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Abstract: The Hilbert curve is an important method for mapping high-dimensional spatial 
information into one-dimensional spatial information while preserving the locality in the 
high-dimensional space. Entry points of a Hilbert curve can be used for image compression, 
dimensionality reduction, corrupted image detection and many other applications. As far as we know, 
there is no specific algorithms developed for entry points. To address this issue, in this paper we 
present an efficient entry point encoding algorithm (EP-HE) and a corresponding decoding algorithm 
(EP-HD). These two algorithms are efficient by exploiting the m consecutive 0s in the rear part of an 
entry point. We further found that the outputs of these two algorithms are a certain multiple of a certain 
bit of s, where s is the starting state of these m levels. Therefore, the results of these m levels can be 
directly calculated without iteratively encoding and decoding. The experimental results show that 
these two algorithms outperform their counterparts in terms of processing entry points. 
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1. Introduction  

The Hilbert space filling curve (HSFC) is an important method for mapping high-dimensional 
spatial information into one-dimensional spatial information while preserving the locality in the 
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high-dimensional space. As it has the properties of simple, space filling, self-similar and self-avoiding, 
it has been widely used in various fields such as deep learning [1–5], spatial query processing [6,7], 
image processing [3,4,8], location privacy protection [9] and cache locality preserving [10].  

Taking deep learning as an example, Hilbert curves can be used to transform 1D data to 2D, 2D 
data to 1D or to sort 2D data. Hilbert curves are used to transform mammographic images into 1D 
vectors to further detect breast cancer [5]. In paper [1], the authors converted volumetric data into 1D 
vectors, then used convolutional neural networks (CNN) to process these vectors. Differently, 1D 
surface electromyography (sMEG) and DNA data were also transformed into 2D images by Hilbert 
curves for further processing [2,3]. Bappy et al. [4] ordered the image patches using Hilbert curves to 
better preserve their spatial locality and then fed the patches into a Long Short-Term Memory (LSTM) 
to detect the image forgeries. 

The Hilbert curve and Z curve [11] are two typical space filling curves. In this paper, we focus on 
the Hilbert curve, as it has much higher spatial locality [12]. Considering the extensive application of 
Hilbert curves, instead of researching the specific application fields, we focus on 2D HSFC encoding 
and decoding, which is the fundamental basis of these applications. The performances of HSFC 
encoding and decoding has a direct impact on these application. Currently, the encoding and decoding 
efficiencies are not high due to the complex mapping rules of HSFC. It is important to improve the 
encoding and decoding efficiency to boost the efficiencies of HSFC based applications. 

The HSFC encoding and decoding algorithms can be divided into recursive based algorithms and 
iterative based algorithms. Among the recursive based algorithms, the byte-oriented algorithm 
proposed by Butz et al. [13] is a classic one. However, recursive based algorithms require large 
mapping overheads and are generally less efficient. Therefore, recent researches are mostly focusing 
on iterative based. 

Among the iterative based algorithms, Moore et al. [14] transformed the recursive algorithm in [13] 
into a iterative one. The algorithm proposed by Burkardt et al. [15] was recommended by Wikipedia, 
which introduced additional computing to adjust the input data iteratively. These two algorithms are not 
efficient as they require high input data adjustment overheads. Bohm et al. [10] proposed a non-recursive 
Lindenmayer algorithm, which is also transformed from a recursive algorithm. However, this algorithm 
can only work to decode data along the Hilbert curve in a window.  

In recent years, the state-view based algorithms [16,17] have been extensively studied for their 
simplicity, intuitiveness and efficiency in nature. Li et al. [16] proposed a state transfer matrix based 
iterative encoding algorithm with complexity ( )O k , where k is the total number of levels. Encoding and 
decoding algorithms on skew-distributed data researched in [18]. Existing algorithms need separate state 
views for encoding and decoding. To decrease space overheads, a universal state based algorithm was 
proposed in [17], which used the same state-view for both encoding and decoding by utilizing quadrant 
mapping before encoding and inverse mapping after decoding. Encoding and decoding algorithms on 
three-dimensional or high-dimensional Hilbert curves were researched in [19–21]. 

