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Abstract: The existence and consistency of a maximum likelihood estimator for the joint probability
distribution of random parameters in discrete-time abstract parabolic systems was established by taking
a nonparametric approach in the context of a mixed effects statistical model using a Prohorov metric
framework on a set of feasible measures. A theoretical convergence result for a finite dimensional
approximation scheme for computing the maximum likelihood estimator was also established and
the efficacy of the approach was demonstrated by applying the scheme to the transdermal transport
of alcohol modeled by a random parabolic partial differential equation (PDE). Numerical studies
included show that the maximum likelihood estimator is statistically consistent, demonstrated by
the convergence of the estimated distribution to the “true” distribution in an example involving
simulated data. The algorithm developed was then applied to two datasets collected using two different
transdermal alcohol biosensors. Using the leave-one-out cross-validation (LOOCV) method, we found
an estimate for the distribution of the random parameters based on a training set. The input from a test
drinking episode was then used to quantify the uncertainty propagated from the random parameters to
the output of the model in the form of a 95% error band surrounding the estimated output signal.
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1. Introduction

In clinical therapy, medical research, and law enforcement, the breathalyzer, developed by
Borkenstein based on a redox reaction and Henry’s law [1], is used to measure breath alcohol
concentration (BrAC), a surrogate for blood alcohol concentration (BAC). Clinicians and researchers
consider it to be reasonably accurate to substitute BrAC for BAC, and in general this continues to be
the case across different environmental conditions and across different individuals [1]. Nevertheless,
collecting near-continuous BrAC samples accurately (i.e., obtaining a deep lung sample that is not
contaminated by any existing alcohol remaining in the mouth) is challenging and often impractical in
the field.

Most of the ethanol, the type of alcohol in alcoholic beverages, that enters the human body, is
metabolized by the liver into other products that are then excreted. In addition, a portion of ingested
ethanol exits the body directly through exhalation and urination [2] and approximately 1% diffuses
through the epidermal layer of the skin in the form of perspiration and sweat. The amount of alcohol
excreted in this manner is quantified in the form of transdermal alcohol concentration (TAC). TAC has
been shown to be largely positively correlated with BrAC and BAC [3]. However, the precise
relationship between TAC and BrAC/BAC is complicated due to a number of confounding
physiological, technological and environmental factors including, but not limited to, the skin’s
epidermal layer thickness, porosity and tortuosity, the process of vasodilation as observed through
blood pressure and flow rate, the underlying technology of the particular sensor being used and the
ambient temperature and humidity.

Currently, there are a number of different biosensors based on a variety of analog principles that
can measure TAC essentially continuously, passively, unobtrusively, and relatively accurately, and
make it available for processing in real time. Some of these devices are already commercially
available and more are on the way. Several of these biosensors, like the breathalyzer, rely on relatively
standard fuel-cell technology (i.e., converting chemical energy into electricity through redox
reactions) to effectively count the number of ethanol molecules that evaporate during perspiration
from the epidermal layer of the skin in near-continuous time [4]. Figure 1 shows two of these TAC
measuring devices: The WrisTAST M7 developed by Giner, Inc. in Waltham, MA, and the SCRAM
CAM® (Secure Continuous Remote Alcohol Monitor) developed by Alcohol Monitoring Systems,
Inc. (AMS) in Littleton, Colorado.

Figure 1. WrisTAST M7 (left) and SCRAM CAM® (right) transdermal alcohol biosensors.

Historically, researchers, clinicians, and the courts have always relied on BrAC or, when available,
BAC. Consequently, in order to make TAC biosensors practical and accepted by the alcohol
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community, reliable and consistent means for converting TAC into equivalent BrAC or BAC must be
developed, and this involves challenges that must be dealt with as indicated previously. In the past,
our approach to developing a method for converting TAC into BrAC or BAC was based on
deterministic methods for estimating parameters in distributed parameter systems, such as those
described in [5, 6]. Our earlier work along these lines has been reported in, for example, [7–9]. In
these treatments, a forward model in the form of a one-dimensional diffusion equation based on
Fick’s law [10] with BrAC as the input and TAC as the output was first calibrated (i.e., fit) using
BrAC and TAC data collected from the patient or research subject in the clinic or laboratory during
what is known as a controlled alcohol challenge. Then, after the same patient or research subject has
worn the TAC sensor in the field for an extended period of time (e.g., days, weeks, or even months),
the TAC data is downloaded, and the fit forward model is used to deconvolve the BrAC or BAC input
from the observed TAC output.

In order to eliminate the calibration process, we developed a population model-based approach
wherein the parameters in the model were assumed to be random. Then, rather than fitting the values
of the parameters themselves, their distributions were estimated based on BrAC and TAC data from
a cohort of individuals (see, for example, [11–17]). We have also developed a number of physics-
informed (based on the first principles diffusion-based model given in (1.1)–(1.5) below) data-based
machine learning schemes using hidden Markov models, generative adversarial and long short-term
memory neural network models for estimating BrAC from biosensor TAC data, which are also trained
using population data and do not require individual calibration [18–20].

In all of our approaches to the TAC to BAC/BrAC conversion problem, the underlying model was
taken to be based on the first principles physics based initial-boundary value problem for a parabolic
partial differential equation. This will also be the basic model to which we will direct our efforts in the
present treatment. Transformed to be in terms of dimensionless variables, the model is given by

∂x
∂ t

(t,η) = q1
∂ 2x
∂η2 (t,η), 0 < η < 1, t > 0, (1.1)

q1
∂x
∂η

(t,0) = x(t,0), t > 0, (1.2)

q1
∂x
∂η

(t,1) = q2u(t), t > 0, (1.3)

x(0,η) = x0, 0 < η < 1, (1.4)
y(t) = x(t,0), t > 0, (1.5)

where t and η are the temporal and spatial variables, respectively, and x(t,η) indicates the
concentration of ethanol in the epidermal layer of the skin at time t and depth η , where η = 0 is at the
skin surface and η = 1 is at the boundary between the epidermal and dermal layers of the skin. The
input to the system is u(t), which is the BrAC/BAC at time t, and the output is y(t), which is the TAC
at time t. Equation (1.1) represents the transport of ethanol through the epidermal layer of the skin.
The boundary conditions (1.2) and (1.3) represent respectively the evaporation of ethanol at the skin
surface and the flux of ethanol across the boundary between the epidermal and dermal layers. It is
assumed that there is no alcohol in the epidermal layer of the skin at time t = 0, so the initial
condition (1.4) is x0(η) = 0, 0 < η < 1. Finally, the output Eq (1.5) represents the TAC level
measured by the biosensor at the skin surface.
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The parameters in the system (1.1)–(1.5) that will be assumed to be random are q1 and q2, which
represent respectively the normalized diffusivity and the normalized flux gain at the boundary between
the dermal and epidermal layers. The values or distributions of these parameters are assumed to depend
on environmental conditions, the particular sensor being used, and the physiological characteristics of
the individual wearing the sensor. The parameter vector is qqq = (q1,q2) ∈ Q, where Q is assumed to be
a compact subset of R+×R+ with metric d.

In population modeling, we can statistically classify the methods as parametric or nonparametric.
In the parametric approach, we assume that the general structure of the distribution is known a-priori
but with unknown parameters. Then, for example, if we know that the distribution is normal with
unknown mean and variance, the estimation problem is to estimate these two unknown parameters.
On the other hand; in the nonparametric approach, the structure of the distribution is assumed to be
unknown, and the problem is to estimate the distribution itself. In either of these paradigms, different
statistical approaches to the estimation problem can be taken. For example, in [15–17], a parametric
least squares naive pooled data approach was used, while in [21,22], the approach was nonparametric.
In [12], a Bayesian framework was developed, and in the present treatment we consider a mixed
effects (see, for example, [23–25]) maximum likelihood-based statistical model. In the mixed effects
model, it is assumed that observations are specific to a single individual plus a random error. The
mixed effects model is a combination of the fixed-effects model, which describes the characteristics
for an average individual in the population, and the random-effects model, which describes the
inter-individual variability [26]. An overview of these different statistical approaches in the context of
pharmacokinetics can be found in [27].

While TAC and BrAC are related, they are not precisely equivalent in terms of quantification.
BrAC serves as a reliable indicator of BAC, offering valuable quantitative insights into the immediate
impact of alcohol on judgment, motor skills and cognition. On the contrary, TAC lags behind BrAC
because it must pass through the skin before measurement. TAC levels exhibit variability among
individuals, devices and across drinking episodes, in contrast to the relative consistency of BrAC
across different people and conditions. Consequently, interpreting TAC in relation to real-time blood
alcohol levels becomes challenging, limiting its usefulness as a quantitative alcohol measure.
Therefore, having a method to estimate BrAC from TAC would enhance its practicality for
researchers, healthcare professionals and individuals seeking meaningful and time-sensitive
information about their alcohol levels. The inverse problem of estimating the input BrAC signal u to
the system (1.1)–(1.5) based on observations of the TAC output signal y is the central focus of our
team’s research effort. In our treatment here, we consider only the problem of estimating the
distribution of the random parameters in the population model and how the uncertainty in the
parameters propagates through the system of Eqs (1.1)–(1.5) to the TAC output y. Once the
distributions of the random parameters in the the model (1.1)–(1.5) have been estimated, we have
previously developed (and continue to investigate) a number of deconvolution or inverse filtering
methods that can then be used to obtain an estimate for the BrAC signal along with a credible or error
band that result from the uncertainty in the model parameters as described by their estimated
distributions. We have looked at a number of approaches including frequency domain, Bayesian,
linear-quadratic Gaussian compensator, maximum likelihood, autoregressive moving average
(ARMA) and nonlinear least squares based techniques [11, 28–30].

