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Abstract: The association between adhesion function and papillary thyroid carcinoma (PTC) is 
increasingly recognized; however, the precise role of adhesion function in the pathogenesis and 
prognosis of PTC remains unclear. In this study, we employed the robust rank aggregation algorithm 
to identify 64 stable adhesion-related differentially expressed genes (ARDGs). Subsequently, using 
univariate Cox regression analysis, we identified 16 prognostic ARDGs. To construct PTC survival 
risk scoring models, we employed Lasso Cox and multivariate + stepwise Cox regression methods. 
Comparative analysis of these models revealed that the Lasso Cox regression model (LPSRSM) 
displayed superior performance. Further analyses identified age and LPSRSM as independent 
prognostic factors for PTC. Notably, patients classified as low-risk by LPSRSM exhibited significantly 
better prognosis, as demonstrated by Kaplan-Meier survival analyses. Additionally, we investigated 
the potential impact of adhesion feature on energy metabolism and inflammatory responses. 
Furthermore, leveraging the CMAP database, we screened 10 drugs that may improve prognosis. 
Finally, using Lasso regression analysis, we identified four genes for a diagnostic model of lymph node 
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metastasis and three genes for a diagnostic model of tumor. These gene models hold promise for 
prognosis and disease diagnosis in PTC. 

Keywords: adhesion; bioinformatics; immune cell infiltration; machine learning; papillary thyroid 
carcinoma 

 

Abbreviations: ARDGs: adhesion-related differential expression genes; ARGs: adhesion-related 
genes; AUC: area under the curve; BP: biological processes; CC: cellular components; DEGs: 
differential expression genes; GO: gene ontology; GSVA: gene set variation analysis; HR: hazard ratio; 
KEGG: kyoto encyclopedia of genes and genomes; KM: kaplan-meier; LPSRSM: survival risk scoring 
model based on Lasso Cox regression analysis; MF: molecular functions; MPSRSM: survival risk 
scoring model based on multivariate Cox regression analysis; OS: overall survival; PTC: papillary 
thyroid carcinoma; ROC: receiver operating characteristic curve; RRA: robust rank aggregation; 
ssGSEA: single sample gene set enrichment analysis; TCGA: the Cancer Genome Atlas. 

1. Introduction  

Thyroid cancer is a common endocrine tumor, with papillary thyroid carcinoma (PTC) being the 
most prevalent pathological type originating from the thyroid follicular epithelial cells, accounting for 
approximately 80 to 90% of all thyroid cancers [1]. Despite the well-differentiated nature and favorable 
prognosis of PTC tissue, 15 to 50% of PTC patients still experience neck lymph node metastasis, 
leading to a shortened survival period [2–5]. Lymph node metastasis is an important indicator of PTC 
severity and a risk factor for PTC recurrence and survival risk. It is the most common way for tumor 
metastasis, involving complex and diverse molecular mechanisms that entail interactions among 
multiple molecules and pathways. Increasing evidence suggests that adhesion molecules play a crucial 
role in tumor formation, basement membrane invasion, regional lymph node metastasis, and distant 
organ metastasis in PTC [6,7]. Previous studies have reported the involvement of adhesion molecules 
in PTC lymph node metastasis and extrathyroidal invasion, which profoundly alters the balance 
between adhesion molecules and the basement membrane [8]. However, the potential pathogenic 
mechanisms of adhesion molecules in PTC are still unclear, and further research is needed to explore 
adhesion-related potential diagnostic biomarkers and therapeutic targets. 

Considering the significant role of lymph node metastasis in PTC patients’ prognoses, it is crucial 
to pre-assess lymph node metastasis before PTC treatment begins. Ultrasound examination is the 
optimal imaging tool for evaluating thyroid nodules and detecting abnormal cervical lymph nodes, 
although some small metastatic lesions may go undetected through imaging examinations. Therefore, 
there is an urgent need for novel and sensitive diagnostic methods to identify PTC and assess the 
presence of lymph node metastasis. Stratifying PTC patients based on lymph node metastasis status is 
conducive to managing and monitoring disease progression and prognosis. 

Tumor development is mediated by genetic mutations; thus, tumors are referred to as genetic 
diseases. The complex and intertwined pathological mechanisms of tumors are the result of the 
interaction between gene mutations and the environment. Based on this, genomic information has been 
widely used in the precision treatment of cancer. In recent years, the rapid development of high-
throughput sequencing technologies has enriched multiple omics databases, such as genomics and 
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proteomics. Data mining has ignited enthusiasm in cancer research, prompting researchers to 
effectively and objectively analyze data by utilizing techniques like bioinformatics and computer 
science to extract relevant field-specific data. Machine learning is an emerging field derived from 
bioinformatics and computer science that possesses the ability to handle large, complex, and 
heterogeneous data simultaneously [9,10]. However, currently, there is a lack of machine learning 
methods in the prognosis and survival research for identifying adhesion molecule-mediated lymph 
node metastasis in PTC. In this study, we will employ various machine learning methods combined 
with adhesion-related gene features and identification methods for gene expression features to 
establish classifiers for disease diagnosis, lymph node metastasis, and survival prognosis. Additionally, 
we will further explore the role of novel biomarkers in the pathogenesis of PTC and search for potential 
candidate therapeutic intervention factors. 

2. Materials and methods 

2.1. Study design and data resources 

The design of this study is shown in Figure 1. Transcriptome sequencing data (495 PTC samples 
and 59 adjacent cancer samples) and clinical pathology data were downloaded from The Cancer 
Genome Atlas (TCGA) public database (data release version: v36.0). Inclusion criteria were based on 
the pathology type “thyroid papillary carcinoma”. Samples lacking survival time information were 
excluded. The TCGA transcriptome data were standardized and normalized using the 
normalizeQuantiles and Log2 transformation functions in the “limma” R package [11]. Additionally, 
series matrix files for GSE29265 (20 PTC samples and 20 normal thyroid samples; version: Jun 01, 2012) 
[unpublished], GSE33630 (49 PTC samples and 45 normal thyroid samples; version: Nov 09, 2012) [12], 
and GSE60542 (33 PTC samples and 30 normal thyroid samples; version: Sep 01, 2015) [13] were 
retrieved from the Gene Expression Omnibus (GEO) database using the search terms “papillary thyroid 
carcinoma” and “GPL570”. Datasets with sample sizes less than 40 were excluded. A total of 1547 
adhesion-related genes (ARGs) were collected and integrated from the Molecular Signatures Database 
(MSigDB, data version: v2023.1) (Supplementary Table S1) [14–18]. In this study, the robust rank 
aggregation (RRA) algorithm was employed to integrate adhesion-related differentially expressed 
genes (ARDGs) that exhibited stable expression across the datasets [19,20]. Prognostic ARDGs were 
identified through univariate Cox regression analysis, and PTC survival risk scoring models were 
constructed using Lasso Cox regression analysis (LPSRSM) and multivariate Cox regression analysis 
(MPSRSM), respectively. The optimal model, referred to as the LPSRSM, was determined by 
comparing the predictive abilities of the two models [21]. Subsequently, integration of risk scores with 
clinicopathologic features and identification of independent risk prognostic factors were performed 
using multivariate Cox regression analysis. Gene set variation analysis (GSVA) and the CIBERSORT 
algorithm were used to investigate variations in tumor mechanisms [22–25]. In addition, deep learning 
algorithms were utilized to simulate gene expression profiles based on large perturbation datasets to 
predict drugs that demonstrate efficacy in disease prognosis [26–28]. 
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Figure 1. The workflow diagram of the study. 



20603 

Mathematical Biosciences and Engineering  Volume 20, Issue 12, 20599–20623. 