A Hilbert curve divides the entire Hilbert space into hierarchically organized subspaces, as we 
will discuss in Section 2. The first point of a subspace where the curve enters into is called an entry 
point (EP) of that subspace. An EP can be viewed as a representing point of the subspace it belongs to; 
thus, the whole subspace can be compressed into a single point. Consequently, the entire Hilbert space 
can be compressed into a series of EPs, substantially decreasing the scale of original data. In this sense, 
EPs can be used to compress images, reduce the dimensionality of images, or potentially help 
researchers detect corrupted or forged images more efficiently. 
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Even though EPs are useful in many real scenarios, surprisingly, as far as we know, none of the 
aforementioned works have researched them before, let alone the encoding and decoding of EPs. To 
address this issue, we are devoted to improving the encoding and decoding efficiencies of EPs in 
Hilbert space. One important characteristic of EP is that the rear m levels of an EP are consecutive 0s. 
Given this characteristic, it is inefficient to follow traditional level-wise encoding or decoding 
algorithms, e.g., Li’s [16]. More efficient algorithms need to be specifically developed for EPs. 

By exploiting this characteristic of EPs, in this paper we found the computed outputs (either 
Hilbert codes for encoding or coordinates for decoding) are a certain multiple of a certain bit of s, 
where s is the starting state of these m levels. Therefore, the output of these m levels can be directly 
calculated without iteratively encoding and decoding. Based on these findings, an EP Hilbert encoding 
algorithm (EP-HE) and the corresponding EP Hilbert decoding (EP-HD) algorithm are proposed by 
exploiting efficient bit manipulations. Experiments show that the EP-HE and EP-HD algorithms 
outperform existing algorithms. 

2. HSFC  

HSFC, first proposed by the German mathematician Hilbert, is a continuous non-differentiable 
fractal space-filling curve that can linearly run through each discrete cell of a high-dimensional 
(two-dimensional and above) space, thus effectively mapping the high-dimensional spatial 
information into one-dimensional and better preserving the localities of the high-dimensional space. 

An HSFC passes through the center of each subspace once and only once without interruption 
and self-intersection. The sequence number for a subspace that the HSFC passes through is the 
Hilbert code of that subspace. A HSFC of level 1 (HC1) divides the entire space into four small 
subspaces, namely, the lower left, upper left, lower right and upper right. These four subspaces 
correspond to quadrant I, quadrant II, quadrant III, and quadrant IV, respectively. By placing a HC1 
in each quadrant and flipping it 90° to the left for quadrant I and 90° to the right for quadrant III, a 
HC2 can be obtained. Following this way, a HCk can be easily derived. The HC1, HC2 and HC3 are 
shown in Figure 1(a)–(c), respectively. 

  
(a) HC1                  (b) HC2                  (c) HC3 

Figure 1. The Hilbert curves for HC1, HC2 and HC3. 

For HC1, there are four different opening directions as shown in Figure 2, corresponding to the 
four basic states 0 (opening downward), 1 (opening leftward), 2 (opening upward), and 3 (opening 
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rightward), respectively. The self-similarity and self-replication properties of HSFC determine that 
any level of HSFC can be derived iteratively or recursively from these four basic states. For ease of 
description, we assume the state of the first level of a HSCF is always 0, which means it is opening 
downward. 

0(00)

1(01)

3(10)

2(11)

0(00)

3(01)

1(10)

2(11)

1(00)

0(01) 3(11)

2(10) 2(00)

1(01) 0(11)

3(10)

  
(a) state 0          (b) state 1          (c) state 2           (d) state 3 

Figure 2. The four basic states. 

From the discussion above, a Hilbert curve divides the entire Hilbert space into hierarchically 

organized subspaces, with the i-th (1 i k≤ ≤ ) level containing 4i  subspaces. For a space Ω , an EP is 

essentially the first subspace of Ω  that a Hilbert curve enters into. There are 14i−  EPs in the i-th 

level, so there are 0 1 14 4 ... 4k−+ + + (4 1) / 3k= −  EPs for all the levels in total. In this paper, we call an 

EP in the i-th level an i-EP. For example, there are one 1-EP (in blue square), four 2-EPs (in red 
triangle) and 16 3-EPs (in black dot) in Figure 1(c). Note that an i-EP is also an (i+1)-EP, 
(i+2)-EP,…or (k-1)-EP, so we use the smallest i for an EP when there is no ambiguity. 

