Specifically, DCP is a traditional defogging method based on
the a priori belief that most images that do not contain a sky region have pixel points that have very
low values in at least one of these channels. GCANet utilizes gated context aggregation network de-
hazing to directly recover the final haze-free image; FFA-Net proposes a feature fusion attention using
channel and pixel attention mechanisms network; MSBDN designs a multiscale enhanced dehazing
network with dense feature fusion using U-Net architecture; Dehazeformer improves the normaliza-
tion layer in Swin Transformer, and the activation function and spatial information aggregation strategy
make the Transformer model more conducive to the dehazing task; MB-TaylorFormer can effectively
and efficiently perform image dehazing through multi-branch and multiscale structure extraction with
a multiscale sense field and multi-level semantic information and U2-Former is based on the U-type
Transformer, which is able to utilize the variator as the core operation to perform image restoration
in the deep coding and decoding space (the source code of this method is not provided, and it is only
compared with the evaluation indexes provided in the paper). In addition, the rest of the methods are
experimented by retaining the original paper parameter settings and tested using the official code.

Evaluation metrics: For paired datasets, peak signal to noise ratio (PSNR) and structural similarity
index (SSIM) are used as evaluation metrics to evaluate the experimental results. For unpaired datasets,
naturalness image quality evaluator (NIQE) and blind/referenceless image spatial quality evaluator
(BRISQUE) are used as evaluation indexes for evaluation. PSNR is used to describe the similarity
between the pixels of the generated image and the reference image; the higher the PSNR value, the
more similar the two images are. SSIM is a metric used to evaluate the similarity between the generated
image and the reference image. In addition to the metrics that consider the differences between pixel
values, SSIM also considers factors such as brightness, contrast and structure. SSIM takes a value
in the range of [0,1], and the closer the result is to 1, the more similar the generated image is to the
reference image. NIQE denotes the naturalness image evaluation metrics based on comparing the
algorithm processing results with the model calculated based on the natural scene, and BRISQUE
denotes the reference-free quality score based on the images based on the natural scene images with
similar distortions, and a smaller score for both indicates a better perceived quality.

Mathematical Biosciences and Engineering Volume 20, Issue 12, 20727–20747.



20737

4.2. Results on synthetic hazy images

Experiments were first conducted on the SOTS outdoor synthetic dataset and the dehazing results
were analyzed quantitatively and qualitatively. Table 1 presents the quantitative comparison results
of the proposed method with representative or contemporary methods with better performance. The
proposed method achieves optimal performance in PSNR metrics. Compared to deep learning-based
image dehazing methods, traditional DCP dehazing methods are much less effective, PhysiFormer and
Dehazeformer have an improvement of 0.22 compared to PSNR and SSIM, although slightly lower
than Dehazeformer, has an improvement compared to all other Transformer-based methods.

Table 1. Quantitative comparison of dehazing results for paired datasets.

PSNR/SSIM SOTS-outdoor NH-HAZE
DCP 19.19/0.834 11.19/0.514
GCANet 29.14/0.947 16.34/0.626
FFANet 32.75/0.969 18.95/0.693
MSBDN 34.68/0.975 19.97/0.705
U2-former 31.10/0.976 - - -
Dehazeformer 35.15/0.987 19.56/0.694
MB-TaylorFormer 35.21/0.981 20.01/0.706
PhysiFormer 35.37/0.983 20.37/0.716

Figure 5. Comparison of visualization results on SOTS dataset.

The dehazing results of the 3 sets of outdoor images in the SOTS dataset are shown in Figure 5. It
can be seen that the images after DCP and GCANet dehazing are obviously dark and the color of the
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sky region is distorted, such as magnified local blocks. Although the dehazing results of FFANet and
MSBDN are greatly improved compared with DCP and GCANet and the distortion is reduced and there
are still some haze residues in the dehazing results. Compared with the Transformer-based dehazing
methods Dehazeformer and MB-TaylorFormer, it has achieved good results in the SOTS dataset, but
it is not as good as PhysiFormer for the detail processing. For example there are enlarged red blocks
in the first set of the test data in Figure 5, and the sky region is whitish compared to the GT map. In
qualitative comparison, the evaluation indexes of the latter three methods are closer and PhysiFormer
further improves the visual effect and recovers better, especially the regions marked with box lines in
each test image; the recovery of detailed texture features is more obvious.

4.3. Results on real hazy images

4.3.1. Comparison of non-uniform haze images

The test was performed on five images selected from the NH-HAZE dataset, which can effectively
demonstrate the performance exhibited by each algorithm in the case of haze inhomogeneity encoun-
tered in flight. As shown in the data on the righthand side of Table 1 and the proposed method, it shows
good performance in both PSNR and SSIM, which are improved by 0.81 and 0.022 dB, respectively
compared to the Dehazeformer method.