2.2. Acquisition of ARDGs 

Differential expression analysis was conducted using the “limma” R package with the criteria 
|logFC| > 1 and adj.P < 0.05 in the TCGA cohort, GSE29265, GSE33630, and GSE60542 datasets. 
Afterwards, the “RobustRankAggreg” R package [29] was employed to perform the RRA algorithm 
to identify robust differentially expressed genes (DEGs) in PTC. This algorithm ranks the DEGs by 
logFC in each dataset and integrates them into a comprehensive ranking list, considering a threshold 
of Score < 0.05. Finally, the intersection of robust DEGs and ARGs was determined using the 
“ggVennDiagram” R package [30] to obtain ARDGs. 

2.3. Functional enrichment analysis  

Metascape website (https://metascape.org/) [31] integrates over 40 bioinformatics databases, 
allowing for pathway enrichment, biological process annotation, gene-related protein network analysis, 
and drug analysis. In this study, we utilized Metascape website to enrich gene sets and annotate Gene 
Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG). GO terms consist of 
molecular function (MF), biological process (BP), and cellular component (CC). Analysis was 
performed with a threshold of P < 0.01, min overlap = 3, and min enrichment = 1.5, and enriched 
entries were grouped into clusters based on their similarity in hierarchical relationships. Hallmark gene 
sets (h.all.v2023.1.Hs.symbols.gmt, version: v2023.1) were downloaded from MSigDB, and 
unsupervised classification of biological states or processes activities was performed using the GSVA 
algorithm [32] to observe more stable and intuitive changes in biological activity. Additionally, the 
GSVA algorithm was employed to convert the collected adhesion data into feature scores.  

2.4. Calculation of tumor immune landscape 

Quantification of tumor-infiltrating immune cells is helpful in elucidating the multifaceted role 
of the immune system in human cancer and its involvement in tumor escape mechanisms and response 
to treatment. We employed the “estimate” R package [33] to score stromal and immune gene sets in 
each sample of the tumor expression matrix, estimating the stromal and immune scores of the tumor 
samples, which represent the presence of stromal and immune cells. This process is based on the single 
sample Gene Set Enrichment Analysis (ssGSEA) algorithm. We also utilized the “CIBERSORT” R 
package [34] to quantify tumor-infiltrating immune cells from tumor RNA sequencing data. The basic 
principle of this approach is to deconvolve the expression matrix of human immune cell subtypes based 
on the linear support vector regression, and we performed 100 permutation tests in this process. 

2.5. Constructing prognostic survival models 

Survival analysis is the process of analyzing and inferring the life expectancy of a sample based 
on data. In this paper, we constructed the survival risk scoring models using Lasso Cox regression 
analysis and multivariable Cox regression analysis. First, we used univariate Cox regression analysis 
to screen for prognostic ARDGs significantly associated with overall survival (OS), using a 
significance level of P < 0.05 and hazard ratio (HR) ≠ 1 as criteria. Next, we built two survival risk 
scoring models in the TCGA tumor cohort. The first model utilized the Lasso regression algorithm for 
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L1 regularization shrinkage penalty, penalizing the coefficients of variables with minimal contributions 
to survival and compressing the coefficients of non-important variables to zero, thereby reducing the 
number of covariates in the Cox regression. This process involved the use of the “glmnet” [35], 
“survival”, and “survminer” R packages, along with 10-fold cross-validation. The second model 
employed multivariable Cox regression analysis, which is a survival analysis method to study the 
influence of multiple factors on survival time. We then used the step function to iteratively construct 
the optimal model, setting the direction to “both”. This process utilized the “MASS”, “survival”, and 
“survminer” R packages. By linearly combining the regression coefficients and expression levels of 
each potential prognostic gene, we calculated the risk score: Risk Score = ExprGene1 × Coef1 + 
ExprGene2 × Coef2 + ...+ ExprGeneN × CoefN, where Coef represents the regression coefficient of 
the gene and Expr represents the gene expression value. To evaluate the predictive ability of the model, 
we used the “timeROC” R package [36] to compute the receiver operating characteristic (ROC) curves 
for 1-, 2-, 3-, 5-, and 10-year survival, and assessed the model’s performance using the area under 
curve (AUC). Based on the median of the survival risk scores, we categorized the tumor patients into 
high- and low-risk groups and evaluated the relationship between survival probability and OS using 
Kaplan-Meier (KM) survival curves and the log-rank test to compute the P. The optimal survival risk 
scoring model was determined based on the KM survival curves. Finally, we performed univariate Cox 
regression analysis and multivariable Cox regression analysis to determine independent prognostic 
factors, analyzing the relationship between the risk score, the clinical-pathological characteristics (total 
stage, N stage, M stage, T stage, sex, and age) of the TCGA tumor cohort and OS. 

2.6. Screening for small molecule drugs to improve tumor prognosis 

The CMAP database (https://clue.io) is a critical information resource that enables the 
investigation of the potential impact of existing drugs on diseases. We uploaded the top 100 DEGs 
upregulated genes from the high-risk group into the CMAP database, with the aim of identifying possible 
small-molecule drugs. Lead compounds with unclear or uncertain functional significance were excluded 
from consideration. Statistical significance was determined based on a P cutoff of < 0.05. The study 
screened for correlations between genes and drugs using an enrichment score that ranged from −1 to 
+1. Compounds with an enrichment score below zero indicated potential antagonistic effects in the 
high-risk population. Such compounds could have the potential to serve as therapy candidates by 
mitigating risk. 

2.7. Modeling for the prediction of lymphatic metastasis and the diagnosis of disease 

We constructed diagnostic models to predict tumors and lymph node metastasis using feature 
genes that affect prognosis. Both models were built based on Lasso and subjected to 10-fold cross-
validation to select the optimal lambda value, followed by linear fitting. By combining the regression 
coefficients and expression levels of each potential important gene using linear regression, we created 
an index scoring model: Index = ExprGene1 * Coef1 + ExprGene2 * Coef2 + ...+ ExprGeneN * CoefN, 
where Coef represents the gene regression coefficient, and Expr represents gene expression value. In 
the lymph node metastasis diagnostic model, we selected high-risk samples as the training set and three 
internal validation sets. We used the “caret” R package [37], specifically the createDataPartition 
function, to randomly divide the TCGA tumor samples into validation set 1 and validation set 2 at a 
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1:1 ratio. We then used the overall TCGA tumor samples as validation set 3. In the disease diagnostic 
model, we selected the TCGA cohort as the training set and GSE29265, GSE33630, and GSE60542 as 
external test sets. Finally, we evaluated the predictive ability by calculating the AUC value. 

2.8. The Human Protein Atlas database 

The Human Protein Atlas (HPA) database is a comprehensive resource that provides information 
on the expression patterns and localization of proteins in human tissues and cells. It is designed to map 
all proteins encoded by the human genome, providing detailed information about their functions, 
interactions, and involvement in disease. The database contains information on thousands of proteins, 
their expression levels in different tissues, and subcellular localization. It also provides information 
about the genes encoding these proteins, their regulatory elements, and their association with disease. 
The HPA database is organized into three sections: Cell, Tissue, and Pathology, showing how proteins 
are expressed in cells, normal tissues, and cancerous tissues. The Pathology section provides 
information on the pathology of 17 human cancers, including mRNA and protein expression data, as 
well as millions of in-house generated immunohistochemically stained tissue images. We use this 
database to look at adhesion feature gene expression in PTC tumor tissues [38]. 

2.9. Statistical analysis 

We used R software (version 4.2.3) for all statistical analyses, and Adobe Illustrator (version 2022, 
v26.0.1) for image processing. For continuous variable data,The differences between the tumor and 
control groups, as well as the differences in hallmark gene set features between the high- and low-risk 
groups in the prognostic analysis, were analyzed using the limma function. The Wilcoxon test was 
employed for analyzing the differences in immune cell abundance, enabling effective elimination of 
the influence of outliers on the results. For the comparison of categorical variables, we used either 
Pearson’s chi-squared test or the continuous correction chi-squared test. Pearson or Spearman 
correlation analysis was used for correlation analysis. We considered the results to have statistical 
significance if the probability level reached 0.05. P labeled with ns indicates P > 0.05; * indicates P < 
0.05; ** indicates P < 0.01; *** indicates P < 0.001; and **** indicates P < 0.0001.  

