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Abstract: In this article, the distributed optimization based on multi-agent systems was studied,
where the global optimization objective of the optimization problem is a convex combination of local
objective functions. In order to avoid continuous communication among neighboring agents, an event-
triggering algorithm was proposed. Time delay was also considered in the designed algorithm. The
triggering time of each agent was determined by the state measurement error, the state of its neighbors
at the latest triggering instant and the exponential decay threshold. Some sufficient conditions for opti-
mal consistency were obtained. In addition, Zeno-behavior in triggering time sequence was eliminated.
Finally, a numerical simulation was given to prove the effectiveness of the proposed algorithm.
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1. Introduction

Due to its extensive applications, cooperative control of multi-agent systems (MASs) has received
increasing attention for the past few years, such as consensus control [1, 2], containment control [3],
formation control [4] and resource allocation [5, 6]. Distributed optimization problem (DOP), one
of the hot topics of cooperative control, has been widely studied from different aspects. In DOP,
each agent has its own local objective function, which is not available to other agents. The objective
function is minimized by selecting an optimal action, where the objective function is defined as a
convex combination of local objective functions. Optimization theories [7–11] provide the fundamental
tools to address DOP.

In the field of DOP, there were some studies [12, 13] about distributed consensus-based gradient
methods for convex cost functions. Recently, DOP of continuous-time MASs have been widely re-
searched [14–16]. In [14], the research was mainly based on nonuniform gradient gain and finite time
convergence. In [15], the time-varying loss function was studied. A proportional-integral-differential

http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2023916


20713

algorithm was introduced in [16].

The majority of current DOP was studied using continuous-time control algorithms. This con-
trol strategy is relatively impractical and inefficient as it results in a wastage of energy. In practice,
each agent often faces limited resources and, thus, is expected to update its control signals as infre-
quently as possible. In order to alleviate the communication load in MASs, a discrete-time control
method known as event-triggered control has been developed. This control strategy is aperiodic and
neighboring agents only need to communicate at specific time instants determined by pre-designed
triggering conditions, the effectiveness of which was systematically illustrated in [17–22]. In [17], the
research studied the event-triggered DOP for nonlinear MASs in undirected and connected communi-
cation networks. In [18], two event-triggered control protocols were proposed to solve convex DOP
under the directed graph. Moreover, in [19], an event-based control protocol was proposed to solve
non-convex DOP. An adaptive event-triggered communication was introduced in [20]. In [21], the
author explored both event-triggered and time-triggered algorithms to solve DOP. In [22], the paper
examined the prescribed-time optimization problem of MASs under two control protocols, specifically
the continuous-time protocol and its event-triggered control protocol.

All of the above results focused on networks without time delay. In fact, the hardware performance
of each agent requires a certain input time delay for effective communication and processing of infor-
mation. Hence, the analysis and management of time delay is crucial in understanding and improving
the performance of MASs, particularly in cases where there are a large number of agents and intricate
communication networks. In the works [23–26], DOP of MASs with time delay have been studied.

Inspired by the previously discussed works, this paper investigates an event-triggered distributed
optimization algorithm with time delay under an undirected communication graph. Each agent utilizes
its own gradient information as well as delayed information from its neighbors and itself to search for
solutions. The connection between the equilibrium point of MASs and optimal solutions are discussed.
Compared with the algorithms in [27–29], our algorithm does not require continuous communication
between agents and it takes into account that there is a delay in the communication between agents.
The algorithm proposed here is based on event-triggered transmissions that can alleviate the commu-
nication load and decrease the frequency of controller iterates, resulting in saved network resources.
Furthermore, the stability property of MASs with time delay is analyzed using the Lyapunov stability
theory, and the Zeno-behavior of triggering time sequence is excluded.

The rest of this article is arranged as follows. The basic theories of graph theory and dynamic
systems are provided in Section 2. Section 3 presents the main results. In Section 4, a numerical
example is given, which illustrates the effectiveness of the proposed algorithm. Concluding remarks
are made in Section 5.