In addition to the work of our group on TAC to BAC/BrAC conversion cited above, other researchers
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have also been looking at this problem and have tried a number of different approaches. For example,
in [31, 32], a more traditional approach based on standard linear regression techniques was developed
and discussed. A number of ideas from the machine learning literature have also been considered.
In [33], a scheme based on random forests was used to recover BrAC from TAC, and in our group,
there are the machine learning based treatments cited earlier [18–20].

An outline of the remainder of the paper is as follows. In Section 2, we provide a summary of the
Prohorov metric on the set of probability measures as it was used by Banks and his coauthors in [21].
In Section 3, we define our mathematical model in the form of a random discrete-time dynamical
system and we define the maximum likelihood estimator for the distribution of the random
parameters. In Section 4, we establish the existence and consistency of the maximum likelihood
estimator for the distribution of the random parameters, while in Section 5, we demonstrate the
convergence of finite dimensional approximations for our estimator. In Section 6, we summarize
results for abstract parabolic systems, their finite dimensional approximation and an associated
convergence theory. In Section 7, the application of our scheme to the transdermal transport of
alcohol is presented and discussed. This includes numerical studies for two examples, one involving
simulated data and the other actual data collected in the laboratory of one of the coauthors, Dr. Susan
Luczak in the Department of Psychology at University of Southern California (USC). For the
simulated data example in Section 7.1, we are able to observe the convergence of the estimated
distribution of the random parameter vector qqq = (q1,q2) to the “true” distribution as the number of
drinking episodes increases, as the number of Dirac measure nodes increases and as the level of
discretization in the finite dimensional approximations increases. In the actual data example discussed
in Section 7.2, we apply the leave-one-out cross-validation (LOOCV) method by first estimating the
distribution of the parameter vector qqq using a training set, and then estimating the TAC output using
the estimated distribution and the BrAC input of a testing episode.

2. Prohorov metric framework

Banks and his coauthors developed a framework for estimation of the probability measure for
random parameters in continuous-time dynamical systems based on the Prohorov metric [21]. Here,
we summarize the Prohorov metric and its properties.

Let Q be a Hausdorff metric space with metric d. Define

Cb(Q) = { f : Q → R | f is bounded and continuous},

and given any probability measure P ∈P(Q), where P(Q) denotes the set of all probability measures
defined on ΣQ, the Borel sigma algebra on Q, and some ε > 0, an ε-neighborhood of P is defined by

Bε(P) =
{

P̃
∣∣∣∣
∣∣∣∣∣
∫

Q
f (qqq)dP̃(qqq)−

∫
Q

f (qqq)dP(qqq)

∣∣∣∣∣< ε, for all f ∈Cb(Q)

}
.

Let E ∈ ΣQ, and define the ε-neighborhood of E by

Eε = {q̃qq ∈ Q | d(q̃qq,E)< ε}= {q̃qq ∈ Q | inf
qqq∈E

d(qqq,q̃qq)< ε}.
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Given two probability measures, P and P̃ in P(Q), the Prohorov metric ρ on P(Q)×P(Q) is
defined such that

P̃ ∈ Bε(P) ⇐⇒ ρ(P, P̃)< ε,

where

ρ(P, P̃) = inf{ε > 0 | P̃(E)≤ P(Eε)+ ε and P(E)≤ P̃(Eε)+ ε, for all E ∈ ΣQ}.

It can be shown that (P(Q),ρ) is a metric space. Also, the Prohorov metric metrizes the weak
convergence of measures, i.e., given a sequence of measures PM ∈ P(Q), for all M = 1,2, . . . , and
P ∈P(Q),

PM
w∗
−→ P ⇐⇒ ρ(PM,P)→ 0.

It is important to note that the weak∗ topology and the weak topology are equivalent on the space
of probability measures.

For some nqqq, Q ⊆ Rnqqq and P ∈P(Q), consider the random vector X : Q → Rnqqq on the probability
space (Q,ΣQ,P) given by X(qqq) = qqq for qqq ∈ Q. The cumulative distribution function for X is given
by FX(q1, . . . ,qn) = P(X ∈ ×nqqq

ℓ=1(−∞,qℓ]) = P(×nqqq
ℓ=1{(−∞,qℓ]∩Q}). In this case, it follows that if

PM,P0 ∈ (P(Q), ρ), for M = 1,2, . . . , then ρ(PM,P0) → 0 if and only if FXM → FX0 at all points of
continuity of FX0 . Consequently, Prohorov metric convergence and weak and weak∗ convergence in
P(Q) are also referred to as convergence in distribution.

If qqq1,qqq2 ∈ Q, then ρ(δqqq1,δqqq2) = min{d(qqq1,qqq2),1}, where δqqq j ∈ D = {δqqq | qqq ∈ Q}, the space of
Dirac measures on Q, where for all E ∈ ΣQ,

δqqq(E) =

{
1 if qqq ∈ E

0 if qqq < E
.

The metric space (P(Q),ρ) is separable if and only if the metric space (Q,d) is separable. The
sequence {qqq j}∞

j=1 is Cauchy in (Q,d) if and only if the sequence {δqqq j}∞
j=1 is Cauchy in (P(Q),ρ).

We also have that (Q,d) is complete if and only if (P(Q),ρ) is complete, and (Q,d) is compact if and
only if (P(Q),ρ) is compact. The details and proofs can be found in [21].

Assume the metric space (Q,d) is separable and let Qd = {qqq j}∞
j=1 be a countable dense subset of

Q. Define the dense (see [21]) subset of P(Q), P̃d(Q), as

P̃d(Q) = {P ∈P(Q) | P =
M

∑
j=1

p jδqqq j ,qqq j ∈ Qd,M ∈ N, p j ∈ [0,1]∩Q,
M

∑
j=1

p j = 1}, (2.1)

the collection of all convex combinations of Dirac measures on Q with rational weights p j at nodes
qqq j ∈ Qd , and for each M ∈ N let

PM(Q) = {P ∈ P̃d(Q) | P =
M

∑
j=1

p jδqqq j ,qqq j ∈ {qqq j}M
j=1}.
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3. The mathematical model

Consider the following discrete-time mathematical model for the ith subject at time-step k

xk,i(qqqi) = gk−1(xk−1,i(qqqi),uk−1,i;qqqi), k = 1, . . . ,ni, i = 1, . . . ,m,

x0,i = φ0,i, i = 1, . . . ,m,

where qqqi is the ith subject’s parameter vector in Q, denoting the set of admissible parameters, gk−1 :
H×Rν ×Q →H, H is in general an infinite dimensional Hilbert space, and uk−1,i ∈ Rν is the input.
The output is given by

yk,i(qqqi) = hk(xk,i(qqqi),φ0,i,uk,i;qqqi), k = 1, . . . ,ni, i = 1, . . . ,m,

where hk : H×H×Rν ×Q → R.
For the mixed effects model, we define

Yk,i = yk,i(qqqi)+ ek,i, k = 1, . . . ,ni, i = 1, . . . ,m, (3.1)

where for each i = 1,2, . . . ,m, ek,i are independent and identically distributed (i.i.d.) with mean zero,
variance σ2 and ek,i ∼ ϕ , k = 1,2, . . . ,ni, where ϕ is a density with respect to a sigma finite measure
µ on R and assumed to be continuous on R. We assume that the random vectors [e1,i, . . . ,eni,i] are
independent with respect to i, i = 1,2, . . . ,m; that is, the error is independent across individuals and
conditionally independent within individuals (i.e., given qqqi). For each i = 1,2, . . . ,m, let
YYY i = [Y1,i,Y2,i, . . . ,Yni,i]

T , yyyi(qqqi) = [y1,i(qqqi),y2,i(qqqi), . . . ,yni,i(qqqi)]
T , eeei = [e1,i,e2,i, . . . ,eni,i]

T and rewrite
(3.1) as

YYY i = yyyi(qqqi)+eeei, i = 1, . . . ,m.

Then, for i = 1,2, . . . ,m, YYY i are independent with YYY i ∼ fi(·;qqqi) : Rni → R, where

fi(vvv;qqqi) =
ni

∏
k=1

ϕ(vk − yk,i(qqqi)), i = 1, . . . ,m, (3.2)

where vvv = [v1,v2, . . . ,vni]
T ∈ Rni . Let P ∈ P(Q) denote a probability measure on ΣQ, where P(Q)

denotes the set of all probability measures defined on ΣQ, and let P0 ∈P(Q) be the “true” distribution
of the random vector qqqi. The goal is to find an estimate of P0. In order to generate an estimator
for P0 and establish theoretical results and computational tools, we use the nonparametric maximum
likelihood (NPML) approach introduced by Lindsay and Mallet in [34, 35], as well as the Prohorov
metric-based framework on P(Q) introduced by Banks and his coauthors in [21], summarized in
Section 2.