3. Results 

3.1. Screening for ARDGs 

In the TCGA cohort, the GSE29265 dataset, the GSE33630 dataset, and the GSE60542 dataset, 
we identified a total of 1296 DEGs (with 582 genes downregulated and 714 genes upregulated), 803 
DEGs (with 420 genes downregulated and 383 genes upregulated), 1072 DEGs (with 485 genes 
downregulated and 587 genes upregulated), and 956 DEGs (with 474 genes downregulated and 482 
genes upregulated). The selection criteria were |logFC| > 1 and adj.P < 0.05. Volcano plots are shown 
in Figure 2A–D to visualize the genes with differential expression in the GSE29265, GSE33630, 
GSE60542 and TCGA cohorts. Subsequently, the RRA algorithm was employed to identify 1072 
robust DEGs (with 148 genes downregulated and 169 genes upregulated) (Score < 0.05) that exhibited 
expression in PTC (Supplementary Table S2.). The top 30 upregulated and downregulated genes in 
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PTC were visualized in heatmaps (Figure 2E–F). The numerical values in the heat maps represent the 
LogFC values of each gene in the respective dataset. Additionally, the Venn diagram (Figure 2G) 
illustrated the overlap between robust DEGs and ARGs, depicting 64 overlapping ARDGs 
(Supplementary Table S3). 

 

Figure 2. Identification of ARDGs. (A–D) The distribution of DEGs in various datasets, 
namely GSE29265, GSE33630, GSE60542, and TCGA cohort, is illustrated by the volcano 
plots. Genes upregulated in cancer are indicated by orange dots, while downregulated genes 
are indicated by blue dots. Genes that show insignificantly different expression levels are 
depicted as gray dots. (E,F), The top 30 upregulated genes and the top 30 downregulated genes 
in tumors are depicted in the heat maps. The numerical values enclosed in the boxes represent 
the logFC. (G) The ARDGs are depicted in the Venn diagram. The DEGs are represented by 
dark green circles, adhesion-related genes are represented by orange circles, and the 
overlapping areas indicate the ARDGs. 

3.2. Identification and functional analysis of prognostic ARDGs 

The forest plot in Figure 3A shows 16 prognostic ARDGs (DPP4, CLDN1, TENM1, CDH3, 
CLDN10, MPZL2, ADAMTS9, AMIGO2, ENTPD1, LGALS3, CHST2, NCAM1, FBLN1, APOD, 
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RELN, and OMD) identified by univariate Cox regression analysis (Supplementary Table S4). These 
genes are consistently expressed in the TCGA cohort, GSE29265, GSE33630, and GSE60542 datasets 
(all P < 0.0001). Except for NCAM1, FBLN1, APOD, RELN, and OMD, the remaining genes exhibit 
high expression in tumor samples (Figure S1). The correlation network diagram (Figure 3B) illustrates 
the co-expression of these genes in tumor samples, where the Pearson correlation coefficients (Cor) 
are > 0.3 or < −0.3 (Supplementary Table S5). By setting the threshold at Cor > 0.8 and P < 0.05, the 
strongest correlations are observed between DPP4 and CLDN1 (Cor = 0.807, P < 0.0001), as well as 
OMD and FBLN1 (Cor = 0.882, P < 0.0001). Functional enrichment analysis (Figure 3C,D) reveals 
that these genes are involved in BP such as cell-cell adhesion via plasma-membrane adhesion 
molecules, regulation of leukocyte migration, negative regulation of cell motility, positive regulation 
of cellular component biogenesis, and positive regulation of cell migration. They are also enriched in 
the extracellular matrix at the CC level and have functions related to virus receptor activity and cell 
adhesion molecule binding at the MF level. Furthermore, we conducted a KEGG pathway analysis to 
understand the pathways in which the adhesion genes related to prognosis are enriched. The results 
indicated that these genes were enriched in cell adhesion molecules, and Leukocyte transendothelial 
migration. Hallmark Gene Sets analysis shows enrichment in HALLMARK KRAS SIGNALING UP. 

3.3. Established model with a satisfactory level of predictive power 

We perform two methods to construct tumor prognostic risk score models. Lasso Cox regression 
analysis identified six genes significantly associated with prognosis, including DPP4, TENM1, 
ADAMTS9, AMIGO2, APOD, and RELN. The optimal lambda value determined through 10-fold 
cross-validation was 0.008 (Figure 4A and B). The LPSRSM was constructed using these six genes, 
with the formula: Risk score = ExprDPP4 × (−0.259) + ExprTENM1 × (−0.070) + ExprADAMTS9 × 
(−0.197) + ExprAMIGO2 × (−0.059) + ExprAPOD × 0.439 + ExprRELN × 0.238 (where Expr 
represents gene expression value). Another risk score model was constructed through multivariate and 
stepwise Cox regression analysis, which selected three major prognostic genes, including ADAMTS9, 
LGALS3, and APOD (Figure 4C and D). The multivariate Cox regression analysis PSRSM (MPSRSM) 
was then constructed using these three genes with the formula: Risk score = ExprADAMTS9 × (−0.572) 
+ ExprLGALS3 × (−0.550) + ExprAPOD × 0.768 (where Expr represents gene expression value). 
Subsequently, tumor samples were divided into high-risk group and low-risk group based on the 
median risk score. Both the LPSRSM and MPSRSM showed a symmetric distribution of risk scores 
among patients (Figure S2A,C). In the LPSRSM, all genes except APOD and RELN demonstrated 
downregulated expression in high-risk group samples (all P < 0.0001) (Figure S2B). Similarly, in the 
MPSRSM, all genes except APOD showed downregulated expression in high-risk group samples (all 
P < 0.0001) (Figure S2D). KM survival analysis using LPSRSM (Figure 4G) demonstrated that the 
low-risk group had better prognosis than the high-risk group (P = 2.433 × 10−4). Similarly, KM survival 
analysis using MPSRSM (Figure 4H) demonstrated that the low-risk group had better prognosis than 
the high-risk group (P = 3.017 × 10−4). In the LPSRSM, the AUC values for predicting patient’s 1-, 2-, 
3-, 5-, and 10-year prognosis were 0.891, 0.903, 0.957, 0.847, and 0.848, respectively (Figure 4I).  
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Figure 3. Prognostic ARDGs identification and functional analysis. (A) The results of 
the univariate Cox regression analysis for OS are displayed in the forest plot. (B) The 
co-expression relationship between prognostic ARDGs in tumor samples is visualized in 
the network plot. Gene correlations are represented by a color gradient ranging from red, 
indicating positive correlations, to blue, indicating negative correlations, with white 
representing no correlation. (C),(D) The prognostic ARDGs underwent functional 
enrichment analysis. 
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Figure 4. Construction of prognostic risk models. (A) LASSO coefficient profiles of the 6 
genes in the TCGA cohort. A coefficient profile plot was generated against the log (lambda) 
sequence (left). LASSO regression coefficients for different values of the penalty 
parameter. Cross-validation plots of the penalty terms in the LASSO regression analysis 
for the TCGA cohort (right). Deviation plots of the regression coefficients from the LASSO 
regression analysis (B) and from the multivariate regression analysis (D). C Forest plot of 
adhesion genes associated with PTC survival in multivariate Cox regression analysis. 
Univariate Cox regression analysis (E) and multivariate Cox regression analysis (F) of 
clinicopathologic characteristics of the TCGA tumor cohort and risk scores for the LASSO 
regression model. Survival curves for the high-risk group and the low-risk group of 
patients in the TCGA cohort based on the LASSO regression model (G) and the 
multivariate regression model (H). Time-dependent ROC curves of the TCGA cohort 
categorized by the LASSO regression model (I) and multivariate regression model (J). 
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In the MPSRSM, the AUC values for predicting patient’s 1-, 2-, 3-, 5-, and 10-year prognosis 
were 0.876, 0.900, 0.952, 0.866, and 0.885, respectively (Figure 4J). By comparing the ability of the 
two models to predict OS using KM survival analysis, the LPSRSM showed a better correlation with 
OS, making it the optimal model for predicting PTC prognosis. Lastly, the LPSRSM was analyzed in 
relation to clinical and pathological features. Univariate independent prognostic analysis results 
showed that the total stage, age, and risk score were associated with OS (all P < 0.0001) (Figure 4E). 
Multivariate independent prognostic analysis showed that age and risk score could serve as 
independent prognostic factors for tumors (all P < 0.0001) (Figure 4F). 