One important characteristic of EP lies in that the rear m = k-i+1 levels of an i-EP are consecutive 
zeros for a HCk. For example, the coordinate of the third 2-EP P in HC3 is (1002, 1002) with zeros in the 
rear two levels. The Hilbert code of this point is 1000002 (the subscript two means binary form), which 
also has two consecutive level of zeros in the rear part.  

Given this characteristic, it is inefficient to follow traditional level-wise encoding or decoding 
algorithms. More efficient algorithms need to be specifically developed for encoding or decoding EPs. 

For an EP P with the rear m levels consecutive zeros, the coordinate of P is denoted as PC = 

(X,Y), where X = (x1x2…xk-mxk-m+1…xk)2, Y = (y1y2…yk-myk-m+1yk-m+2…yk)2 are its coordinate 
components with Xm = (xk-m+1…xk)2 = 0 and Ym = (yk-m+1yk-m+2…yk)2 = 0. Similarly, the Hilbert code of 

P is denoted as PH  = (h1…h2k-2m h2k-2m+1…h2k)2 with Hm = (h2k-2m+1…h2k)2 = 0. Here, xi corresponds 

to the i-th level of X and h2i-1h2i corresponds to the i-th level of the Hilbert code of H (Hi for short). 

3. HSFC encoding and decoding 

3.1. The encoding state-views 

In the encoding stage, according to Figure 2 and the rotation and flipping rules of Hilbert curve, 
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we design two mapping state-views, namely, coordinate-Hilbert mapping (CHM) and 
coordinate-state mapping (CSM), as shown in Tables 1 and 2, respectively. CHM is designed as a 
three-dimensional array and is responsible for mapping the coordinates of the i-th level (xiyi) to Hi 
with the help of the i-th state si, e.g., Hi = CHM[si][xi][yi] . CSM is also a three-dimensional array and 
is responsible for mapping the coordinates of the i-th level (xiyi) to the corresponding state of the 
(i+1)-th level si+1, e.g., si+1 = CSM[si][xi][yi].  

Table 1. CHM. 

State\Coordinate 00 01 10 11 
0 00 01 11 10 
1 00 11 01 10 
2 10 11 01 00 
3 10 01 11 00 

Table 2. CSM 

State\Coordinate 00 01 10 11 
0 00 01 11 10 
1 00 11 01 10 
2 10 11 01 00 
3 10 01 11 00 

3.2. EP-HE 

As mentioned before, this paper focuses on EPs of which the rear m levels are consecutive 0s. 
The core of EP-HE algorithm is based on Theorem 1, which is described as follows. 

Theorem 1: Given Xm = xk-m+1xk-m+2…xk =0, Ym = yk-m+1yk-m+2…yk = 0 and A = 2*(22m-1)/3, the 
Hms for sk-m+1 = 0, 1, 2 and 3 are 0, 0, A and A, respectively. 

Proof: We prove it in the following four cases. 
For sk-m+1 = 0, as xk-m+1y k-m+1 = 002, we have Hk-m+1 = 002 and sk-m+2 = 1 by retrieving CHM and 

CSM. As xk-myk-m = 002, we have Hk-m+2 = 002 and sk-m+3 = 0. The sk-m+i cycles between 0 and 1 and 
Hk-m+i are always 002 for 1≤ i≤m. As a result, Hm =0 holds. 

For sk-m+1 = 1, the sk-m+i cycles between 1 and 0 and Hk-m+i = 002 always holds for 1 ≤ i ≤ m. As a 
result, Hm = 0 holds. 

For sk-m+1 = 2, the sk-m+i cycles between 2 and 3 and Hk-m+i  = 102 always holds for 1≤ i ≤m in a 
similar way. As a result, Hm = A = (10…1010)2= 2*(22m-1)/3 holds. 

For sk-m+1 = 3, the sk-m+i cycles between 3 and 2 and Hk-m+i = 102 always holds for 1 ≤ i ≤ m in a 
similar way. As a result, Hm = A = (10…1010)2 = 2*(22m-1)/3 holds. 

Thus, Theorem 1 holds. 
From Theorem 1, when Xm and Ym are all 0s, Hm only has two possible values and can be 

computed immediately. Therefore, level-wise iterative encoding for these m levels can be avoided, 
thus improving the efficiencies. 