Notations: Let R, Rn, and Rn×n be a set of real numbers, n-dimensional real vectors, and n× n real
matrices, respectively. Let In ∈ R

n×n be the identity matrix. 1n = [1, · · · , 1]T . AT is the transpose of A.
∇ fi(x) = ∂ fi(x)

∂x is gradient of the function fi(x). ⊗ is the Kronecker product. ∥A∥ denotes the induced
matrix norm and ∥ · ∥ represents the Euclidean norm for x ∈ Rn. λmax(A) is the largest eigenvalue of
symmetric matrix A.
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2. Preliminaries

In this section, the concepts related to graph theory will be introduced, and then the distributed
optimization problem is presented.

2.1. Grapy theory

Let G = {V,E,A} be an undirected and connected graph used to model a network of N agents,
where V = {1, 2, ...,N} denotes the set of nodes and E = {(i, j) ∈ V × V} denotes the set of edges.
LetA = [ai j] be the adjacency matrix of graph G, and ai j = a ji = 1 if (i, j) ∈ E and ai j = 0, otherwise.
Ni = { j ∈ V : (i, j) ∈ E} is the set of neighbors of node i. The degree matrix of graph G is denoted
byD = diag{d1, d2, ..., dN} and di =

∑
j∈Ni

ai j. Furthermore, the Laplacian matrix L = [li j] is defined as
L = D −A. If graph G is a connected undirected graph, one can derive that the eigenvalues of matrix
L satisfy 0 = λ1 < λ2 ≤ ... ≤ λN .

2.2. Problem formulation

The following DOP is studied in this paper

min
xi∈Rn

N∑
i=1

fi(xi), (2.1)

where each agent i ∈ V has a local convex function fi : Rn → R. Each of the functions fi is private
and accessible only to the corresponding agent i. The aim of each agent is to solve the optimization
problem in (2.1) cooperatively, and the interaction topology among the agents is expressed by graph
G. For convenience, denote f (x) =

∑N
i=1 fi(xi), x = [xT

1 , ..., x
T
N]T ∈ RNn.

Consider the MASs with each agent modeled by first-order dynamics as follows:

ẋi(t) = ui(t), i = 1, 2, ...,N, (2.2)

where xi(t) ∈ Rn represents state vector of agent i, and ui(t) ∈ Rn is the control input.
The primary objective in this article is to design distributed event-triggered optimization algorithms

ui(t) for system (2.2), with the aim of driving the position state of N agents toward the optimal solution
x∗ of Eq (2.1). Toward this end, the following definition is proposed.

Definition 1: DOP (2.1) for MAS (2.2) is solved if

lim
t→∞
∥x(t) − x∗∥ = 0,

where x∗ = arg minx∈RNn f (x). Thus, x∗ is considered as the global optimal solution, which minimizes
the global objective function.

The following assumptions will be used in this article.
Assumption 1: The communication topology graph G is undirected and connected.
Assumption 2: Each local cost function fi is twice continuously differentiable and ωi-strongly

convex (ωi > 0) over Rn. Additionally, ▽ fi is ℓi-Lipschitz (ℓi > 0) for each i ∈ V.
Remark 1: A function fi is said to be twice continuously differentiable and ωi-strongly convex

if ∀K ⊂ Rn is a convex and compact set and if there is a positive number ω = min
i∈V
ωi that makes
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(∇ fi(k1) − ∇ fi(k2))T (k1 − k2) ≥ ω∥k1 − k2∥
2, ∀k1, k2 ∈ K. ▽ fi is ℓi-Lipschitz with positive constant

ℓ = max
i∈V
{ℓi}, and one has ∥∇ fi(k1) − ∇ fi(k2)∥ ≤ ℓ∥k1 − k2∥,∀k1, k2 ∈ K.

3. Main results

This section presents sufficient conditions for DOP (2.1) and excludes Zeno-behavior with the de-
signed event-triggered mechanism for any agent.