For P ∈P(Q) and i = 1,2, . . . ,m, let

Li(P;YYY i) =
∫

Q
fi(YYY i;qqqi)dP(qqqi)

=
∫

Q

ni

∏
k=1

ϕ(Yk,i −hk(xk,i(qqqi),φ0,i,uk,i;qqqi))dP(qqqi) (3.3)
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be the contribution of the ith subject to the likelihood function

Lnnn,m(P;YYY ) =
m

∏
i=1

Li(P;YYY i)

=
m

∏
i=1

∫
Q

fi(YYY i;qqqi)dP(qqqi)

=
m

∏
i=1

∫
Q

ni

∏
k=1

ϕ(Yk,i −hk(xk,i(qqqi),φ0,i,uk,i;qqqi))dP(qqqi), (3.4)

where nnn = {ni}m
i=1 and YYY = {YYY i}m

i=1. The goal is to find P that maximizes the likelihood function.
Define the estimator

Pnnn,m = arg max
P∈P(Q)

Lnnn,m(P;YYY )

= arg max
P∈P(Q)

m

∏
i=1

∫
Q

fi(YYY i;qqqi)dP(qqqi)

= arg max
P∈P(Q)

m

∏
i=1

∫
Q

ni

∏
k=1

ϕ(Yk,i −hk(xk,i(qqqi),φ0,i,uk,i;qqqi))dP(qqqi). (3.5)

Let ŷk,i be realizations of the random variables Yk,i, and define

P̂nnn,m = arg max
P∈P(Q)

Lnnn,m(P; ŷ̂ŷy)

= arg max
P∈P(Q)

m

∏
i=1

∫
Q

fi(ŷ̂ŷyi;qqqi)dP(qqqi)

= arg max
P∈P(Q)

m

∏
i=1

∫
Q

ni

∏
k=1

ϕ(ŷk,i −hk(xk,i(qqqi),φ0,i,uk,i;qqqi))dP(qqqi), (3.6)

where ŷ̂ŷy = {ŷ̂ŷyi}m
i=1, with ŷ̂ŷyi = [ŷ1,i, ŷ2,i, . . . , ŷni,i]

T .
The results of Lindsay and Mallet in [34,35] states that the maximum likelihood estimator P̂nnn,m can

be found in the class of discrete distributions with at most m support points; that is, P̂nnn,m ∈ PM(Q),
where M ≤ m. So, we define our approximating estimator over the set PM(Q) where M denotes the
number of nodes, {qqq j}M

j=1. As a result, the optimization is over a finite set of parameters, being the
rational weights {p j}M

j=1.
Also, we cannot exactly compute the maximum likelihood estimator P̂nnn,m since yk,i must be

approximated numerically by yN
k,i using a Galerkin numerical scheme with N denoting the level of

discretization. Thus, our approximating estimator is

P̂N
nnn,m,M = arg max

P∈PM(Q)
LN

nnn,m(P; ŷ̂ŷy)

= arg max
P∈PM(Q)

m

∏
i=1

∫
Q

f N
i (ŷ̂ŷyi;qqqi)dP(qqqi)

= arg max
P∈PM(Q)

m

∏
i=1

∫
Q

ni

∏
k=1

ϕ(ŷk,i −hk(xN
k,i(qqqi),φ0,i,uk,i;qqqi))dP(qqqi). (3.7)
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4. Existence and consistency of the maximum likelihood estimator

In [34], the existence and uniqueness of a maximum likelihood estimator of a mixing distribution
using the geometry of mixture likelihoods was established. Similarly, in [35], the existence and
uniqueness of the maximum likelihood estimator for the distribution of the parameters of a random
coefficient regression model was established. Here, we provide an existence argument based on the
maximization of a continuous function over a compact set.

The following theorem establishes the existence of the estimator P̂nnn,m in (3.7), obtained from the
realizations {ŷk,i}, k = 1, . . . ,ni, i = 1, . . . ,m of the random variables
{Yk,i}, k = 1, . . . ,ni, i = 1, . . . ,m. This is sufficient for establishing the existence of the maximum
likelihood estimator Pnnn,m in (3.5).

Theorem 4.1. For i = 1,2, . . . ,m, let Li be given by Eq (3.3) and let Lnnn,m(P; ŷ̂ŷy) be given by equation
(3.4), where ŷ̂ŷy= {ŷ̂ŷyi}m

i=1 with ŷ̂ŷyi = [ŷ1,i, ŷ2,i, . . . , ŷni,i]
T . Assume that for each ŷ̂ŷyi, we have a continuous

function Li(.; ŷ̂ŷyi) : P(Q)→ R, and also for each P ∈P(Q) we have a measurable function Li(P; .) :
Rni → R. Then there exists a measurable function P̂nnn,m : ∏

m
i=1R

ni →P(Q) such that

Lnnn,m(P̂nnn,m; ŷ̂ŷy) = sup
P∈P(Q)

Lnnn,m(P; ŷ̂ŷy).

Proof. The theorem can be proven in a similar way as in [21] with the difference that we are taking the
sup (instead of the inf) of a continuous function over a compact set.

In order to establish the consistency of the maximum likelihood estimator Pnnn,m, we show that
ρ(Pnnn,m,P0) converges almost surely to zero. We do this by applying a theorem by Kiefer and
Wolfowitz in [36], establishing that the nonparametric maximum likelihood approach is statistically
consistent. In other words, as the number of subjects m gets larger, the estimator Pnnn,m converges in
probability to P0, the “true” distribution in the sense of the Prohorov metric, or weakly or in
distribution. Here, we have set up our problem in a way that makes establishing the consistency a
straightforward application of the consistency result in [36].

Theorem 4.2. For each i = 1, ...,m, assume that the map qqqi 7→ fi(vvv;qqqi) from Q into R is continuous for
each vvv ∈ Rni , and fi(vvv;qqqi) is measurable in vvv for any qqqi ∈ Q, where fi is given by (3.2). Assume further
that P0 is identifiable; that is, for P1 ∈P(Q) with P1 , P0, we have

m

∏
i=1

∫ zzzi

0

∫
Q

ni

∏
k=1

ϕ(zk −hk(xk,i(qqqi),φ0,i,uk,i;qqqi))dP1(qqqi)dµ
ni

,
m

∏
i=1

∫ zzzi

0

∫
Q

ni

∏
k=1

ϕ(zk −hk(xk,i(qqqi),φ0,i,uk,i;qqqi))dP0(qqqi)dµ
ni,

for at least one zzz = [zzzT
1 , . . . ,zzz

T
m]

T ∈ R∑
m
i=1 ni , where for i = 1,2, . . . ,m, zzzi = [z1, . . . ,zni]

T ∈ Rni , and the
technical integrability assumption holds; that is, for any P ∈P(Q),

lim
ε↓0

EP0

[
log

sup
P̃∈Bε (P)

Li(P̃;YYY i)

Li(P0;YYY i)

]+
< ∞,
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where Li is given by Eq (3.3). Then, as m → ∞, ρ(Pnnn,m,P0)→ 0 almost surely (i.e., with probability
1), and therefore in probability as well.

Proof. The assumptions we have made in the previous section and in the statement of the theorem are
sufficient to argue that Assumptions 1–5 in [36] are satisfied. The conclusion of the consistency result
in [36] is that the cumulative distribution functions Fnnn,m corresponding to Pnnn,m converge almost surely
to the cumulative distribution function F0 corresponding to P0 at every point of continuity of F0. It
follows that ρ(Pnnn,m,P0) → 0 almost surely (i.e., with probability 1); thus, in probability as well, as
m → ∞, and the theorem is proven.

5. Convergence of the finite dimensional approximations

We want to establish the convergence of the finite dimensional maximum likelihood estimators to
the maximum likelihood estimator corresponding to the infinite dimensional model. As mentioned
earlier, we cannot actually compute P̂nnn,m in (3.6) and, consequently, we approximate it by P̂N

nnn,m,M in
(3.7). Consider the following assumptions:

A1. For all nnn, m, and N, the map P 7→LN
nnn,m(P; ŷ̂ŷy) is a continuous map.

A2. For any PM,P ∈P(Q), M = 1,2, . . . , such that ρ(PM,P)→ 0, we have LN
i (PM; ŷ̂ŷyi)→Li(P; ŷ̂ŷyi) as

N,M → ∞ for i = 1, . . . ,m.

A3. For all P ∈P(Q) and i = 1, . . . ,m, LN
i (PM; ŷ̂ŷyi) and Li(P; ŷ̂ŷyi) are uniformly bounded.

Theorem 5.1. Under assumptions A1–A3, there exists maximizers P̂N
nnn,m,M given by Eq (3.7). In

addition, there exists a subsequence of P̂N
nnn,m,M that converges to P̂nnn,m given by Eq (3.6) as M,N → ∞.

Proof. For all nnn, m, and N, by continuity of the map P 7→ LN
nnn,m(P; ŷ̂ŷy) per assumption A1 and

compactness of (P(Q),ρ), we can conclude that P̂N
nnn,m,M exists.