To boost the efficiencies of EP-HE, we introduce the following two optimizations, each of 
which works on high efficient bit manipulations. This makes our algorithms execute really fast in 
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real scenarios. 
1) We notice that there will introduce excessive selection costs if we use if-else statements to 

determine the value of rear m levels. Note that Hm depends on the value of sk-m+1 , specifically the left 
bit of the two bits of sk-m+1. So, (sk-m+1>>1)*A can be used to determine Hm, so excessive if-else 
statements can be avoided. Here, “>>” means right logical shift. 

2) To quickly detect the number of 0s in the rear part of X and Y, i.e., m, we introduce the 
efficient last bit detection (LBD) algorithm, which works on X &(-X) to get the position of the last 
set bit in X. To avoid executing LBD twice for both X and Y, we execute it for X|Y instead; thus, the 
efficiency can be further improved. 

Based on the aforementioned description, the implemented EP-HE algorithm is presented in 
Algorithm 1. 

Algorithm 1. EP-HE. 

Input: X: Horizontal coordinate component 
 Y: Vertical coordinate component 
k: the number of levels 

Output: H: Hilbert code 
1. H = 0, s = 0 
2. m = LBD(X|Y) 
3. for i = 1 to k-m 
4.     H = H << 2 | CHM[s][xi][yi] 
5.     s = CSM[s][xi][yi] 
6. A = ((1<<2m)-1)/3*2 
7. H = (H<<2m) | (s>>1)*A 

3.3. The decoding state-views 

In the decoding stage, two decoding mapping state-views, Hilbert-coordinate mapping (HCM) 
and Hilbert-state mapping (HSM), are created as shown in Tables 3 and 4, respectively. HCM is 
designed as a two-dimensional array and is responsible for mapping Hi to xiyi with the help of si, e.g., 
xiyi = HCM[si][Hi] . HSM is also a two-dimensional array and is responsible for mapping Hi to si+1, 
e.g., si+1 = HSM[si][Hi].  

Table 3. HCM. 

State\Coordinate 00 01 10 11 
0 00 01 11 10 
1 00 10 11 01 
2 11 10 00 01 
3 11 01 00 10 
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Table 4. HSM. 

State\Coordinate 00 01 10 11 
0 1 0 0 3 
1 0 1 1 2 
2 3 2 2 1 
3 2 3 3 0 

3.4. EP-HD 

Similar to encoding, the core of EP-HD algorithm is based on Theorem 2, which is described as 
follows. 

Theorem 2: If Hm = (h2k-2m+1…h2k)2 = 0 and B = 2m-1, then Xm = 0, 0, B, B and Ym = 0, 0, B, B 
for sk-m+1 = 0, 1, 2 and 3, respectively. 

Proof: We prove it in the following four cases. 
For sk-m+1 = 0, as h2k-2m+1h2k-2m+2 = 002, we have xk-m+1 = 0, yk-m+1 = 0 and sk-m+2 = 1 by retrieving 

HCM and HSM. As h2k-2m+3h2k-2m+4 = 002, we have xk-m+2 = 0, xk-m+2 = 0 and sk-m+3 = 0. The sk-m+i cycles 
between 0 and 1, and Xk-m+i  = 0 and Yk-m+i  = 0 always hold. As a result, Xm = 0 and Ym = 0 hold. 

For sk-m+1 = 1, the sk-m+i cycles between 1 and 0, and Xk-m+i  = 0 and Yk-m+i  = 0 always hold for 1 
≤ i ≤ m. As a result, Xm = Ym = 0. 

For sk-m+1 = 2, the sk-m+i cycles between 2 and 3, and Xk-m+i = 1 and Yk-m+i = 1 always hold for 1 ≤ 
i ≤ m. As a result, Xm = Ym =B = (1…11)2 = 2m-1.  

For sk-m+1 = 3, the sk-m+i cycles between 3 and 2, and Xk-m+i = 1and Yk-m+i = 1 always hold for 1 ≤ i 
≤ m. As a result, Xm = Ym = B = (1…11)2 = 2m-1.  
Thus, Theorem 2 holds. 

From Theorem 2 we can compute Xm and Ym directly, and iterative decoding for these m levels 
can be avoided. As in encoding, EP-HD uses (sk-m+1>>1)*B to compute Xm and Ym to avoid the costs 
of excessive if-else statements. The LBD algorithm can also be used to get the position of the last set 
bit in H. The implemented EP-HD algorithm is shown in Algorithm 2. 

Algorithm 2. EP-HD. 