3.4. Alterations in hallmark features associated with LPSRSM  

We performed differential analysis on the high-risk group and the low-risk group in the TCGA 
tumor cohort using the “limma” R package. Under the condition of adj.P < 0.05, a total of 33 terms 
showed differential expression (Figure 5A) (Supplementary Table S6). Compared to the low-risk group, 
all terms except PROTEIN SECRETION were upregulated in the high-risk group (all P < 0.05). We 
found significant associations between hallmark pathways related to energy metabolism, such as 
HYPOXIA, GLYCOLYSIS, and OXIDATIVE PHOSPHORYLATION in tumors (all P < 0.05). 
Interestingly, OXIDATIVE PHOSPHORYLATION (Cor = −0.64, P < 0.0001) showed a negative 
correlation with adhesion feature (Figure 5C,D). In addition, we observed upregulation of 
inflammatory responses in the high-risk group, which was significantly correlated with adhesion 
feature (Cor = 0.70, P < 0.0001) (Figure 5C,D). Finally, we compared the clinical and pathological 
characteristics between the high-risk group and the low-risk group using Pearson’s chi-squared test for 
total stage, N stage, M stage, T stage, and age group (grouping by median). Comparison for M stage 
was performed using chi-squared test with continuity correction. The high-risk group had higher 
proportions of death, stage III-IV, age >= 46, stage T3-4, stage N1, and stage M1 compared to the low-
risk group. However, only the proportions of deaths (P < 0.01), stages III-IV (P < 0.05), and age >= 
46 (P < 0.01) showed statistical significance (Figure 5B) (Supplementary Table S7). 

3.5. Immunologic features associated with LPSRSM 

In the previous section of the analysis, we observed upregulation of the inflammatory response in 
the high-risk group. Additionally, we evaluated the expression levels of the tumor ImmuneScore and 
StromalScore, and found that both were significantly higher in the high-risk group (all P < 0.05) 
(Figure 6A,B). The ImmuneScore (Cor = 0.70, P < 0.0001) and StromalScore (Cor = 0.81, P < 0.0001) 
showed a positive correlation with adhesion feature (Figure 6C and D). Furthermore, we used the 
CIBERSORT algorithm to deconvolute the expression matrix of immune cell subtypes, allowing us to 
quantify the abundance of immune infiltrating cells. We then used the Wilcoxon Test to analyze the 
differences in immune infiltrating cell abundance (Figure 6E). Compared to the low-risk group, the 
high-risk group exhibited higher expression of memory B cells (P < 0.05), Monocytes (P < 0.01), and 
resting dendritic cells (P < 0.01) (Figure 6F,G,I). Meanwhile, the high-risk group showed lower 
expression levels of M0 macrophages (P < 0.05), and resting mast cells (P < 0.01) (Figure 6H,J).  
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Figure 5. Gene set variation analysis (GSVA) and clinicopathologic features of the LASSO 
regression model in the TCGA cohort. (A) GSVA enrichment in the low-risk and high-risk 
groups. (B) Clinicopathologic features in the low-risk and high-risk groups. (C) 
Differential analysis of hallmark features for hypoxia, glycolysis, oxidative 
phosphorylation, inflammatory response, and protein secretion between low- and high- 
risk groups. (D) Correlation analysis of hallmark features for hypoxia, glycolysis, 
oxidative phosphorylation, inflammatory response, and protein secretion and adhesion 
feature. 

3.6. Screening for small molecule drugs to improve prognosis 

We utilized the Cmap database to establish a correlation between small molecules and the 
expression of genes that are the top 100 DEGs upregulated genes from the high-risk group. A score close 
to 1 indicates a positive correlation between the gene and the drug, while a score approaching -1 indicates 
a negative correlation. In light of this, 10 small molecules (alclometasone, ATPA, azacitidine, 
fexofenadine, GW-3965, mephenytoin, phenolphthalein, sorafenib, thiostrepton, and UB-165) with a 
correlation Score < −0.7 and FDR < 2.22 × 10−16 were determined to have therapeutic potential for 
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improving the prognosis of tumors. Finally, the molecular structures and formulas of these small 
molecule drugs were searched via the Pubchem database (https://pubchem.ncbi.nlm.nih.gov/) 
(Figure7A–J ). 

 

Figure 6. Immunologic features of the LASSO regression model in the TCGA cohort. 
Differential analysis of ImmuneScore (A) and StromalScore (B) in the low-risk and high-
risk groups. Correlation analysis of ImmuneScore (C), StromalScore (D) and adhesion 
feature. (E) Differential analysis of tumor microenvironment expression between high-risk 
and low-risk groups. Differential analysis of memory B cells (F), Monocytes (G), M0 
macrophages (H), resting dendritic cells (I), resting mast cells (J) in the low-risk and high-
risk groups. 

3.7. Diagnostic model for tumorigenesis and lymph node metastasis with good predictive power 

We used Lasso regression analysis to build two models for predicting lymph node metastasis and 
tumor diagnosis. After 10-fold cross-validation, the optimal lambda value was determined to be 0.006. 
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Accordingly, four genes, namely DPP4, TENM1, APOD and RELN, were identified as significant for 
prognosis and diagnosis of lymph node metastasis (Figure 8A–C). Using these four genes, a diagnostic 
scoring model was developed with the following formula: Index = ExprDPP4 × 0.313 + ExprTENM1 × 
0.165 + ExprAPOD × 0.416 + ExprRELN × (−0.666) (where Expr indicates expression level). The 
accuracy of the lymph node metastasis prediction model was evaluated using ROC curves. The results 
showed AUC values of 0.767, 0.704, 0.698, and 0.700 for the training set, validation set 1, validation 
set 2, and validation set 3, respectively (Figure 8G–J). Furthermore, the optimal lambda value of 0.049 
was obtained by 10-fold cross-validation, and three genes, DPP4, TENM1, and RELN, were identified 
as significant for prognosis and tumor diagnosis (Figure 8D–F). A diagnostic scoring model was 
developed using these three genes with the formula: Index = ExprDPP4 × 2.785 + ExprTENM1 × 0.206 + 
ExprRELN × (−1.654) (where Expr indicates expression level). The accuracy of the prediction model 
was evaluated using ROC curves, and the AUC values for the TCGA cohort, GSE29265, GSE33630, 
and GSE60542 were found to be 0.986, 0.933, 0.976, and 0.934, respectively (Figure 8K–N). 

 

Figure 7. Potential small molecule drugs for the low-risk and high-risk groups in the 
LASSO regression model. The 2D structure graphs of the ten candidate small molecule 
drugs for improving PTC prognosis are shown: alclometasone (A), sorafenib (B), 
azacitidine (C), fexofenadine (D), GW-3965 (E), mephenytoin (F), phenolphthalein (G), 
ATPA (H), UB-165 (I), and thiostrepton (J). 