Figure 6. Comparison of visualization results on NH-HAZE real dataset.

Figure 6 shows a comparison of the effectiveness of each method for dehazing on the NH-HAZE
dataset. It can be seen that compared with the synthetic dataset, the NH-HAZE non-uniform haze
dataset is more challenging. Specifically, the traditional DCP dehazing method will lead to serious
color deviation phenomenon after dehazing, and the color is bluish; the GCANet overall dehazing is
darker; FFANet has a great improvement compared to DCP and GCANet, but there is obvious haze
residue in the hazy area; MSBDN dehazing also has haze residue; the Dehazeformer method alleviates
the problem of color deviation, but compared to the real haze-free map in the ground, the color of the
tree branches, etc., there is still a problem of color distortion. MB-TaylorFormer has incomplete local
dehazing, overall image color distortion and darker brightness. Compared to the above algorithms,
PhysiFormer has better performance in recovering image details and avoiding the problem of color
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bias in dehazing it has better reconstruction effect on the near and far areas such as the ground where
the haze is thicker and it can recover a clearer and more natural haze-free image.

4.3.2. Comparison of unpaired real hazy images

In order to verify the effectiveness of the proposed method, 30 non-pairs of real hazy dataset RTTS
are selected for testing and comparison experiments with other dehazing methods, and the experimental
results are shown in Figure 7. DCP and GCANet dehazing results are overall dark, and the sky color
is obviously distorted. FFANet haze removal effect is not complete, and there are still haze residues
in some areas. MSBDN recovered images are still a little fuzzy, especially in the long view angle of
the far-away area. The same Transformer-based method shows excellent performance in the SOTS-
outdoors dataset, but its dehazing effect in real haze images is poor, Dehazeformer dehazing results
are overall brownish, and MB-TaylorFormer suffers from poor dehazing of the edges of the object,
brightness changes and other shortcomings (same as the effect on the NH-HAZE dataset). PhysiFormer
solves this problem well, and the haze-free image has brighter details and clearer edges, which is more
suitable for real haze images.

Figure 7. Comparison of visualization results on RTTS real dataset.
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4.3.3. Comparison of aerial video frames in real hazy

Figure 8. Comparison of visualization results on Aerial video frames.

In order to verify the dehazing effect of the proposed method for use in airborne cockpits in real
flight situations, a dataset of aerial video frames from different cockpit viewpoints was selected for
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testing. The experimental results are shown in Figure 8. Image1 demonstrates the flat view image of
the airplane during normal flight, and Image2 demonstrates the overhead view image. The results of
DCP and GCANet dehazing are overall dark, especially the enlarged red area in the figure, and the sky
color distortion is obvious, with varying degrees of artifacts. FFANet and MSBDN dehazing is not
complete and there is still a large area of haze residue, which makes the recovered image still a little
fuzzy. Based on the Transformer’s Dehazeformer method, although a better removal of the haze, the
dehazing result is still overall brownishd and did not achieve the best visual effect. MB-TaylorFormer
has a poor dehazing effect on the edges of objects, poor dehazing effect on the color of the building in
the area marked by the red box and the overall image recovery is not smooth enough, which affects the
visual effect. Physiformer well solves the limitations of previous methods, and the dehazing image is
more natural and better retains the contour and color information of the object, which helps to enhance
the pilot’s perception of the environment, thus ensuring flight safety.

To further evaluate the dehazing performance of the proposed algorithms in real flight environments,
quantitative comparisons are made using the no-reference image quality assessment metrics BRISQUE
and NIQE. The quantitative results on RTTS and aerial video frames are shown in Table 2, where the
optimal performance is achieved in both metric. Compared with MB-TaylorFormer, which has the
second best performance, the performance of PhysiFormer is improved by -0.196 and -1.016 on RTTS
and -0.089 and -0.764 on real aerial video frames, respectively. In addition, the performance of Physi-
Former compares favorably with that of Dehazeformer, which is also a Transformer-based method,
indicating that PhysiFormer generates hazy-free images with better visual quality. This indicates that
the fog-free images generated by PhysiFormer have better visual quality, and its overall image quality
is more advantageous compared to other methods.

Table 2. Quantitative comparison of dehazing results for unpaired datasets.