In [21], it is shown that P̃d(Q) given by Eq (2.1) is a dense subset of P(Q). Thus, for M = 1,2, . . . ,
construct a sequence of probability measures PM ∈PM(Q)⊂ P̃d(Q)⊂P(Q), such that ρ(PM,P)→ 0
in P(Q). Then, by assumptions A2 and A3, we have∣∣∣∣LN

nnn,m(PM; ŷ̂ŷy)−Lnnn,m(P; ŷ̂ŷy)
∣∣∣∣=
∣∣∣∣∣ m

∏
i=1

LN
i (PM; ŷ̂ŷyi)−

m

∏
i=1

Li(P; ŷ̂ŷyi)

∣∣∣∣∣→ 0.

Consequently, LN
nnn,m(PM; ŷ̂ŷy)→Lnnn,m(P; ŷ̂ŷy) as M,N → ∞.

In addition, by definition, for each nnn, m and N and for all PM ∈PM(Q), we have

LN
nnn,m(P̂

N
nnn,m,M; ŷ̂ŷy)≤LN

nnn,m(PM; ŷ̂ŷy). (5.1)

In addition, by compactness of P(Q), there exists a subsequence of P̂N
nnn,m,M that converges to P̂nnn,m as

M,N → ∞. Thus, by taking the limit in (5.1) as M,N → ∞, for all P ∈P(Q), we find that

Lnnn,m(P̂nnn,m; ŷ̂ŷy)≤Lnnn,m(P; ŷ̂ŷy);

thus, P̂nnn,m = arg max
P∈P(Q)

Lnnn,m(P; ŷ̂ŷy) as given in Eq (3.6).
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In practice, to achieve a desired level of accuracy, M and N are fixed sufficiently large. We choose
a sufficiently large value for N. How large that needs to be, of course, depends on the particular
numerical discretization scheme chosen. The most common choice would be using a Galerkin-based
method to the approximate yk,i by yN

k,i, where

yN
k,i = hk(xN

k,i(qqqi),φ
N
0,i,uk,i;qqqi),

which denotes the discretization of the output of the model.
We also choose a sufficiently large value for M, the number of nodes, {qqq j}M

j=1. Therefore, the
optimization problem is reduced to a standard constrained estimation problem over Euclidean M-space,
in which we determine the values of the weights p j at each node qqq j with the constraints that they all be
nonnegative and sum to one. By Eq (3.7) it follows that

P̂N
nnn,m,M = arg max

P∈PM(Q)
LN

nnn,m(P; ŷ̂ŷy)

= arg max
P∈PM(Q)

m

∏
i=1

∫
Q

ni

∏
k=1

ϕ(ŷk,i − yN
k,i(qqqi))dP(qqqi)

= arg max
P∈PM(Q)

m

∏
i=1

∫
Q

ni

∏
k=1

ϕ(ŷk,i −hk(xN
k,i(qqqi),φ

N
0,i,uk,i;qqqi))dP(qqqi)

= arg max
p̃pp∈R̃M

m

∏
i=1

M

∑
j=1

ni

∏
k=1

ϕ(ŷk,i −hk(xN
k,i,φ

N
0,i,uk,i;qqq j))p j

= arg max
p̃pp∈R̃M

m

∏
i=1

M

∑
j=1

p j

ni

∏
k=1

ϕ(ŷk,i −hk(xN
k,i,φ

N
0,i,uk,i;qqq j)),

where p̃pp = (p1, . . . , pM) ∈ R̃M = {p̃pp | p j ∈ R+,∑M
j=1 p j = 1}.

We note that computing P̂N
nnn,m,M involves high order products of very small numbers that, not

unexpectedly, can cause numerical underflow. In order to mitigate this, we maximize the
log-likelihood function instead and rewrite it in a form that lends itself to the use of the MATLAB
optimization routine logsumexp as follows:

P̂N
nnn,m,M = arg max

p̃pp∈R̃M
log
( m

∏
i=1

M

∑
j=1

p j

ni

∏
k=1

ϕ(ŷk,i −hk(xN
k,i,φ

N
0,i,uk,i;qqq j))

)
(5.2)

= arg max
p̃pp∈R̃M

m

∑
i=1

log
( M

∑
j=1

p j

ni

∏
k=1

ϕ(ŷk,i −hk(xN
k,i,φ

N
0,i,uk,i;qqq j))

)

= arg max
p̃pp∈R̃M

m

∑
i=1

log
( M

∑
j=1

exp
(

log
(

p j

ni

∏
k=1

ϕ(ŷk,i −hk(xN
k,i,φ

N
0,i,uk,i;qqq j))

)))

= arg max
p̃pp∈R̃M

m

∑
i=1

log
( M

∑
j=1

exp
(

log(p j)+
ni

∑
k=1

log
(
ϕ(ŷk,i −hk(xN

k,i,φ
N
0,i,uk,i;qqq j))

)))
.
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6. Abstract parabolic systems

In order to apply our estimation theory to Eqs (1.1)–(1.5), our model for the transdermal transport
of ethanol given in Section 1, we reformulate it as an abstract parabolic system. We briefly describe
what an abstract parabolic system is, its properties and its finite dimensional approximation, and then
we show how assumptions A1–A3 are satisfied for such a system.

Let H and V be Hilbert spaces with V densely and continuously embedded in H. Pivoting on H, it
follows that H is therefore densely and continuously embedded in the dual of V , V ∗. This is known
as a Gelfand triple and is generally written as V ↪→ H ↪→ V ∗ [37]. An abstract parabolic system is a
dynamical system of the following form

< ẋ,ψ >V ∗,V +a(qqq;x,ψ) =<BBB(qqq)u,ψ >V ∗,V , ψ ∈V,

x(0) = x0, (6.1)
y(t) =CCC(qqq)x(t),

where < ·, ·>V ∗,V denotes the duality pairing between V ∗ and V , Q is as defined in Section 1, and for
each qqq ∈ Q, a(qqq; ., .) : V ×V → C is a sesquilinear form satisfying the following three assumptions:

B1. (Boundedness) There exists a constant α0 such that for all ψ1,ψ2 ∈V , we have

|a(qqq;ψ1,ψ2)| ≤ α0 ∥ ψ1 ∥V∥ ψ2 ∥V .

B2. (Coercivity) There exists λ0 ∈ R and µ0 > 0 such that for all ψ ∈V , we have

a(qqq;ψ,ψ)+λ0|ψ|2H ≥ µ0 ∥ ψ ∥2
V .

B3. (Continuity) For all ψ1,ψ2 ∈V and qqq,q̃qq ∈ Q, we have

|a(qqq,ψ1,ψ2)−a(q̃qq,ψ1,ψ2)| ≤ d(qqq,q̃qq) ∥ ψ1 ∥V∥ ψ2 ∥V .

In these assumptions, ∥ . ∥V and |.|H denote the norm on the spaces V and H, respectively. Further, in
(6.1), BBB(qqq) : Rν → V ∗, and CCC(qqq) : V → R are bounded linear operators with initial conditions x0 ∈ H,
input u ∈ L2([0,T ],Rν), and output y ∈ L2([0,T ],R).

It can be shown that the system in (6.1) has a unique solution in{
ψ | ψ ∈ L2([0,T ],V ), ψ̇ ∈ L2([0,T ],V ∗)

}
⊂C([0,T ],H)

using standard variational arguments (such as in [38]). However, we use a linear semigroup approach
to convert the system in (6.1) into a discrete-time state space model, and then use arguments from linear
semigroup theory [6, 39] to argue convergence of finite dimensional Galerkin-based approximations
and conclude that assumptions A1–A3 are satisfied.

Assumptions B1 and B2 yield that the form a(qqq; ., .) defines a bounded linear operator AAA(qqq) :V →V ∗

given by

<AAA(qqq)ψ1,ψ2 >V ∗,V=−a(qqq;ψ1,ψ2),
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for ψ1,ψ2 ∈V . If we restrict the operator AAA(qqq) to the subspace

Dom(AAA(qqq)) = {ψ ∈V | AAA(qqq)ψ ∈ H},

it becomes the infinitesimal generator of a holomorphic or analytic semigroup {eAAA(qqq)t | t ≥ 0} of
bounded linear operators on H. The operator AAA(qqq) is referred to as being regularly dissipative [5,6,37].
Moreover, this semigroup can also be extended and restricted to be a holomorphic semigroup on V ∗

and V , respectively [5, 37].
The system in (6.1) can now be written in state space form with time invariant operators AAA(qqq), BBB(qqq)

and CCC(qqq) as

ẋ(t) =AAA(qqq)x(t)+BBB(qqq)u(t),

x(0) = x0, (6.2)
y(t) =CCC(qqq)x(t).

The operator form of the variation of constants formula then yields what is known as a mild solution
of (6.2) given by

x(t;qqq) = eAAA(qqq)tx0 +
∫ t

0
eAAA(qqq)(t−s)BBB(qqq)u(s)ds, t ≥ 0, (6.3)

y(t;qqq) =CCC(qqq)x(t;qqq).