20614 

Mathematical Biosciences and Engineering  Volume 20, Issue 12, 20599–20623. 

 

Figure 8. Diagnostic model for tumor and lymph node metastasis. (A),(B) The four 
adhesion genes (DPP4, TENM1, APOD, and RELN) utilized in the construction of the 
diagnostic model for lymph node metastasis are displayed in these plots. (C) Deviation 
plots demonstrating the regression coefficients of the diagnostic model for lymph node 
metastasis. (D,E) The four adhesion genes (DPP4, TENM1, and RELN) utilized in the 
construction of the diagnostic model for tumor are displayed in these plots. (F) Deviation 
plots demonstrating the regression coefficients of the diagnostic model for tumor. (G–J) 
The ROC curve results for the diagnostic model of lymph node metastasis are presented. 
K-N The ROC curve results for the diagnostic models of tumor are displayed. 

3.8. Protein expression validation of prognostically significant genes 

The protein expressions of DPP4, TENM1, ADAMTS9, AMIGO2, and APOD based on IHC were 
analyzed using the HPA database (Figure 9A–E). The results showed that the expression of DPP4 
(staining = high), TENM1 (staining = high), ADAMTS9 (staining = medium), AMIGO2 (staining = 
medium), and APOD (staining = not detected) were assessed in PTC tumor tissues. It is worth noting 
that the protein expression of RELN was not included in the HPA database. 
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Figure 9. Validation of protein expression through Immunohistochemistry analysis. The 
protein expression of ADAMTS9 (A), DPP4 (B), AMIGO2 (C), TENM1 (D), and APOD 
(E) was examined in PTC tumor samples retrieved from the Human Protein Atlas database. 

4. Discussion 

Thyroid cancer is considered the most prevalent endocrine malignancy globally, and its incidence 
is rapidly increasing. While many patients with PTC have a favorable prognosis, there are some who 
experience adverse outcomes, including recurrence, distant metastasis, and other factors that affect 
survival [2–5]. Therefore, it is essential to manage and stratify the risks for PTC patients to optimize 
treatment. Adhesion, which plays a role in tumor proliferation, metastasis, and is closely linked to the 
tumor microenvironment (TME) and tumor immunity, has been identified as a key factor [8]. In this 
study, we developed a model based on adhesion feature to predict prognosis, lymph node metastasis, 
and tumor diagnosis in PTC, while also exploring the biological functions of adhesion in PTC. 

Due to the significant increase in data sets from various sequencing platforms, facilitated by 
advancements in high-throughput microarray technology and bioinformatics methods, inconsistencies 
and biases exist among different data sets. In this study, we employed the RRA algorithm to address 
the noise and inconsistency in gene sequencing for the TCGA cohort, as well as the GSE29265, 
GSE33630, and GSE60542 datasets. By implementing the RRA algorithm, we identified 317 DEGs, 
comprising 169 upregulated genes and 148 downregulated genes. Among these DEGs, 64 genes 
overlapped with ARGs. Univariate Cox regression analysis revealed 16 prognostic ARDGs. Functional 
enrichment analysis of these genes indicated associations with biological processes such as cell-cell 
adhesion via plasma-membrane adhesion molecules, regulation of leukocyte migration, and calcium-
independent cell-cell adhesion through plasma membrane cell-adhesion molecules. Subsequently, we 
constructed a PTC prognosis model using two methods: Lasso Cox regression analysis and 
multivariable Cox regression analysis. The results demonstrated that the Lasso Cox regression model 
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slightly outperformed the multivariable Cox regression analysis when predicting OS at 1, 2, and 3 
years. However, for predicting OS at 5 and 10 years, the multivariable Cox regression model showed 
slight superiority. It has been determined that the model constructed using Lasso Cox regression is 
slightly superior through comparison of Kaplan-Meier survival analysis. The Lasso Cox regression 
model identified six feature genes for prognosis, namely DPP4, TENM1, ADAMTS9, AMIGO2, 
APOD, and RELN. In thyroid cancer, the significantly higher expression of DPP4 has been observed 
compared to adjacent noncancerous tissue [39]. The correlation between DPP4 expression and lymph 
node metastasis as well as BRAFV600E mutation has been demonstrated in various studies. Moreover, 
the metastasis of thyroid cancer cells is promoted by DPP4 through the signaling pathway of 
integrins/FAK/AKT/c-Jun/TGF-β 1 [40]. The inhibition of PTC cell proliferation, EMT, and 
promotion of cell apoptosis are observed when the DPP4 gene is silenced, which is evidenced by the 
suppression of the MAPK pathway as discovered by Hu et al [41]. TENM1 has emerged as a potential 
marker for PTC progression, with highly upregulated expression in cancerous tissue and negative 
expression in benign thyroid tissue [42]. Furthermore, TENM1 is associated with extrathyroidal 
invasion, BRAF V600E mutation, and advanced stage [43]. ADAMTS9, known for its involvement in 
proteoglycans degradation, organ shape control during development, and inhibition of angiogenesis, 
is frequently silenced by promoter hypermethylation [44]. The loss of ADAMTS9 expression 
promotes cell proliferation and tumor growth through the activation of the oncogenic PI3K/AKT 
signaling pathway. Methylation of ADAMTS9 is identified as an independent prognostic factor in 
gastric cancer [45,46]. AMIGO2, implicated in tumor development and metastasis, has been shown to 
facilitate the adhesion of tumor cells to hepatic endothelial cells, leading to liver metastasis in gastric 
and colorectal cancer [47,48]. In prostate cancer, high AMIGO2 expression is correlated with 
unfavorable prognosis and tumor progression. Additionally, AMIGO2 is involved in tumor cell 
proliferation, invasion, metastasis, and possibly tumor progression through the induction of EMT [49]. 
APOD, a protein involved in lipid metabolism and prevalent in the central and peripheral nervous systems, 
exhibits increased expression in certain neurodegenerative diseases and spinal cord injuries [50,51]. 
Overexpressing APOD impedes human umbilical vein endothelial cell formation, making it a potential 
therapeutic target for tumor angiogenesis [52]. RELN, an extracellular glycoprotein vital for neuronal 
migration, is often silenced due to abnormal promoter hypermethylation in gastric cancer, and its loss 
of expression is significantly associated with advanced stages of gastric cancer [53,54]. Additionally, 
mutations in the RELN gene may serve as potential biomarkers in melanoma and non-small cell lung 
cancer [55]. Using these six genes, a prognostic diagnostic model was constructed, yielding AUC 
values of 0.891, 0.903, 0.957, 0.847, and 0.848 for predicting the 1-, 2-, 3-, 5-, and 10-year prognosis 
of patients, respectively. Moreover, through multivariate Cox regression analysis of the prognostic 
model and PTC clinical pathological features, the independent prognostic factor status of the 
prognostic survival model was confirmed. 