To eliminate continuous communication with neighboring agents, the following event-triggered
control protocol with time delay is used:

ui(t) = −
N∑

j=1

ai j(xi(ti
k − ℘) − x j(t

j
k′
− ℘)) − µ∇ fi(xi(t)) − vi(t)

v̇i(t) =
N∑

j=1

ai j(xi(ti
k − ℘) − x j(t

j
k′
− ℘)),

(3.1)

where µ, ℘ are positive numbers and vi denotes the auxiliary variable of agent i. The latest triggering
instant of agent j is denoted by t j

k′
= arg minl∈Ni,t≥t j

l
{t− t j

l }, and the triggering time sequence is described
recursively as follows:

ti
k+1 = inf{t|t > ti

k, gi(t) ≥ 0} (3.2)

and

gi(t) =∥ei(t)∥2 − κ1∥
N∑

j=1

ai j(xi(ti
k) − x j(t

j
k′

))∥2 − κ2e−γ(t−t0), (3.3)

for given constants κ1 > 0, κ2 > 0, γ > 0. ei(t) = xi(ti
k) − xi(t) is the state measurement error and ei(t)

is equal to 0 at t = ti
k. ∥

∑N
j=1 ai j(xi(ti

k) − x j(t
j
k′

))∥ represents the error sum of the states of all agents.
Remark 2: In algorithm (3.1), the controller design is mainly divided into following three parts:
(i) The first part as state feedback for stabilizing system (2.2);
(ii) The second part ∇ fi(xi(t)) is gradient direction of the local cost function, which is used to find

the optimal solution of the cost function;
(iii) The third part vi(t) is the state auxiliary term, which plays an important role in proving the

stability of the algorithm.
With the error ei(t), the control protocol (3.1) can be converted intou(t) = −Lx(t − ℘) − Le(t − ℘) − µ∇ f̃ (x(t)) − v(t)

v̇(t) = Lx(t − ℘) +Le(t − ℘),
(3.4)

where L = L ⊗ In ∈ RNn×Nn, u(t) = [uT
1 (t), uT

2 (t), ..., uT
N(t)]T ∈ RNn, v(t) =

[vT
1 (t), vT

2 (t), ..., vT
N(t)]T ∈ RNn, e(t − ℘) = [eT

1 (t − ℘), eT
2 (t − ℘), ..., eT

N(t − ℘)]T ∈ RNn and ∇ f̃ (x(t)) =
[∇ f1(x1(t))T ,∇ f2(x2(t))T , ...,∇ fN(xN(t))T ]T ∈ RNn.

Definition 2: If there is an infinite numbers of events in a finite period of time, then the event-
triggered time sequence {ti

k} exhibits Zeno-behavior.
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Remark 3: If the event-triggering time sequence exists Zeno-behavior, it implies that there is a
positive constant T , such that limk→∞ ti

k = T .
Lemma 1 (Barbalat’s lemma [30] ): For all t ≥ t0, the function y : R+ → R is uniformly continu-

ous. If

lim
t→∞

∫ t

t0
y(z)dz

exists and is bounded, then
lim
t→∞

y(t) = 0.

Lemma 2: Suppose Assumptions 1 and 2 hold and
∑N

i=1 vi(0) = 0n, then (x∗,−µ∇ f̃ (x∗)) is an
equilibrium point of system (3.1), where x∗ is the optimal solution of DOP (2.1).

Proof: By Assumption 1, we have (1N ⊗ In)TL = 0Nn ⊗ In. One can derive that

(1N ⊗ In)T v̇(t) = (1N ⊗ In)T (Lx(t − ℘) +Le(t − ℘)) = 0Nn.

Thus, (1N ⊗ In)T v(t) = (1N ⊗ In)T v(0) = 0Nn. Let (x∗, v∗) be an equilibrium point of system (3.4), then
the equilibrium point satisfies 0Nn = −Lx∗ − Le(t − ℘) − µ∇ f̃ (x∗) − v∗

0Nn = Lx∗ +Le(t − ℘).
(3.5)

By (3.5), we have v∗ = −µ∇ f̃ (x∗) and then (1N ⊗ In)T∇ f̃ (x∗) = 0Nn, which indicates that x∗ is an
optimal solution of DOP (2.1).