To obtain the corresponding discrete or sampled time form of the system given in (6.2) or (6.3), let
τ > 0 be the length of the sampling interval and consider strictly zero-order hold inputs of the form
u(t) = uk−1, t ∈ [(k− 1)τ,kτ), k = 1,2, . . . . Then, let xk = x(kτ) and yk = y(kτ), k = 1,2, . . . . By
applying (6.3) on each subinterval [(k−1)τ,kτ], k = 1,2, . . . , we obtain the discrete-time dynamical
system given by

xk = ÂAA(qqq)xk−1 + B̂BB(qqq)uk−1, k = 1,2, . . . , (6.4)

yk = ĈCC(qqq)xk, k = 1,2, . . . , (6.5)

where x0 ∈V , ÂAA(qqq) = eAAA(qqq)τ , B̂BB(qqq) =
∫

τ

0 eAAA(qqq)sBBB(qqq)ds and ĈCC(qqq) =CCC(qqq).
Using a standard Galerkin approach [40], we can approximate the discrete-time system given in

(6.4)–(6.5) by a sequence of approximating finite dimensional discrete-time systems in a sequence of
finite dimensional subspaces V N of V . In order to argue convergence, we will require the following
additional assumption concerning the subspaces V N .

C1. (Approximation) For every x ∈V , there exists xN ∈V N such that ∥ x− xN ∥V→ 0 as N → ∞.

We consider the sequence of approximating finite dimensional discrete-time systems by

xN
k = ÂAA

N
(qqq)xN

k−1 + B̂BB
N
(qqq)uk−1, k = 1,2, . . . ,

yN
k = ĈCC

N
(qqq)xN

k , k = 1,2, . . . ,

where ÂAA
N
(qqq) = eAAAN(qqq)τ , B̂BB

N
(qqq) =

∫
τ

0 eAAAN(qqq)sBBBN(qqq)ds and ĈCC
N
(qqq)xk = ĈCC(qqq), where for each qqq ∈ Q, AAAN(qqq)

is the linear operator on V N obtained by restricting the form a(qqq; ., .) to V N ×V N , i.e., for ψN
1 ,ψ

N
2 ∈V N ,

<AAAN(qqq)ψN
1 ,ψ

N
2 >V ∗,V=−a(qqq;ψ

N
1 ,ψ

N
2 ).
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In addition, BBBN(qqq) = πNBBB(qqq), where in this definition, πN is the natural extension of the orthogonal
projection operator πN : H →V N to V ∗ from its dense subspace H. We also set xN

0 = πNx0 ∈V N .
Under the assumptions B1–B3 and C1 using the Trotter-Kato approximation theorem from the

theory of linear semigroups of operators [39,41], we were able to conclude that limN→∞ ∥ xN
k −xk ∥V= 0

and limN→∞ |yN
k − yk|= 0 for each x0 ∈V , and uniformly in qqq for qqq ∈ Q and k ∈ {1,2, . . . ,K}, for any

fixed K ∈ N+.
We can now use the results described in the previous paragraphs to show that an abstract parabolic

system satisfies assumptions A1–A3 given in Section 5. To show that the assumption A1 is satisfied,
we need to show that for all nnn, m, and N, the map P 7→ LN

nnn,m(P; ŷ̂ŷy) is a continuous map. It suffices
to show that for any fixed nnn, m, and N, and for any sequence of probability measures PM, such that
ρ(PM,P)→ 0 in P(Q), we have LN

nnn,m(PM; ŷ̂ŷy)→LN
nnn,m(P; ŷ̂ŷy) as M → ∞. Toward this end, we see that∣∣∣∣LN

nnn,m(PM; ŷ̂ŷy)−LN
nnn,m(P; ŷ̂ŷy)

∣∣∣∣=
∣∣∣∣∣ m

∏
i=1

LN
i (PM; ŷ̂ŷyi)−

m

∏
i=1

LN
i (P; ŷ̂ŷyi)

∣∣∣∣∣
=

∣∣∣∣∣ m

∏
i=1

∫
Q

ni

∏
k=1

ϕ(ŷk,i − yN
k,i(qqqi))dPM(qqqi)

−
m

∏
i=1

∫
Q

ni

∏
k=1

ϕ(ŷk,i − yN
k,i(qqqi))dP(qqqi)

∣∣∣∣∣
→ 0,

by definition of the Prohorov metric. It follows that the assumption A1 is satisfied.
Next, we show that the assumption A2 is satisfied. We have that limN→∞ ∥ xN

k,i − xk,i ∥V= 0 and
limN→∞ |yN

k,i − yk,i| = 0 for each x0,i ∈ V , uniformly in qqqi for qqqi ∈ Q, k = 1, . . . ,ni, i = 1, . . . ,m. We
want to show that for any sequence of probability measures PM, such that ρ(PM,P)→ 0 in P(Q), and
for i = 1, . . . ,m, as M,N → ∞, we have LN

i (PM; ŷ̂ŷyi)→Li(P; ŷ̂ŷyi).
Recall that ϕ is assumed to be continuous. Let ε > 0. Choose N0 such that for N ≥ N0, and for

every M,
∣∣∣∫Q
(

∏
ni
k=1 ϕ(ŷk,i − yN

k,i(qqqi))−∏
ni
k=1 ϕ(ŷk,i − yk,i(qqqi))

)
dPM(qqqi)

∣∣∣< ε/2. Then, we have∣∣∣LN
i (PM; ŷ̂ŷyi)−Li(P; ŷ̂ŷyi)

∣∣∣
=
∣∣∣∫

Q

ni

∏
k=1

ϕ(ŷk,i − yN
k,i(qqqi))dPM(qqqi)−

∫
Q

ni

∏
k=1

ϕ(ŷk,i − yk,i(qqqi))dP(qqqi)
∣∣∣

≤
∣∣∣∫

Q

( ni

∏
k=1

ϕ(ŷk,i − yN
k,i(qqqi))−

ni

∏
k=1

ϕ(ŷk,i − yk,i(qqqi))
)
dPM(qqqi)

∣∣∣
+
∣∣∣∫

Q

ni

∏
k=1

ϕ(ŷk,i − yk,i(qqqi))dPM(qqqi)−
∫

Q

ni

∏
k=1

ϕ(ŷk,i − yk,i(qqqi))dP(qqqi)
∣∣∣

<
ε

2
+

ε

2
= ε,

where the second term is less than ε/2 by definition of the Prohorov metric. Consequently, the
assumption A2 is satisfied.
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Finally, we want to show that the assumption A3 is satisfied. We want to show that for all P ∈P(Q)
and for i= 1, . . . ,m, LN

i (PM; ŷ̂ŷyi) and Li(P; ŷ̂ŷyi) are uniformly bounded. Recall that the parameter space
Q is compact. Thus, for qqqi ∈ Q, and for each N, yN

k,i(qqqi) are uniformly bounded. Similarly, yk,i(qqqi) are
also uniformly bounded and we also have that |yN

k,i(qqqi)− yk,i(qqqi)| → 0 uniformly in qqqi for qqqi ∈ Q.
Therefore, we can conclude that the assumption A3 is satisfied.

7. Application to the transdermal transport of alcohol

To apply the results established in Section 6 to the system (1.1)–(1.5) in Section 1, the system must
first be written in weak form, then the parameter space Q, the Hilbert spaces H and V , the sesquilinear
form a(qqq; ., .) and the operators BBB(qqq) andCCC(qqq) must all be identified. Also, the approximating subspaces
V N must be chosen, and finally assumptions B1–B3 and C1 must all be shown to be satisfied.

The parameter space Q is assumed to be a compact subset of R+×R+ with any p-metric denoted
by dQ. Let x = (x1, . . . ,xn) ∈ Rn and y = (y1, . . . ,yn) ∈ Rn, then the p-metric is defined by

dp(x,y) =

(
n

∑
i=1

|xi − yi|p
)1/p

for any p ∈ [1,∞). For p = ∞, the p-metric is defined by

dp(x,y) = max
i=1,...,n

|xi − yi|.

Let H = L2(0,1) and V = H1(0,1) with their standard inner products and norms. It follows that
V ∗ = H−1(0,1) and the three spaces H, V and V ∗ form a Gelfand triple. To rewrite the system (1.1)–
(1.5) in weak form, we multiply by a test function ψ ∈V and integrate by parts to obtain

< ẋ(t),ψ >V ∗,V +
∫ 1

0
q1

∂x
∂η

(t,η)ψ ′(η)dη + x(t,0)ψ(t,0) = q2u(t)ψ(1),

where < ·, ·>V ∗,V denotes the duality pairing between V ∗ and V . Then, for qqq ∈ Q, u ∈R and ψ̃,ψ ∈V ,
we set

a(qqq; ψ̃,ψ) =
∫ 1

0
q1ψ̃

′(η)ψ ′(η)dη + ψ̃(0)ψ(0),

<BBB(qqq)u,ψ >V ∗,V = q2uψ(1),
CCC(qqq)ψ =CCCψ = ψ(0).