In this paper, the PTC patients were divided into high-risk and low-risk groups based on our 
prognostic model. Within the high-risk group, downregulation of HALLMARK PROTEIN 
SECRETION biological function activity was observed, while the biological function activities of 
HALLMARK GLYCOLYSIS, HALLMARK FATTY ACID METABOLISM, HALLMARK 
HYPOXIA, HALLMARK OXIDATIVE PHOSPHORYLATION, and HALLMARK 
INFLAMMATORY RESPONSE, which are related to energy metabolism and immunity, were 
upregulated. A significant association between adhesion biological function and these energy 
metabolism and immunity-related biological functions in PTC was found in this study. Tissue 



20617 

Mathematical Biosciences and Engineering  Volume 20, Issue 12, 20599–20623. 

formation and structural integrity heavily rely on adhesion’s crucial role. Throughout different stages 
of cancer progression, the adhesion between cancer cells and their attachment to the extracellular 
matrix undergo constant changes. Adhesion biological features are closely intertwined with 
tumorigenesis and tumor development, necessitating a thorough exploration of adhesion 
characteristics’ mechanisms in PTC. The protein secretion pathway is a vital system that connects 
tumor cells with one another and with the microenvironment, wherein the secretion pathway and its 
products play crucial roles in the survival of eukaryotic organisms [56]. However, dysregulation of the 
secretion mechanism may support detrimental processes, such as tumor formation [57]. Cellular 
metabolism encompasses a complex biochemical network that converts nutrients into various small 
molecules [6]. Among these molecules, ATP generation is essential for maintaining cellular 
homeostasis and relies on glycolysis in the cytoplasm and oxidative phosphorylation in the 
mitochondria, which can occur through the pentose phosphate pathway and the TCA cycle [58,59]. 
Additionally, cellular metabolism produces biomolecules required for protein, DNA/RNA, and 
membrane synthesis, such as amino acids, nucleotides, and fatty acids [60,61]. These processes are 
vital for maintaining normal cell growth and function. Metabolic changes significantly contribute to 
the metastasis and formation of cancer cells [59]. The multi-step process of metastasis is closely tied 
to metabolic reprogramming, while the adhesion between cancer cells and their attachment to the 
extracellular matrix continuously changes throughout different stages of cancer progression [62]. 
Adhesion modifications that promote cancer have been shown to induce or be induced by signal 
pathways closely linked to metabolic changes. This discovery further emphasizes the importance of 
metabolic alterations in the process of cancer cell metastasis and formation, as they have the potential 
to promote tumor development by influencing cell adhesion [6]. Tumor cells acquire and maintain 
many of these characteristics through interactions with each other and neighboring “normal” cells, 
collectively forming the tumor microenvironment alongside cancer cells [63]. In our research, we 
identified upregulation of the inflammatory response biological function in the high-risk group, along 
with increased matrix score and immune score, all of which were associated with adhesion 
characteristics. Analysis of the tumor tissue microenvironment demonstrated upregulation of 
memory B cells, monocytes, and resting dendritic cells within the high-risk group. Furthermore, 
using the prognostic model, we identified small molecular drugs in the CMAP database that were 
closely related to gene expression. Through the analysis of the link between gene expression and 
drug molecules, we identified ten potential small molecular drugs that could improve PTC prognosis: 
alclometasone, ATPA, azacitidine, fexofenadine, GW-3965, mephenytoin, phenolphthalein, 
sorafenib, thiostrepton, and UB-165. 

Lymph node metastasis and extrathyroidal invasion profoundly alter the equilibrium between 
adhesive molecules and the basement membrane in PTC. Currently, there is no effective method for 
predicting lymph node metastasis, with most cases being detected through imaging examinations. In 
this study, four adhesive feature genes (DPP4, TENM1, APOD, and RELN) were identified using lasso 
regression analysis. A lymph node metastasis model based on these four genes achieved an accuracy 
of 0.767 in the training set, and accuracies of 0.704, 0.698, and 0.700 in validation sets 1, 2, and 3, 
respectively. Additionally, a disease diagnosis model based on three adhesive feature genes (DPP4, 
TENM1, and RELN) achieved an accuracy of 0.986 in the training set, and accuracies of 0.933, 0.976, 
and 0.934 in GSE29265, GSE33630, and GSE60542 dataset, respectively. The lymph node metastasis 
model and tumor diagnosis model constructed in this study exhibited stability and accuracy in 
prediction. 
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Our study was novel in that it integrated multiple machine learning algorithms to construct models 
for diagnosing PTC, lymph node metastasis, and prognosis. Additionally, we investigated the adhesion 
functional mechanisms, which served as a new topic in this study. However, there are still some 
limitations to our research. Firstly, during the process of merging datasets and eliminating 
multicollinearity, many genes were excluded, resulting in the loss of some important genes. However, 
in order to validate the models in independent datasets, we had to ensure that the genes used for model 
construction were available in the test set. Secondly, some clinical and molecular features were not 
adequately provided in public datasets, which limited our ability to further uncover the potential links 
between diagnostic genes and certain traits. Lastly, although our study provided a framework for early 
tumor diagnosis, lymph node metastasis prediction, and prognosis evaluation by evaluating specific 
genes, the results are still in the stage of analysis and speculation without experimental validation. 
Future research could explore the integration of our findings into clinical practice to improve their 
usability and effectiveness. Additionally, further research is needed to investigate the combined 
therapeutic value of these ten small molecule drugs at the cellular and animal levels. 

5. Conclusions 

In our study, we employed machine learning signature selection methods to identify six 
prognostic feature genes, four lymph node metastasis feature genes, and three tumor diagnosis feature 
genes from PTC tumor tissues. These feature genes can be used to construct models with high 
predictive value, effectively predicting tumor, lymph node metastasis, and prognosis. The selected 
signature revealed that energy metabolism and immune response may be key mechanisms for PTC 
prognosis. Finally, drugs targeting prognostic genes will provide new insights into targeted therapy. 

Use of AI tools declaration  

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this 
article. 

Acknowledgments 

All authors listed have made a substantial, direct, and intellectual contribution to the work and 
approved it for publication. S. S. analyzed the data and drafted the manuscript. X. C. and J. S. 
downloaded the data and prepared figures. G. Z., S. L. and H. W. designed the research and edited the 
manuscript. All authors reviewed, revised, commented on and approved the final manuscript. This 
study was supported by Doctor of excellence program (DEP), The First Hospital of Jilin University 
(JDYY-DEP-2022015).  

Conflict of interest 

The authors declare there is no conflict of interest. 

  



20619 

Mathematical Biosciences and Engineering  Volume 20, Issue 12, 20599–20623. 

Code availability 

Analyses were conducted using RStudio. The programming code is available upon request by 
contacting the corresponding author. 

References 

1. K. R. Joseph, S. Edirimanne, G. D. Eslick, Multifocality as a prognostic factor in thyroid cancer: 
A meta-analysis, Int. J. Surg., 50 (2018), 121–125. http://.doi.org/10.1016/j.ijsu.2017.12.035 

2. A. Arianpoor, M. Asadi, E. Amini, A. Ziaeemehr, Investigating the prevalence of risk factors of 
papillary thyroid carcinoma recurrence and disease-free survival after thyroidectomy and central 
neck dissection in Iranian patients, Acta Chir. Belg., 120 (2020), 173–178. 
http://.doi.org/10.1080/00015458.2019.1576447 

3. V. Zaydfudim, I. D. Feurer, M. R. Griffin, J. E. Phay, The impact of lymph node involvement on 
survival in patients with papillary and follicular thyroid carcinoma, Surgery, 144 (2008), 1077–
1078. http://.doi.org/10.1016/j.surg.2008.08.034 

4. I. M. Boschin, M. R. Pelizzo, F. Giammarile, D. Rubello, P. Colletti, Lymphoscintigraphy in 
differentiated thyroid cancer, Clin. Nucl. Med., 40 (2015), e343–350. 
http://.doi.org/10.1097/RLU.0000000000000825 

5. D. Hou, H. Xu, B. Yuan, J. Liu, Y. Lu, M. Liu, Effects of active localization and vascular 
preservation of inferior parathyroid glands in central neck dissection for papillary thyroid 
carcinoma, World J. Surg. Oncol., 18 (2020), 95. http://.doi.org/10.1186/s12957-020-01867-y 

6. I. Elia, G. Doglioni, S. M. Fendt, Metabolic hallmarks of metastasis formation, Trends Cell Biol., 
28 (2018), 673–684. http://.doi.org/10.1016/j.tcb.2018.04.002 

7. H. Harjunpää, M. Llort Asens, C. Guenther, S. C. Fagerholm, Cell adhesion molecules and their 
roles and regulation in the immune and tumor microenvironment, Front. Immunol., 10 (2019), 
1078. http://.doi.org/10.3389/fimmu.2019.01078 

8. L. Mautone, C. Ferravante, A. Tortora, Higher integrin alpha 3 beta1 expression in papillary 
thyroid cancer is associated with worst outcome, Cancers (Basel), 13 (2021), 
2937.http://.doi.org/10.3390/cancers13122937 

9. J. Weiss, F. Kuusisto, K. Boyd, Machine learning for treatment assignment: Improving 
individualized risk attribution, AMIA Annu. Symp. Proc., 2015 (2015), 1306–1315. 