For simplicity, let us consider the case with n = 1. Notably, the case of n > 1 can also be proven
using complicated calculations based on the property of the Kronecker product.

Theorem 1: Suppose that Assumptions 1 and 2 hold. Consider DOP (2.1) with the first-order
MASs (2.2). The event-triggered control protocol is given by (3.4), where the triggering time sequence
for each agent is determined by (3.2). Then, x(t) asymptotically converges to the global minimizer x∗

if there are appropriate positive numbers µ, β ∈ (0, 1
2 (µα1ω − ℓ

2)), κ1 ∈ (0, 1
2λmax(LL) ), α1 > α2 > α3 > α4

such that the following linear matrix inequalities (LMIs) are feasible:

Λ =


α1 0 0
0 α2IN−1 α3IN−1

0 α3IN−1 α4IN−1

 > 0,

Θ = −


IN−1 Θ1 Θ2 0 0
⋆ Θ3

α2
2 IN−1 Θ4 Θ4

⋆ ⋆ α3IN−1 Θ5 Θ5

⋆ ⋆ ⋆ IN−1 0
⋆ ⋆ ⋆ ⋆ Θ6


< 0,

where Θ1 =
µ(α2−α1)

2 IN−1, Θ2 =
µα3

2 IN−1, Θ3 = (ℏ − β)IN−1, Θ4 =
(α2−α3)

2 J, Θ5 =
(α3−α4)

2 J, Θ6 = (β −
β℘ − 2κ1λmax(LT L)

1−2κ1λmax(LT L) )IN−1. In addition, the Zeno-behavior of the event-triggering time sequence can be
excluded.
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Proof: Let x̃ = x − x∗, ṽ = v − v∗ and h = ∇ f̃ (x̃ + x∗) − ∇ f̃ (x∗). The network dynamics can be
rephrased as  ˙̃x(t) = −Lx̃(t − ℘) − Le(t − ℘) − µh(t) − ṽ(t)

˙̃v(t) = Lx̃(t − ℘) + Le(t − ℘).
(3.6)

DOP (2.1) is solved by the control protocol (3.1) if limt→∞ x̃(t) = 0N .
Under Assumption 1, there is an orthogonal matrix Q = (r,R) ∈ RN×N , such that

QT LQ =
[
0

J

]
,

where J ∈ R(N−1)×(N−1) is Jordan matrix and r = 1N√
N

, R ∈ RN×(N−1) satisfies 1T
NR = 0N−1,RT R = IN−1.

Let η = QT x̃, ε = QT ṽ, δ = QT e. Denote η = (η1, η
T
2 )T with η1 ∈ R and η2 ∈ R

N−1. Similarly,
ε = (ε1, ε

T
2 )T and δ = (δ1, δ

T
2 )T . The systems (3.6) can be rewritten as
η̇1(t) = −µrT h(t)
η̇2(t) = −µRT h(t) − Jη2(t − ℘) − ε2(t) − Jδ2(t − ℘)
ε̇1(t) = 0
ε̇2(t) = Jη2(t − ℘) + Jδ2(t − ℘).

(3.7)

Denote Φ = (η1, η
T
2 , ε

T
2 )T and let V = V1 + V2 be the candidate Lyapunov function, where

V1 =
1
2
ΦTΛΦ, (3.8a)

V2 = β

∫ t

t−℘
ηT

2 (z)η2(z)dz, (3.8b)

with β > 0.
The time derivative of (3.8a) along with (3.7) is given by:

V̇1 =α1η1(t)η̇1(t) + α2η
T
2 (t)η̇2(t) + α4ε

T
2 (t)ε̇2(t) + α3ε

T
2 (t)η̇2(t) + α3η

T
2 (t)ε̇2(t)

= − µα1η1(t)rT h(t) − µα2η
T
2 (t)RT h(t) − α2η

T
2 (t)Jη2(t − ℘) − α2η

T
2 (t)ε2(t)

− α2η
T
2 (t)Jδ2(t − ℘) + α4ε

T
2 (t)Jη2(t − ℘) + α4ε

T
2 (t)Jδ2(t − ℘) − µα3ε

T
2 (t)RT h(t)

− α3ε
T
2 (t)Jη2(t − ℘) − α3ε

T
2 (t)ε2(t) − α3ε

T
2 (t)Jδ2(t − ℘) + α3η

T
2 (t)Jη2(t − ℘)

+ α3η
T
2 (t)Jδ2(t − ℘).