Input: H: Hilbert code 
k: the number of levels 

Output: X: Horizontal coordinate component 
 Y: Vertical coordinate component 

1. X = 0, Y = 0, s = 0 
2. m = LBD(H) 
3. for i = 1 to k-m 
4.     X = (X<<1) | HCM[s][Hi]>>1 
5.    Y = (Y<<1) | HCM[s][Hi] &1 
6.    s = HSM[s][Hi] 
7. B = (1<<m)-1 
8. X = (X<<m) | B*(s>>1) 
9. Y = (Y<<m) | B*(s>>1) 
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3.5. Complexity analyses 

Compared with Li’s [16], which needs to iteratively encode all the levels and has a complexity 
of O(k), EP-HE and EP-HD only need to encode or decode O(k-m) levels; thus, their time 
complexity O(k-m). In terms of space complexity, we need the storage to store the four state-views: 
CHM, CSM, HCM and SCM. In this paper, we use char to store the values in these state-views, so 
each state-view needs 16 bytes, leading to 64 bytes in total for all the state-views. 

4. Experimental results 

4.1. Environment 

Hardware platform: CPU: Intel® Core ™ i5-6300HQ@2.30GHz, RAM: 8GB. Software 
environment: windows 11 64-bit, Microsoft Visual Studio C++ 2019. 

4.2. Datasets 

In this paper, we use both synthetic datasets and real datasets. 
For the synthetic datasets, considering EPs are essentially skewed data skewed with consecutive 

0s in the rear m levels, we generate skewed datasets by setting three parameters m, β, k. Here, k 
denotes the number of total levels, m denotes the input data with the rear m levels of all 0s, and β 
denotes the percentage of data with the rear m levels of all 0s to the total data in the data set. For 
example, k = 16, m = 4 and β = 50% represents each input data at 16 levels and 50% of the input data 
with the rear four levels all 0. For each parameter combination, we generate 10 million skewed 
coordinates as our default dataset. 

For real dataset, we use T-Drive trajectory [22] dataset collected by Microsoft. This dataset 
contains one-week trajectories of 10,357 taxis in Beijing. We choose a zone by setting (116.397221 E, 
39.90960 N) as the center and enlarging 0.2 ◦ on four sides, thus selecting 13,987,446 coordinates. 
For each coordinate component with float value, we process it into arbitrary n level integers by 
iteratively detecting its falls into what half part. For example, if a coordinate component X falls into 
the right half part of the zone, we set the first level 1, then execute the same operations on the right 
half part untill n is reached. 

Note that we directly use the datasets above for encoding algorithms and then use the encoded 
data for decoding algorithms. 

To illustrate the effectiveness of our algorithms, we compare EP with the following five algorithms: 
first zeros free (FZF) [18], Burkardt [15], Moore [14], uniState [17] and Li [16]. For each algorithm, we 
add a suffix “-HE” and a suffix “-HD” for the encoding and decoding algorithms, respectively. 

4.3. Experiments on synthetic datasets 

4.3.1 Encoding 

We use the following settings to evaluate all the encoding algorithms.  
1) We use the datasets generated with setting k = 32, β = 50% and vary m from 4 to 24. The 



20676 

Mathematical Biosciences and Engineering  Volume 20, Issue 12, 20668–20682. 

effects of m on encoding are shown in Figure 3.  
As seen in Figure 3, EP-HE outperforms the other algorithms when k = 32, β = 50% and the 

encoding time of EP-HE gradually decreases with the increase of m, whereas m has little impact on 
Li-HE. This is because as m increases, the number of levels need to be iteratively encoded for the 
EP-HE decreases. When m = 24, EP-HE runs 10.38% faster than Li’s and 3.10x faster than 
Burkardt’s. In total, except UniState-HE, which needs more time for quadrant mapping and inverse 
mapping, state-view based algorithms outperform non-state-view based ones. The results show the 
advantages of state-view based algorithms.  

 

Figure 3. The effects of m on encoding. 

2) We use the datasets generated with setting k = 32, m = 12 and vary β from 20 to 100%. The 
effects of β on encoding are shown in Figure 4.  