10. J. C. Weiss, D. Page, P. L. Peissig, Statistical Relational Learning to predict primary myocardial 
infarction from electronic health records, Proc. Innov. Appl. Artif. Intell. Conf., 2012 (2012), 
2341–2347. 

11. M. E. Ritchie, B. Phipson, D. Wu, Limma powers differential expression analyses for RNA-
sequencing and microarray studies, Nucleic Acids Res., 43 (2015), 
e47.http://.doi.org/10.1093/nar/gkv007 

12. G. Tomas, M. Tarabichi, D. Gacquer, A general method to derive robust organ-specific gene 
expression-based differentiation indices: application to thyroid cancer diagnostic, Oncogene, 31 
(2012), 4490–4498.http://.doi.org/10.1038/onc.2011.626 

13. M. Tarabichi, M. Saiselet, C. Tresallet, Revisiting the transcriptional analysis of primary tumours 
and associated nodal metastases with enhanced biological and statistical controls: application to 
thyroid cancer, Br. J. Cancer, 112 (2015), 1665–1674.http://.doi.org/10.1038/bjc.2014.665 



20620 

Mathematical Biosciences and Engineering  Volume 20, Issue 12, 20599–20623. 

14. A. Subramanian, P. Tamayo, V. K. Mootha, Gene set enrichment analysis: a knowledge-based 
approach for interpreting genome-wide expression profiles, Proc. Natl. Acad. Sci. U. S. A., 102 
(2005), 15545–15550. http://.doi.org/10.1073/pnas.0506580102 

15. A. Liberzon, A. Subramanian, R. Pinchback, Molecular signatures database (MSigDB) 3.0, 
Bioinformatics, 27 (2011), 1739–1740. http://.doi.org/10.1093/bioinformatics/btr260 

16. A. Liberzon, C. Birger, H. Thorvaldsdottir, The Molecular Signatures Database (MSigDB) 
hallmark gene set collection, Cell Syst., 1 (2015), 417–425. 
http://.doi.org/10.1016/j.cels.2015.12.004 

17. G. Huang, X. Xu, C. Ju, Identification and validation of autophagy-related gene expression for 
predicting prognosis in patients with idiopathic pulmonary fibrosis, Front. Immunol., 13 (2022), 
997138. http://.doi.org/10.3389/fimmu.2022.997138 

18. X. Sun, Z. Zhang, Z. Wang, The role of Angiogenesis and remodeling (AR) associated signature 
for predicting prognosis and clinical outcome of immunotherapy in pan-cancer, Front. Immunol., 
13 (2022), 1033967. http://.doi.org/10.3389/fimmu.2022.1033967 

19. J. Ruan, S. Xu, R. Chen, EMLI-ICC: an ensemble machine learning-based integration algorithm 
for metastasis prediction and risk stratification in intrahepatic cholangiocarcinoma, Brief. 
Bioinform., 23 (2022), bbac450. http://.doi.org/10.1093/bib/bbac450 

20. X. Wang, L. Yang, C. Yu, An integrated computational strategy to predict personalized cancer 
drug combinations by reversing drug resistance signatures, Comput. Biol. Med., 163 (2023), 
107230. http://.doi.org/10.1016/j.compbiomed.2023.107230 

21. H. Zhang, P. Xia, J. Liu, ATIC inhibits autophagy in hepatocellular cancer through the 
AKT/FOXO3 pathway and serves as a prognostic signature for modeling patient survival, Int. J. 
Biol. Sci., 17 (2021), 4442–4458. http://.doi.org/10.7150/ijbs.65669 

22. X. Bao, J. Chi, Y. Zhu, High FAAP24 expression reveals poor prognosis and an 
immunosuppressive microenvironment shaping in AML, Cancer Cell Int., 23 (2023), 117. 
http://.doi.org/10.1186/s12935-023-02937-3 

23. B. Cheng, C. Tang, J. Xie, Cuproptosis illustrates tumor micro-environment features and predicts 
prostate cancer therapeutic sensitivity and prognosis, Life Sci., 325 (2023), 121659. 
http://.doi.org/10.1016/j.lfs.2023.121659 

24. S. He, Y. Ding, Z. Ji, HOPX is a tumor-suppressive biomarker that corresponds to T cell 
infiltration in skin cutaneous melanoma, Cancer Cell Int., 23 (2023), 122. 
http://.doi.org/10.1186/s12935-023-02962-2 

25. Z. Liu, L. Liu, S. Weng, Machine learning-based integration develops an immune-derived lncRNA 
signature for improving outcomes in colorectal cancer, Nat. Commun., 13 (2022), 816. 
http://.doi.org/10.1038/s41467-022-28421-6 

26. Y. Chen, Y. Pan, H. Gao, Mechanistic insights into super-enhancer-driven genes as prognostic 
signatures in patients with glioblastoma, J. Cancer Res. Clin. Oncol., 149 (2023), 12315–12332. 
http://.doi.org/10.1007/s00432-023-05121-2 

27. A. Huang, L. Li, X. Liu, Hedgehog signaling is a potential therapeutic target for vascular 
calcification, Gene, 872 (2023), 147457. http://.doi.org/10.1016/j.gene.2023.147457 

28. P. Zhou, J. Shen, X. Ge, Classification and characterisation of extracellular vesicles-related 
tuberculosis subgroups and immune cell profiles, J. Cell. Mol. Med., 27 (2023), 2482–2494. 
http://.doi.org/10.1111/jcmm.17836 



20621 

Mathematical Biosciences and Engineering  Volume 20, Issue 12, 20599–20623. 

29. R. Kolde, S. Laur, P. Adler, Robust rank aggregation for gene list integration and meta-analysis, 
Bioinformatics, 28 (2012), 573–580. http://.doi.org/10.1093/bioinformatics/btr709 

30. C. H. Gao, G. Yu, P. Cai, ggVennDiagram: An intuitive, easy-to-use, and highly customizable R 
package to generate Venn Diagram, Front. Genet., 12 (2021), 706907. 
http://.doi.org/10.3389/fgene.2021.706907 

31. Y. Zhou, B. Zhou, L. Pache, Metascape provides a biologist-oriented resource for the analysis of 
systems-level datasets, Nat. Commun., 10 (2019), 1523. http://.doi.org/10.1038/s41467-019-
09234-6 

32. S. Hanzelmann, R. Castelo, J. Guinney, GSVA: gene set variation analysis for microarray and 
RNA-seq data, BMC Bioinf., 14 (2013), 7. http://.doi.org/10.1186/1471-2105-14-7 

33. K. Yoshihara, M. Shahmoradgoli, E. Martinez, Inferring tumour purity and stromal and immune 
cell admixture from expression data, Nat. Commun., 4 (2013), 2612. 
http://.doi.org/10.1038/ncomms3612 

34. A. M. Newman, C. L. Liu, M. R. Green, Robust enumeration of cell subsets from tissue expression 
profiles, Nat. Methods, 12 (2015), 453–457. http://.doi.org/10.1038/nmeth.3337 