(3.9)

By Assumption 2, we have

∥RT h(t)∥2 ≤ ∥h(t)∥2 ≤ ℓ2 x̃T (t)x̃(t), (3.10a)

x̃T (t)h(t) = x̃T (t)
(
∇ f̃ (x̃(t) + x∗) − ∇ f̃ (x∗)

)
≥ ωx̃T (t)x̃(t). (3.10b)

Hence, it follows that

ℓ2 x̃T (t)x̃(t) − (RT h(t))T RT h(t) ≥ 0. (3.11)
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Then, considering the first two terms in V̇1, by (3.10b) and (3.11), one can deduce that

− µα1η1(t)rT h(t) − µα2η
T
2 (t)RT h(t)

= − µα1 x̃T (t)h(t) + µ(α1 − α2)ηT
2 (t)RT h(t)

≤ − µα1ωx̃T (t)x̃(t) + µ(α1 − α2)ηT
2 (t)RT h(t) + ℓ2 x̃T (t)x̃(t) − (RT h(t))T RT h(t)

=(ℓ2 − µα1ω)ηT (t)η(t) + µ(α1 − α2)ηT
2 (t)RT h(t) − (RT h(t))T RT h(t).

(3.12)

Combining (3.12), inequality (3.9) can be further transformed into

V̇1 ≤ (ℓ2 − µα1ω)η1(t)η1(t) + (ℓ2 − µα1ω)ηT
2 (t)η2(t)

+ µ(α1 − α2)ηT
2 (t)RT h(t) − (RT h(t))T RT h(t)

− (α2 − α3)ηT
2 (t)Jη2(t − ℘) − α2η

T
2 (t)ε2(t)

− (α2 − α3)ηT
2 (t)Jδ2(t − ℘) + (α4 − α3)εT

2 (t)Jη2(t − ℘)
+ (α4 − α3)εT

2 (t)Jδ2(t − ℘) − µα3ε
T
2 (t)RT h(t)

− α3ε
T
2 (t)ε2(t).

(3.13)

Taking the time derivation of (3.8b), it yields

V̇2 =βη
T
2 (t)η2(t) − β(1 − ℘)ηT

2 (t − ℘)η2(t − ℘). (3.14)

According to the triggering condition (3.3), one can obtain

∥ei(t)∥2<κ1∥
N∑

j=1

ai j(xi(ti
k) − x j(t

j
k′

))∥2 + κ2e−γ(t−t0),

which means
1
2
∥e(t − ℘)∥2<

κ1
2

x̃T (t − ℘)LT Lx̃(t − ℘) +
κ1
2

ẽT (t − ℘)LT Lẽ(t − ℘)

+ κ1 x̃T (t − ℘)LT Lẽ(t − ℘) +
N
2
κ2e−γ(t−℘−t0)

≤κ1
(
x̃T (t − ℘)LT Lx̃(t − ℘) + ẽT (t − ℘)LT Lẽ(t − ℘)

)
+

N
2
κ2e−γ(t−℘−t0),

then
∥e(t − ℘)∥2<ℵ1∥x̃(t − ℘)∥2 + ℵ2e−γ(t−t0)

=ℵ1η
T (t − ℘)η(t − ℘) + ℵ2e−γ(t−t0),

(3.15)

where ℵ1 =
2κ1λmax(LT L)

1−2κ1λmax(LT L) , ℵ2 =
Nκ2eγ℘

1−2κ1λmax(LT L) .
By (3.13)–(3.15), it follows that

V̇ =V̇1 + V̇2

≤(ℓ2 − µα1ω)η1(t)η1(t) + (ℓ2 − µα1ω)ηT
2 (t)η2(t) + µ(α1 − α2)ηT

2 (t)RT h(t)
− (RT h(t))T RT h(t) − (α2 − α3)ηT

2 (t)Jη2(t − ℘) − α2η
T
2 (t)ε2(t)