We can establish that assumptions B1–B3 are satisfied using arguments involving the Sobolev
embedding theorem (see [42]). Also, the operators BBB(qqq) and CCC(qqq) are continuous in the uniform
operator topology with respect to qqq ∈ Q. It follows from Section 6 that

gk−1(xk−1,i(qqqi),uk−1,i;qqqi) = ÂAA(qqqi)xk−1,i(qqqi)+ B̂BB(qqqi)uk−1,i, k = 1,2, . . . ,ni, i = 1, . . . ,m,

hk(xk,i(qqqi),φ0,i,uk,i;qqqi) = ĈCC(qqqi)xk,i(qqqi), k = 1, . . . ,ni, i = 1, . . . ,m,
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where ÂAA(qqq) = eAAA(qqq)τ , B̂BB(qqq) =
∫

τ

0 eAAA(qqq)sBBB(qqq)ds and ĈCC(qqq) =CCC(qqq), with τ > 0 which is the length of the
sampling interval.

Let V N , N = 1,2, . . . , be the span of the standard linear splines defined with respect to the uniform
mesh {0,1/N,2/N, . . . ,(N − 1)/N,1} on [0,1]. Then, assumption C1 is satisfied by standard
arguments for spline functions (see, for example, [43]). If for each i = 1,2, . . . ,m, we define xN

k,i and
yN

k,i as in (6.4)–(6.5), then by the arguments at the end of Section 6, we conclude that assumptions
A1–A3 are satisfied.

In the following two subsections, 7.1 and 7.2, we present the application of our scheme to the
transdermal transport of alcohol in two examples, one involving simulated data, and the other using
actual human subject data collected in the Luczak laboratory at USC. For the simulated data, we want
to show the convergence of the estimated distribution of the parameter vector qqq = (q1,q2) to the “true”
distribution as the number of drinking episodes increases, as the number of nodes increases and as the
level of discretization in the finite dimensional approximations increases. For the actual data we apply
the LOOCV method by first estimating the distribution of the parameter vector qqq using the training set,
and then we estimated the TAC output using the estimated distribution of the parameter vector qqq and
the BrAC input of the test set.

7.1. Example 1: Estimation based on simulation data

In this example, we estimate the distribution of the parameter vector qqq = (q1,q2) in the system
(1.1)–(1.5) by first simulating TAC data in MATLAB with the assumption that the two parameters q1
and q2 are i.i.d. with a Beta distribution, q1,q2 ∼ Beta(2,5). Thus, their joint cumulative distribution
function (cdf) is the product of their marginal Beta(2,5) cdfs.

From Eq (3.1), we have

Yk,i = yk,i(qqqi)+ ek,i, k = 1, . . . ,ni, i = 1, . . . ,m,

where m is the number of drinking episodes and yk,i(qqqi) is the observed TAC for the ith drinking episode
at time step k. We let P0 be the product of the cdfs of two independent Beta(2,5) distributions, and
ek,i ∼ N(0,10−6), k = 1, . . . ,ni, i = 1, . . . ,m. The reason for the small variance is because the noise
accounts for errors in the measurements caused by factors that result in small perturbations to the
measurements, such as humidity or temperature as external environmental factors or the level of skin
moisture or greasiness among different drinking episodes. It is assumed that these types of factors are
normally distributed, causing small variations to the measurements.

To approximate the PDE model for the TAC observations, we used the linear spline-based Galerkin
approximation scheme described in Section 6 with N equally spaced subintervals from [0,1] (see [15–
17]). We want to compute P̂N

nnn,m,M given by Eq (5.2), where qqq j = (q j1,q j2) is chosen as M uniform
meshgrid coordinates on [0,1]× [0,1]. We make the assumption that there is no alcohol in the epidermal
layer of the skin at time t = 0, so we let φ N

0,i = 0. The constrained optimization problem over Euclidean
M-space was solved using constrained optimization routine FMINCON (find minimum of constrained
nonlinear multivariable function) from the Optimization Toolbox in MATLAB applied to the negative
of the log-likelihood function.

We note that before turning to a mixed effects statistical model, we had considered an output or
observation that was aggregated TAC; in this case, the appropriate underlying statistical model was
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the naive pooled model (i.e., the data point for each drinking episode at a certain time is an
observation of the mean behavior plus a random error). However, it is not difficult to show that when
this observation is used, if the q1 and q2 are assumed to be independent, then their joint distribution is
not identifiable. Consequently, when the nonlinear least squares-based constrained optimization
problem is solved, the inherent ill-posedness of the inverse problem results in undesirable oscillations.
To mitigate this behavior, we had to introduce an appropriately weighted regularization term in the
performance index being minimized. One advantage of the mixed effects statistical model presented
here is that regularization is not required.

In order to demonstrate the consistency of our estimator, we show that as m, the number of drinking
episodes, increases, the estimated cdf of the parameter vector qqq = (q1,q2) approaches the “true” cdf,
the product of two Beta(2,5) cdfs. In order to simulate realistic longitudinal TAC vectors representing
data that might be collected by the TAC biosensor for an individual’s drinking episode, we used BrAC
data collected in the Luczak laboratory as the input to the model and generated random samples of q1
and q2, i.i.d. Beta(2,5) in MATLAB. Using the algorithm developed in the current paper, we estimated
the distribution of the random parameter vector by solving the optimization problem for different cases
based on the number of drinking episodes m and observed the convergence of the estimated distribution
to the “true” distribution as m increases.

To quantify this, let D be the sum of the squared differences at each node between the estimated and
the “true” distribution, the product of two Beta(2,5) cdfs. Let p j and b j be the weights at the node qqq j
of the estimated and “true” distribution, respectively. So, we have

D =
M

∑
j=1

(p j −b j)
2

representing the error in estimating the weights at each node. This is a metric being used to quantify that
the difference between the estimated distribution and the “true” distribution decreases as the number
of drinking episodes increases.

We fixed the number of nodes M and the level of discretization N sufficiently large. We set M =
400 and N = 128. We estimated the distribution of the parameter vector for different cases based on
different numbers of drinking episodes, m ∈ {1,3,7,9,16,42}, and calculated D for each case. Our
results are summarized in Table 1. We observed that as the number of drinking episodes m increases,
the sum of the squared differences at each node between the estimated distribution and the “true”
distribution D decreases.

In Figure 2, each row of the figure contains three different views of the same plot of the estimated
distribution and the “true” distribution (again, the product of two Beta(2,5) cdfs) for different numbers
of drinking episodes m = 7, m = 16 and m = 42 in the top, middle and bottom rows, respectively, with
the number of nodes set to M = 400 and the level of discretization to N = 128. We observe that as
m increases, our estimated distribution gets “closer” to the “true” distribution, which agrees with the
numerical results that are shown in Table 1.
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Table 1. Decrease in D, the sum of the squared differences at each node between the
estimated and the “true” distribution, with increasing m, the number of drinking episodes,
for fixed values of the number of nodes M = 400 and the level of discretization N = 128.

m D

1 39.0164
3 28.3091
7 8.3247
9 7.1750
16 3.5697
42 3.0337

Figure 2. Each row of the figure contains three different views of the same plot of the
estimated distribution and the “true” joint Beta(2,5) distribution for different numbers of
drinking episodes m= 7, m= 16 and m= 42 in the top, middle and bottom rows, respectively,
for a fixed number of nodes M = 400 and level of discretization N = 128. We observe that
as m increases from the top row to the bottom row, our estimated distribution gets “closer” to
the “true” distribution, which agrees with the numerical results that are shown in Table 1.

Next, we show that as the number of nodes M and the level of discretization N increases, the
normalized sum of squared differences at each node between the estimated and the “true” distribution
decreases.
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First, we fixed the level of discretization at N = 128 and we increased the number of nodes M. Let

D̄M =
1
M

M

∑
j=1

(p j −b j)
2.

In Table 2, we observe that for the fixed value of N = 128, as the number of nodes M increases, the
normalized sum of the squared differences at each node between the estimated distribution and the
“true” distribution D̄M decreases.

Table 2. Decrease in D̄M, the normalized sum of the squared differences at each node
between the estimated distribution and the “true” distribution, with increasing M, the number
of nodes, for a fixed value for the level of discretization N = 128.

M D̄M

25 0.03795
100 0.03025
225 0.02974
400 0.02081

Next, we fixed the number of nodes at M = 400 and we increased the level of discretization N. Let

D̄N =
1
N

M

∑
j=1

(p j −b j)
2.

In Table 3, we observe that for N = 128 fixed, as the number of nodes M increases, the normalized
sum of the squared differences at each node between the estimated distribution and the “true”
distribution D̄N decreases.

Table 3. Decrease in D̄N , the normalized sum of the squared differences at each node
between the estimated distribution and the “true” distribution, with increasing N, the level
of discretization, with the number of nodes fixed at M = 400.

N D̄N

4 1.22783
16 0.65644
64 0.18565
128 0.06504

The choice of the “true” distribution for q1 and q2 in the simulation case is the scatterplot of
samples for a set of 18 drinking episodes, including BrAC and TAC measurements of different
individuals obtained by a deterministic approach in [22]. However, the Beta(2,5) distribution was
chosen strictly for the purpose of demonstration. When applying our algorithm to actual clinic or lab
collected human subject data, a valuable feature of our developed methodology in using a
nonparametric approach is that we do not need to make any assumptions about the family of feasible
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distributions for the parameter vector unlike the parametric approach in [15–17]. In addition, the
independent and identically distributed assumption was also very simplistic given that q1 and q2
parameters depend on the same individual and environmental conditions at the time of measurements.
In the nonparametric approach, there is no need to make any assumptions about the distribution,
resulting in relaxing the restrictive assumption of the distribution being independent and identically
distributed. Thus, this assumption is relaxed in the flexible nonparametric approach used in the next
example.