35. J. H. Friedman, T. Hastie, R. Tibshirani, Regularization paths for generalized linear models via 
coordinate descent, J. Stat. Software, 33 (2010), 1–22. http://.doi.org/10.18637/jss.v033.i01 

36. P. Blanche, J. F. Dartigues, H. Jacqmin-Gadda, Estimating and comparing time-dependent areas 
under receiver operating characteristic curves for censored event times with competing risks, Stat. 
Med., 32 (2013), 5381–5397. http://.doi.org/10.1002/sim.5958 

37. M. Kuhn, Building Predictive models in R using the caret package, J. Stat. Software, 28 (2008), 
1–26. http://.doi.org/10.18637/jss.v028.i05 

38. M. Uhlen, C. Zhang, S. Lee, A pathology atlas of the human cancer transcriptome, Science, 357 
(2017), eaan2507. http://.doi.org/10.1126/science.aan2507 

39. N. Enz, G. Vliegen, I. De Meester, CD26/DPP4-a potential biomarker and target for cancer 
therapy, Pharmacol Ther, 198 (2019), 135–159. http://.doi.org/10.1016/j.pharmthera.2019.02.015 

40. Q. He, H. Cao, Y. Zhao, Dipeptidyl peptidase-4 stabilizes integrin alpha4beta1 complex to 
promote thyroid cancer cell metastasis by activating transforming growth factor-beta signaling 
pathway, Thyroid, 32 (2022), 1411–1422. http://.doi.org/10.1089/thy.2022.0317 

41. X. Hu, S. Chen, C. Xie, DPP4 gene silencing inhibits proliferation and epithelial-mesenchymal 
transition of papillary thyroid carcinoma cells through suppression of the MAPK pathway, J. 
Endocrinol. Invest., 44 (2021), 1609–1623. http://.doi.org/10.1007/s40618-020-01455-7 

42. G. Peppino, R. Ruiu, M. Arigoni, Teneurins: Role in cancer and potential role as diagnostic 
biomarkers and targets for therapy, Int. J. Mol. Sci., 22 (2021), 2321. 
http://.doi.org/10.3390/ijms22052321 

43. S. P. Cheng, M. J. Chen, M. N. Chien, Overexpression of teneurin transmembrane protein 1 is a 
potential marker of disease progression in papillary thyroid carcinoma, Clin. Exper. Med., 17 
(2017), 555–564. http://.doi.org/10.1007/s10238-016-0445-y 

44. S. Lemarchant, M. Pruvost, J. Montaner, ADAMTS proteoglycanases in the physiological and 
pathological central nervous system, J. Neuroinflamm., 10 (2013), 133. 
http://.doi.org/10.1186/1742-2094-10-133 

45. W. Sun, G. Ma, L. Zhang, DNMT3A-mediated silence in ADAMTS9 expression is restored by 
RNF180 to inhibit viability and motility in gastric cancer cells, Cell Death Dis., 12 (2021), 428. 
http://.doi.org/10.1038/s41419-021-03628-5 



20622 

Mathematical Biosciences and Engineering  Volume 20, Issue 12, 20599–20623. 

46. N. Wang, X. Huo, B. Zhang, METTL3-Mediated ADAMTS9 Suppression facilitates angiogenesis 
and carcinogenesis in gastric cancer, Front. Oncol., 12 (2022), 861807. 
http://.doi.org/10.3389/fonc.2022.861807 

47. K. Goto, M. Morimoto, M. Osaki, The impact of AMIGO2 on prognosis and hepatic metastasis 
in gastric cancer patients, BMC Cancer, 22 (2022), 280. http://.doi.org/10.1186/s12885-022-
09339-0 

48. R. Izutsu, M. Osaki, J. P. Jehun, Liver metastasis formation is defined by AMIGO2 expression via 
adhesion to hepatic endothelial cells in human gastric and colorectal cancer cells, Pathol. Res. 
Pract., 237 (2022), 154015. http://.doi.org/10.1016/j.prp.2022.154015 

49. Z. Han, Y. Feng, Y. Deng, Integrated analysis reveals prognostic value and progression-related 
role of AMIGO2 in prostate cancer, Transl. Androl. Urol., 11 (2022), 914–928. 
http://.doi.org/10.21037/tau-21-1148 

50. E. Rassart, F. Desmarais, O. Najyb, Apolipoprotein D, Gene, 756 (2020), 144874. 
http://.doi.org/10.1016/j.gene.2020.144874 

51. F. Desmarais, V. Herve, K. F. Bergeron, Cerebral apolipoprotein D exits the brain and accumulates 
in peripheral tissues, Int. J. Mol. Sci., 22 (2021), 4118. http://.doi.org/10.3390/ijms22084118 

52. C. J. Lai, H. C. Cheng, C. Y. Lin, Activation of liver X receptor suppresses angiogenesis via 
induction of ApoD, Faseb J., 31 (2017), 5568–5576. http://.doi.org/10.1096/fj.201700374R 

53. M. Schulze, C. Violonchi, S. Swoboda, RELN signaling modulates glioblastoma growth and 
substrate-dependent migration, Brain Pathol., 28 (2018), 695–709. 
http://.doi.org/10.1111/bpa.12584 

54. O. Dohi, H. Takada, N. Wakabayashi, Epigenetic silencing of RELN in gastric cancer, Int. J. 
Oncol., 36 (2010), 85–92. http://doi.org/10.3892/ijo_00000478 

55. Z. Li, X. Wang, Y. Yang, Identification and validation of RELN mutation as a response indicator 
for immune checkpoint inhibitor therapy in melanoma and non-small cell lung cancer, Cells, 11 
(2022), 3841. http://.doi.org/10.3390/cells11233841 

56. N. Rufo, A. D. Garg, P. Agostinis, The unfolded protein response in immunogenic cell death and 
cancer immunotherapy, Trends Cancer, 3 (2017), 643–658. 
http://.doi.org/10.1016/j.trecan.2017.07.002 

57. R. Saghaleyni, A. Sheikh Muhammad, P. Bangalore, Machine learning-based investigation of the 
cancer protein secretory pathway, PLoS Comput. Biol., 17 (2021), e1008898. 
http://.doi.org/10.1371/journal.pcbi.1008898 

58. C. T. Walsh, B. P. Tu, Y. Tang, Eight kinetically stable but thermodynamically activated molecules 
that power cell metabolism, Chem. Rev., 118 (2018), 1460–1494. 
http://.doi.org/10.1021/acs.chemrev.7b00510 

59. S. Y. Lunt, S. M. Fendt, Metabolism – A cornerstone of cancer initiation, progression, immune 
evasion and treatment response, Curr. Opin. Syst. Biol., 8 (2018), 67–72. 
http://.doi.org/https://doi.org/10.1016/j.coisb.2017.12.006 

60. V. Friand, G. David, P. Zimmermann, Syntenin and syndecan in the biogenesis of exosomes, Biol. 
Cell., 107 (2015), 331–341. http://.doi.org/10.1111/boc.201500010 

61. S. Y. Lunt, M. G. Vander Heiden, Aerobic glycolysis: meeting the metabolic requirements of cell 
proliferation, Annu. Rev. Cell Dev. Biol., 27 (2011), 441–464. http://.doi.org/10.1146/annurev-
cellbio-092910-154237 



20623 

Mathematical Biosciences and Engineering  Volume 20, Issue 12, 20599–20623. 

62. B. Sousa, J. Pereira, J. Paredes, The crosstalk between cell adhesion and cancer metabolism, Int. 
J. Mol. Sci., 20 (2019), 1933. http://.doi.org/10.3390/ijms20081933 

63. D. Hanahan, L. M. Coussens, Accessories to the crime: functions of cells recruited to the tumor 
microenvironment, Cancer Cell, 21 (2012), 309–322. http://.doi.org/10.1016/j.ccr.2012.02.022 

©2023 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 