− (α2 − α3)ηT
2 (t)Jδ2(t − ℘) + (α4 − α3)εT

2 (t)Jη2(t − ℘) + (α4 − α3)εT
2 (t)Jδ2(t − ℘)

− µα3ε
T
2 (t)RT h(t) − α3ε

T
2 (t)ε2(t) + βηT

2 (t)η2(t)
− β(1 − ℘)ηT

2 (t − ℘)η2(t − ℘) − eT (t − ℘)e(t − ℘) + eT (t − ℘)e(t − ℘)
< − ℏηT (t)η(t) + HTΘH + ℵ2e−γ(t−t0),

(3.16)
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where ℏ = 1
2 (µα1ω − ℓ

2), H = [(RT h(t))T , ηT
2 (t), εT

2 (t), δT
2 (t − ℘), ηT

2 (t − ℘)]T .
According to Eq (3.16), we are able to get that

V(t)<V(t0) + ℵ2

∫ t

t0
e−γ(z−t0)dz. (3.17)

As a result, lim
t→∞

V(t) is bounded. Thus, (3.16) enforces that

V(∞) − V(t0)< − ℏ
∫ ∞

t0
ηT (z)η(z)dz + ℵ2

∫ ∞

t0
e−γ(z−t0)dz

= −ℏ

∫ ∞

t0
x̃T (z)x̃(z)dz +

ℵ2

γ
,

then ∫ ∞

t0
x̃T (z)x̃(z)dz<

1
ℏ

(
V(t0) − V(∞) +

ℵ2

γ

)
. (3.18)

By Lemma 1, x̃(t) asymptotically converges to zero, namely,

lim
t→∞
∥x(t) − x∗∥ = 0.

In the following, it will be proven that there is no Zeno-behavior in the triggering time sequence.
Calculate the upper righthand Dini derivative of ∥ei(t)∥ for any t ∈ [ti

k, t
i
k+1) and one obtains that

D+∥ei(t)∥ ≤ ∥ėi(t)∥ = ∥ẋi(t)∥

≤

∥∥∥∥∥∥∥
N∑

j=1

ai j(xi(ti
k − ℘) − x j(t

j
k′
− ℘))

∥∥∥∥∥∥∥ + µ ∥∇ fi(xi(t))∥ + ∥vi(t)∥

≤ ∥Lx̃(t − ℘) + Le(t − ℘)∥ + µ ∥∇ fi(xi(t))∥ + ∥vi(t)∥.

(3.19)

Invoking (3.15), we can get that

D+∥ei(t)∥ ≤ (1 + ℵ
1
2
1 )∥L∥∥x̃(t − ℘)∥ + ℵ

1
2
2 ∥L∥e

−
γ
2 (t−t0) + µ ∥∇ fi(xi(t))∥ + ∥vi(t)∥. (3.20)

Since ei(ti
k) = 0, one can conclude that

∥ei(t)∥ ≤
∫ t

tik

(1 + ℵ
1
2
1 )∥L∥∥x̃(z − ℘)∥dz +

∫ t

tik

ℵ
1
2
2 ∥L∥e

−
γ
2 (tik−t0)dz

+ µ

∫ t

tik

∥∇ fi(xi(z))∥ dz +
∫ t

tik

∥vi(z)∥ dz.
(3.21)

By (3.17), since V(t) is bounded, one can assume that ∥x̃(t)∥ ≤ ρ1 and ∥vi(t)∥ ≤ ρ2. Moreover,
combined with Assumption 2, one can assume that ∥∇ fi(xi(t))∥ ≤ ρ3, then it holds that

∥ei(ti
k+1)∥ ≤

(
(1 + ℵ

1
2
1 )∥L∥ρ1 + ℵ

1
2
2 ∥L∥e

−
γ
2 (tik−t0) + µρ3 + ρ2

)
(ti

k+1 − ti
k). (3.22)
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The next event will be triggered only if the value of the driving error crosses the zero threshold. It
yields that