As can be seen from Figure 4, EP-HE outperforms the other algorithms. When k = 32, m = 12, the 
encoding time for EP-HE gradually decreases with the increase of β. This shows that the more input 
data with rear m levels equals 0, the higher the efficiency will be. The encoding times for EP-HE and 
Li’s are 3.206 and 3.729 s, respectively when β = 100%. In this case, EP-HE runs 16.31% faster than 
Li’s and 3.26x faster than Burkardt’s. 

 

Figure 4. The effects of β on encoding. 
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3) We use the datasets generated with setting m = 12, β = 50% and vary k from 16 to 32. The 
effects of k on encoding are shown in Figure 5.  

As can be seen from Figure 5, the levels needed to be iterative encoded for all the algorithms 
increase with the increase of k; thus, the overall encoding times for all algorithms tend to increase. 
EP-HE outperforms the other algorithms and the encoding time of EP-HE grows at a relatively lower 
rate than the other algorithms. For example, the encoding times for EP-HE are 1.829, 2.601 and 
3.488 s for k = 16, 24 and 32, respectively, whereas the corresponding encoding times of Li’s are 
2.203, 2.694 and 3.814 s, respectively. 

  

Figure 5. The effects of k on encoding. 

4.3.2 Decoding 

Similarly, we use the following settings to evaluate all the encoding algorithms. 
1) We use the datasets generated with setting k = 32, β = 50% and vary m from 4 to 24. The 

effects of m on decoding are shown in Figure 6.  
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Figure 6. The effects of m on decoding. 
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As seen in Figure 6, the number of levels needed to be iteratively decoded for EP-HD decrease 
with the increase of m; thus, the decoding time of EP-HD gradually decreases as well. In this 
scenario, EP-HD performs the best among all the decoding algorithms. When m = 24, EP-HD only 
needs 3.786 s to decode all 10 million Hilbert codes and runs 8.24% faster than Li’s and 3.76x faster 
than Burkardt’s.  

2) We use the datasets generated with setting k = 32, m = 12 and vary β from 20 to 100%. The 
effects of β on decoding are shown in Figure 7.  

As seen in Figure 7, EP-HD outperforms the other algorithms and the decoding time of EP-HD 
gradually decreases with the increase of β. This is because fewer levels need to be iteratively 
decoded as β increases. When β = 100%, EP-HD only needs 3.836 s decoding time and runs 16.12% 
faster than Li’s and 3.73x faster than Burkardt’s.  

 

Figure 7. The effects of β on decoding.  

3) We use the datasets generated with setting m = 12, β = 50% and vary k from 16 to 32. The 
effects of k on decoding are shown in Figure 8. 

 

Figure 8. The effect of k on decoding. 
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As seen in Figure 8, the decoding time of all algorithms tends to increase with the increase of k. 
As k increases, the levels to be decoded increase as well, leading to a larger decoding time. Similarly, 
EP-HD runs faster than the others. 

4.4. Experiments on real dataset 

To illustrate the performance of our algorithms on real dataset, we carry out experiments on 
T-Drive. We process each data to n = 4, 8, 16, 24, 32 levels separately and then fill 0s in its rear until 
the total number of levels k reaches 32, leading to m = 0, 8, 16, 24, 32, respectively. The encoding 
and decoding results are shown in Figures 9 and 10, respectively. 
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Figure 9. The effect of m on encoding. 

 

Figure 10. The effect of m on decoding. 
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significant improvement compared to the other algorithms. When m = 28, EP-HP needs 1.183 s to 
encode all the coordinates, whereas Li-HE needs 3.516 s. EP-HP is 1.97x faster Li-HE. EP-HP 
performs better on T-Drive than synthetic datasets, which lies in that we encode the coordinates 
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along the trajectory; thus, the consecutive coordinates are very close and have a large number of 
common levels. From Figure 10, we can draw similar conclusions. However, the decoding 
improvements are not as high as the encoding ones, which lies in that we need to execute LBD on 64 
bit Hilbert codes, compared with LBD on 32b coordinate components.  

5. Conclusions 

In this paper, by exploiting efficient state-views and bit manipulations, we presented an efficient 
entry point encoding algorithm EP-HE and decoding algorithm EP-HD, which can avoid encoding or 
decoding the rear m levels with consecutive 0s, thus, significantly improving the encoding and 
decoding efficiency of entry points. Experimental results show the superiorities of EP-HE and EP-HD. 
Next, we plan to apply our algorithms on deep learning based image processing tasks [23–25] and 
spatial or texture processing tasks [26,27]. 
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