NIQE/BRISQUE RTTS Aerial image
DCP 3.579/34.858 3.465/33.476
GCANet 3.523/28.576 3.584/30.239
FFANet 3.456/36.702 3.843/36.468
MSBDN 3.142/26.397 3.114/27.397
Dehazeformer 3.294/27.895 3.164/27.793
MB-TaylorFormer 3.102/25.967 3.106/27.183
PhysiFormer 2.906/24.951 3.017/26.419

4.4. Ablation study

To validate the effectiveness of the proposed feature extraction, and fusion module and physical loss,
the following four sets of ablation experiments are done on RTTS datasets and aerial video frames to
compare the performance of the following four model architectures: M1 model removes the physical
loss and only the first stage training model was used for testing; M2 model keeps the physical loss and
removes the PPM feature extraction module; M3 model keeps the physical loss and PPM module and
uses the SKFusion module in the original Dehazeformer for feature fusion; M4 model is the original
method in this paper.
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The results of the above ablation experiments on paired datasets are shown in Figures 9 and 10, and
the results of the ablation experiments on unpaired datasets are shown in Figures 11 and 12. Only the
first stage trained model was used for dehazing testing in experiment M1, and the results showed haze
residuals and unclear haze removal images, which indicates the limited effect in processing haze images
when removing physical losses, and the haze removal effect cannot be completely removed. The results
of experiments M2 and M3 showed good ablation performance, with physical losses preserved and
optimized for haze removal and detail restoration. However, compared to the original method in this
paper, there are still haze residues in the distant area, such as the enlarged red area in the first group of
Figure 11, indicating that the module being ablated will have an impact on detail processing.

Figure 9. Visual results of the ablation experiment on the SOTS-outdoor dataset.

Figure 10. Visual results of the ablation experiment on the NH-HAZE dataset.

Figure 11. Visual results of ablation experiments on the RTTS dataset.

The quantitative comparison of the ablation experiments is given in Tables 3 and 4, which shows
the effect of each module in the experiments on the image quality and sharpness, which is improved
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by the M4 model on the RTTS dataset compared to the M1 model, the M2 model and the M3 model
by (-0.361, 2.289), (-0.25, -1.48) and (-0.278, 1.724), respectively, and by the NH-HAZE dataset by
(1.62, 0.115), (1.03, 0.029) and (0.81, 0.022), respectively. The M4 model improves (1.62, 0.115),
(1.03, 0.029) and (0.81, 0.022) over the M1, M2 and M3 models, respectively, and these quantitative
results further proved the effectiveness of the proposed method and demonstrated that the individual
modules play different roles in the whole dehazing process.

Figure 12. Visual results of the ablation experiment on the Aerial video frames.

Table 3. Quantitative results of ablation experiments on paired datasets.

Model No. PPM GCBFusion Physical loss PSNR SSIM
M1 ✓ ✓ 18.75 0.601
M2 ✓ ✓ 19.34 0.687
M3 ✓ ✓ 19.56 0.694
M4 ✓ ✓ ✓ 20.37 0.716

Table 4. Quantitative results of ablation experiments on unpaired datasets.

Model No. PPM GCBFusion Physical loss NIQE BRISQUE
M1 ✓ ✓ 3.267 27.240
M2 ✓ ✓ 3.156 26.431
M3 ✓ ✓ 3.184 26.675
M4 ✓ ✓ ✓ 2.906 24.951
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4.5. Runtime comparison

Time is one of the key factors affecting the on-board cockpit display, so in addition to the subjective
evaluation based on vision and the objective evaluation of qualitative and quantitative, 100 images are
randomly selected to compare the running time of different algorithms in hazy images of 256 × 256 and
512 × 512 sizes and analyzing them by taking the average value. As shown in Table 5, the proposed
algorithm is ranked No.3 among the six dehazing algorithms. Although its processing time is slightly
longer than that of Dehazeformer, which is also a Transformer-based method, the proposed algorithm
is still competitive in terms of comprehensive fog removal effect. Compared with MSBDN, which has
a better dehazing effect, the proposed algorithm improves 0.226 and 0.918 s on two different sizes of
images, which runs faster and is more suitable for dehazing onboard cockpit scenes.

Table 5. Runtime comparison of different algorithms.

Size DCP GCANet FFANet MSBDN Dehazformer PhysiFormer
256 × 256 1.849 s 0.072 s 0.423 s 0.324 s 0.063 s 0.098 s
512 × 512 2.763 s 0.167 s 1.294 s 1.148 s 0.158 s 0.235 s

5. Conclusions

In order to address the impact of hazy environment on flight operations and improve the robustness
and generalization ability of the dehazing algorithm in real airborne environments, a dehazing method
combining Transformer and physical prior was proposed. Based on the semi-supervised training of
synthesized and real fogged images, multiscale feature extraction was introduced and the global context
fusion mechanism was also used, which leads to better restoration of the details and texture information
of the images and improves the model’s generalization ability. Extensive experimental evaluations on
public datasets and real aerial video frames show that our method achieves good results in objective
evaluation metrics and, on the subjective side, the dehazed image effectively improves color distortion
and solves the problem of uneven processing of different fog concentrations, which can be generalized
to real hazy images for flight safety. However, in the real airborne environment [40], the pilot must
quickly complete the judgment of the flight mission system. The dehazing effect needs to be refreshed
in real time, and the next step will be to study how to reduce the computation while guaranteeing
the performance.
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