∥ei(ti
k+1)∥2 =κ1

∥∥∥∥∥∥∥
N∑

j=1

ai j(xi(ti
k+1) − x j(t

j
k′+1

))

∥∥∥∥∥∥∥
2

+ κ2e−γ(t
i
k+1−t0)

≤

(
(1 + ℵ

1
2
1 )∥L∥ρ1 + ℵ

1
2
2 ∥L∥e

−
γ
2 (tik−t0) + µρ3 + ρ2

)2
(ti

k+1 − ti
k)

2.

(3.23)

If the event-triggering time sequence exhibits Zeno-behavior, we have

0 = lim
k→∞

(ti
k+1 − ti

k) ≥ lim
k→∞

√
κ2e−γ(t

i
k+1−t0)

(1 + ℵ
1
2
1 )∥L∥ρ1 + ℵ

1
2
2 ∥L∥e

−
γ
2 (tik−t0) + µρ3 + ρ2

=

√
κ2e−γ(T−t0)

(1 + ℵ
1
2
1 )∥L∥ρ1 + ℵ

1
2
2 ∥L∥e

−
γ
2 (T−t0) + µρ3 + ρ2

> 0,

(3.24)

which is a contradiction, and, thus, Zeno-behavior does not exhibit in the triggering time sequence.

4. A numerical example

In this section, the effectiveness of the obtained results is illustrated by a simulation example.

Consider the first-order multi-agent systems with six agents, and the topology of communication
graph is depicted in Figure 1.

Figure 1. Interaction topology for the network.
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Figure 2. The trajectory of state.
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Figure 3. The trajectory of control input.

The strongly convex local objective functions are defined as fi(xi) = 0.2(xi−i)2+i for i = 1, ..., 6. For
any initial value xi(0) and the initial value vi(0), it satisfies

∑6
1 vi(0) = 0. Undoubtedly, the assumptions

given in this paper are satisfied. Set κ2 = 0.5, β = 0.006, γ = 0.5, µ = 0.4, ℘ = 0.04 , α1 = 3.5,
α2 = 1.205, α3 = 1.203 and α4 = 1.202. By calculation, one has J = diag{1, 2, 3, 3, 5}, Θ1 = −0.459I5,
Θ2 = 0.2406I5, Θ3 = 0.799I5, Θ4 = 0.001J, Θ5 = 0.0005J, Θ6 = 0.0055I5. The range of parameter κ1
can be determined that κ1 ∈ (0, 0.02). Let κ1 = 0.01. The simulation results are displayed in Figures
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2–7. Figure 2 depicts the state evolution trajectory of each agent. Figure 3 describes the trajectories
of the event-triggered input ui(t). The global objective function converges to an optimal solution 24.5,
which is exhibited in Figure 4. Figure 5 illustrates the event-triggering instants for each agent. The
minimum intervals between successive triggering events for agent 1 through agent 6 are as follows:
0.135, 0.435, 0.38, 0.4, 0.425 and 0.165. It is worth noting that all these intervals are greater than the
sampling step of 0.005s. Therefore, Zeno-behavior does not exhibit in the triggering time sequence.
The gradient sum of fi(x) is depicted in Figure 6. The error norm of agent 1 is presented in Figure 7.

0 5 10 15 20 25
0

5

10

15

20

25

30

Figure 4. The trajectory of objective functions.
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Figure 5. Triggering time instants for each agent.
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Figure 6. The gradient sum of fi(x) .
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Figure 7. Triggering condition of agent one.

5. Conclusions

This article investigated a distributed optimization problem with the first-order MASs. A distributed
event-triggered algorithm that allows the agents of control systems to achieve the optimal trajectory in
the case of time delay was designed. The effectiveness of the algorithm was rigorously proved by using
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the Lyapunov stability theory. The adaptive distributed optimization problem through event-triggered
communication will be discussed in future study.
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