7.2. Example 2: Estimation based on actual human subject data

The two datasets used in this example were obtained by two different alcohol biosensors: SCRAM
CAM® and WrisTASTM7 [44, 45]. We fixed the number of nodes at M = 400 and the level of
discretization at N = 128, both sufficiently large with respect to convergence as we observed in our
simulation data examples. From each dataset, we chose m = 9 different drinking episodes. We split
the drinking episodes into a training set consisting of eight drinking episodes and a testing set
consisting of one drinking episode. This way, we could apply the LOOCV method. We repeated this
partitioning process nine times, each time leaving out a different drinking episode. Using the training
set, we first estimated the distribution of the parameter vector qqq = (q1,q2). Next, we sampled 100
parameter vectors qqq = (q1,q2) from the estimated distribution, and using those along with the BrAC
input from the testing dataset, we simulated 100 TAC longitudinal signals. From these 100 simulated
TAC signals, we estimated the “true” TAC by computing the mean at each time, and we provided
what we refer to as a 95% conservative error band, or simply as a 95% error band, by taking the 2.5
and 97.5 percentiles. This approach for the error band is also used for a number of statistics
associated with the TAC curve that are of particular interest to researchers and clinicians working in
the area of alcohol use disorder.

For the first example, we considered the dataset collected using the SCRAM alcohol biosensor.
Prior to applying the LOOCV method, in order to visualize the estimated density and distribution of
qqq = (q1,q2) and the marginal densities of q1 and q2, we trained the algorithm on all nine drinking
episodes. Figure 3 illustrates the four aforementioned plots. In the estimated density plot, we can see
that our numerical result for this example is in agreement with the theoretical result in Lindsay and
Mallet [34, 35], which states that the maximum likelihood estimator P̂nnn,m can be found in the class of
discrete distributions with at most m support points, i.e., P̂nnn,m ∈PM(Q), where M ≤m. In this example,
since we had nine drinking episodes, the estimated density plot displays the support points among 400
nodes for qqq = (q1,q2).

In addition, for this sample, the sample mean of qqq = (q1,q2) is calculated to be

q̄qq = (0.6003,1.2452),

the sample covariance matrix is calculated to be

SSSqqq =

(
0.0706 −0.0264
−0.0264 0.0483

)
and the sample correlation is calculated to be ρqqq = −0.4519. Based on this, we observe that for our

training population consisting of nine drinking episodes, there is a moderate negative association
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between the parameters q1 and q2. Recall that the parameters q1 and q2 in the system (1.1)–(1.5)
represent the normalized diffusivity and the normalized flux gain at the boundary between the dermal
and epidermal layers, respectively. It is important to note that the negative correlation is specifically
for these nine drinking episodes, and it should not be generalized as the behavior expected in a
different sample. In particular, in the next example we have a moderate positive correlation. In
addition, it is possible to argue heuristically why one would expect either negative or positive
correlation. Significantly more data and testing would be required for a statistical analysis with
sufficient power to determine if any conclusion regarding the correlation between the parameters
could be drawn.

Figure 3. The estimated probability density function (pdf) (top left), the estimated cdf
(top right), marginal density of q1 (bottom left), and marginal density of q2 (bottom right)
obtained from m = 9 drinking episodes collected using the SCRAM alcohol biosensor, for a
fixed number of nodes M = 400 and level of discretization N = 128. In the estimated density
plot, we can see that our numerical result for this example is in agreement with the theoretical
result in Lindsay and Mallet [34,35], which states that the maximum likelihood estimator can
be found in the class of discrete distributions with at most m support points, where M ≤ m.
In this example, since we had nine drinking episodes, the estimated density plot displays the
support points among 400 nodes for qqq = (q1,q2).

We applied the LOOCV method as explained above to the nine drinking episodes from the SCRAM
biosensor. Figure 4 shows the measured TAC (i.e., measured by the SCRAM alcohol biosensor) and
the estimated TAC (i.e., obtained from our algorithm) for all nine drinking episodes left out in the
testing set in the partitioning process, and the conservative 95% error band for a fixed number of nodes
M = 400 and level of discretization N = 128.
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Figure 4. The measured TAC, the estimated TAC, and the conservative 95% error band for
nine drinking episodes from the testing set collected using the SCRAM alcohol biosensor
using the LOOCV. The figure illustrates a reasonable fit. The second peak in the middle
panel of the top row was due to the individual leaving the lab on a warm day, which results in
a burst of TAC. This error in the measurement was ignored by the model since this particular
test episode was trained based on the remaining eight drinking episodes, which shows that
TAC goes to zero as time increases.

Alcohol researchers and clinicians are particularly interested in certain statistics associated with
drinking episodes: The maximum or peak value of the TAC curve, the time at which the peak value of
the TAC is attained and the area under the TAC curve. The area under the curve (AUC) is a quantifying
measure of exposure to the alcohol that integrates the transdermal alcohol concentration across time.
Tables 4–6 display these statistics along with the measured (or actual) value obtained by the SCRAM
alcohol biosensor, as well as the conservative 95% error band for the nine drinking episodes from the
testing set. From these tables, we can observe that the 95% error bands do a reasonably good job of
capturing the actual values of these statistics, especially for the value of the peak TAC and the area
under the curve displayed in Tables 4 and 6. In Figure 4, we can see that there are minor fluctuations
in the measured TAC curve. If we smooth the measured TAC curve, we will obtain better results in
lowering the error between the time at which the peak value of the TAC is attained using the smoothed
TAC curve and the estimated peak time compared to the results obtained in Table 5. The smoothed
version results are included in Table A1 in the Appendix.
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Table 4. The measured peak TAC, estimated peak TAC and the 95% error band for the nine
drinking episodes from the testing set collected using the SCRAM alcohol biosensor.

Drinking episode Measured peak TAC Estimated peak TAC 95% Error band

1 0.0585 0.0413 (0.0327, 0.0539)
2 0.0477 0.0433 (0.0324, 0.0543)
3 0.0464 0.0391 (0.0320, 0.0501)
4 0.0417 0.0375 (0.0301, 0.0489)
5 0.0535 0.0618 (0.0497, 0.0781)
6 0.0419 0.0361 (0.0287, 0.0465)
7 0.0450 0.0441 (0.0346, 0.0558)
8 0.0405 0.0430 (0.0345, 0.0542)
9 0.0391 0.0402 (0.0313, 0.0508)

Table 5. The measured peak time, estimated peak time and the 95% error band for the nine
drinking episodes from the testing set collected using the SCRAM alcohol biosensor.

Drinking episode Measured peak time Estimated peak time 95% Error band

1 2.5600 2.4480 (1.9200, 2.8800)
2 2.2400 2.6080 (2.2400, 2.8800)
3 2.2400 2.8928 (2.5600, 3.2000)
4 4.1600 2.9056 (2.5600, 3.2000)
5 2.2400 2.5728 (2.2400, 2.8800)
6 2.2400 2.8928 (2.5600, 3.2000)
7 3.2000 2.9696 (2.5600, 3.2000)
8 2.8800 2.9312 (2.5600, 3.2000)
9 3.2000 2.9088 (2.5600, 3.2000)

Table 6. The measured AUC, estimated AUC and 95% error band for nine drinking episodes
from the testing set collected using the SCRAM alcohol biosensor.

Drinking episode Measured AUC Estimated AUC 95% Error band

1 0.1909 0.1784 (0.1382, 0.2229)
2 0.1876 0.1799 (0.1343, 0.2321)
3 0.1868 0.1751 (0.1364, 0.2421)
4 0.1765 0.1735 (0.1349, 0.2394)
5 0.2231 0.2963 (0.2203, 0.3911)
6 0.1151 0.1496 (0.1117, 0.1982)
7 0.1474 0.1912 (0.1444, 0.2563)
8 0.1277 0.1898 (0.1412, 0.2505)
9 0.1493 0.1750 (0.1307, 0.2319)
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For the second example, we applied the LOOCV method to the nine drinking episodes from the
WrisTAST M7 alcohol biosensor. Figure 5 shows the measured TAC (i.e., measured by the
WrisTAST M7 alcohol biosensor) and the estimated TAC (i.e., obtained from our algorithm) for all
nine drinking episodes left out in the testing set in the partitioning process, and the conservative 95%
error band for a fixed number of nodes M = 400 and level of discretization N = 128. We can observe
that we obtained similar results as the previous example which illustrates the consistency of the
developed algorithm across different alcohol biosensors.

In fact, Figure 5 shows a better fit than Figure 4, and this might be due to the fact that the
WrisTAST M7 biosensor collected data more frequently (i.e., in a smaller time intervals) which
resulted in more data points for the training purposes of the model. Another reason may be the
difference between the accuracy of the biosensors, which cannot be tested using the dataset used in
this paper due to several confounding factors since the two collections of nine drinking episodes in
each example do not represent the same drinking episodes; that is, we do not have data collection by
the two biosensors under the same conditions to eliminate the confounding factors. If the scientific
question that is being addressed is the accuracy of the biosensors, then the researchers should collect
data using the two biosensors simultaneously during the same drinking episode to eliminate the
confounding factors.

Figure 5. The measured TAC, the estimated TAC and the conservative 95% error band
for nine drinking episodes from the testing set collected using the WrisTAST M7 alcohol
biosensor using the LOOCV. The figure illustrates a reasonable fit.
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Similar to the previous example using the SCRAM biosensor, in this example, using the
WrisTAST M7 biosensor, we have computed some statistics as the means of comparison between the
two datasets. The sample mean of qqq = (q1,q2) is calculated to be

q̄qq = (0.5696,0.8608),

the sample covariance matrix is calculated to be

SSSqqq =

(
0.0270 0.0067
0.0067 0.0074

)
,

and the sample correlation is calculated to be ρqqq = 0.4771. We observe a moderate positive association
between the parameters q1 and q2, while in the previous example we observed a moderate negative
association between the parameters. The statistics obtained in the second example (i.e., using the
WrisTAST M7 biosensor) may not be comparable to the statistics obtained in the first example (i.e.,
using the SCRAM biosensor) due to the fact that the two sets of nine drinking episodes are not identical;
in other words, we lack data gathered by the two biosensors in identical conditions to eliminate the
potential confounding factors. In addition, the sample size of nine drinking episodes is a small sample
size to make any general hypothesis regarding the correlation between the two parameters q1 and q2.

Tables 7–9 display these statistics along with the measured (or actual) value obtained by the
WrisTAST M7 alcohol biosensor, as well as the conservative 95% error band for the nine drinking
episodes from the testing set. From these tables, we can observe that the 95% error bands do a
reasonably good job of capturing the actual values of these statistics, especially for the value of the
peak TAC and the area under the curve displayed in Tables 7 and 9. In Figure 5, we can see that there
are minor fluctuations in the measured TAC curve. Similar to the previous example, if we smooth the
measured TAC curve, we will obtain better results in lowering the error between the time at which the
peak value of the TAC is attained using the smoothed TAC curve and the estimated peak time
compared to the results obtained in Table 8. The smoothed version results are included in Table A2 in
the Appendix.

Table 7. The measured peak TAC, estimated peak TAC and the 95% error band for the nine
drinking episodes from the testing set collected using the WrisTAST M7 alcohol biosensor.

Drinking episode Measured peak TAC Estimated peak TAC 95% Error band

1 0.0228 0.0265 (0.0215, 0.0336)
2 0.0259 0.0258 (0.0221, 0.0319)
3 0.0270 0.0218 (0.0195, 0.0266)
4 0.0222 0.0212 (0.0173, 0.0263)
5 0.0249 0.0205 (0.0168, 0.0264)
6 0.0276 0.0263 (0.0221, 0.0337)
7 0.0287 0.0276 (0.0228, 0.0348)
8 0.0182 0.0236 (0.0197, 0.0286)
9 0.0284 0.0296 (0.0247, 0.0371)
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Table 8. The measured peak time, estimated peak time and the 95% error band for the nine
drinking episodes from the testing set collected using the WrisTAST M7 alcohol biosensor.

Drinking episode Measured peak time Estimated peak time 95% Error band

1 2.1667 2.2758 (1.9167, 2.6667)
2 1.6000 3.0125 (2.8333, 3.5000)
3 1.6944 2.5542 (2.0833, 3.3333)
4 2.4167 2.5083 (2.3333, 2.9167)
5 2.4167 2.3117 (2.1229, 2.5833)
6 2.4167 2.6917 (2.5000, 3.0000)
7 1.7500 2.3358 (2.0833, 2.8333)
8 2.5833 1.9383 (1.8333, 2.0833)
9 1.5208 2.6233 (2.3333, 3.0833)

Table 9. The measured AUC, estimated AUC and 95% error band for nine drinking episodes
from the testing set collected using the WrisTAST M7 alcohol biosensor.

Drinking episode Measured AUC Estimated AUC 95% Error band

1 0.0755 0.1054 (0.0912, 0.1229)
2 0.0937 0.1205 (0.1057, 0.1438)
3 0.1091 0.1022 (0.0927, 0.1240)
4 0.0653 0.0876 (0.0759, 0.1023)
5 0.0902 0.0730 (0.0647, 0.0871)
6 0.0942 0.1044 (0.0917, 0.1248)
7 0.1036 0.1213 (0.1063, 0.1448)
8 0.0716 0.0876 (0.0760, 0.1038)
9 0.0942 0.1298 (0.1138, 0.1549)

8. Discussion and concluding remarks

In this paper, we considered the nonparametric fitting of a population model for the transdermal
transport of alcohol based on a maximum likelihood approach applied to a mixed effects statistical
model. In estimating a population model, we were actually estimating the distribution of the model
parameters and, consequently, the maximum likelihood estimation (MLE) problem was formulated
as an optimization problem over a space of feasible probability measures endowed with the weak
topology induced by the Prohorov metric. A notable advantage of our developed methodology is
that by considering a nonparametric approach, there is no need to make any assumptions about the
distribution being estimated.

By using a first principles physics-based model in the form of a one-dimensional diffusion equation,
we were able to capture the essential features of transdermal transport while keeping the dimension of
the parameter space low. In this way, we were able to avoid having to introduce regularization so
as to mitigate ill-posedness and overfitting. On the other hand, the fact that the model was infinite
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dimensional being based on a partial differential equation, computing the MLE necessitated finite
dimensional approximation.

We were able to first theoretically demonstrate the existence and then the consistency of our MLE
using a decades old result from the literature. The consistency result is with respect to the uncertainty
across subjects. It is likely that the consistency results proved in [22] and [21], in the context of a naive
pooled statistical model based on a nonlinear least squares estimator, for problems either the same as,
or very similar to the one we consider here, would apply for the uncertainty within each subject (i.e.,
as the resolution of the data with respect to time increases). At present, this is just a hypothesis and a
possible avenue for future research; as of yet, we have not carefully examined this possibility.

In addition, we were able to use linear semigroup theory, in particular the Trotter-Kato theorem, the
properties of the weak topology and the Prohorov metric on the space of feasible probability measures
to establish a convergence result with respect to the MLE for the finite dimensional approximating
estimation problems and the MLE for the estimation problem posed in terms of the original underlying
infinite dimensional model.

We were able to demonstrate the efficacy of our theoretical results numerically first on an example
involving simulated data, and then on one involving actual human subject data from an National
Institute of Health (NIH) funded study. We used our scheme to obtain the joint density and
distribution of the parameters, as well as estimates and conservative 95% error bands for the TAC
signal and a number of TAC related statistics of particular interest to researchers and clinicians who
work in the area of alcohol use disorder.

A similar methodology has been developed in [46] using a method called the nnparametric adaptive
grid (NPAG) algorithm. In their approach, the grid of support points is iteratively changed in the
algorithm, which may add to the computational cost. Also as mentioned in [46], condensing the
grid around the nodes with the highest probability may result in estimating only a local maximum
likelihood, which may not capture the “true” distribution to be estimated in the case of a multimodal
distribution. One additional difference is that their method was tested on simulated data using a normal
distribution for the parameters and it has not been tested on a human subject data. Instead of condensing
the grid, we use a fixed grid and directly maximized the log-likelihood function using a mixed-effects
model which was tested on both simulated data and on human subject data.

In addition to consistency with respect to the intrinsic uncertainty, other extensions we are
currently looking at include the development of a general framework for estimating random
parameters in general finite or infinite dimensional, continuous or discrete-time dynamical systems
(e.g., ODEs (ordinary differential equations), PDEs, FDEs (functional differential equations), DEs
(difference equations), and more) that would potentially subsume the results presented here as well as
in [22] and [21].

Finally, although correlated, TAC and BrAC are not quantitatively equivalent. BrAC is a good
indicator of BAC, which is an informative quantitative measure of the level of alcohol in the body at
the moment that is affecting judgment/decision-making, motor coordination, and cognition. On the
other hand, TAC is temporally delayed from BrAC since it must pass through the skin prior to being
measured, and TAC levels vary across individuals, devices, and within and between drinking episodes,
unlike BrAC, which is relatively consistent across people and conditions. This makes TAC difficult to
interpret in relation to alcohol levels in the blood at a given time, limiting its usefulness as a quantitative
measure of alcohol in the body. Thus, having a way to estimate BrAC from TAC would increase its
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utility for researchers, clinicians, and individuals who want quantitatively and temporally meaningful
information about alcohol levels in the body.

Since the actual motivation for this investigation is the development of schemes for converting
biosensor measured TAC into BAC/BrAC, the next step would be to examine how well population
models, estimated using the approach we have presented here, perform when used as part of a scheme
that deconvolves an estimate for BAC/BrAC from the TAC signal. In particular, we are interested in
comparing it to the schemes, used for this same purpose, developed and implemented in [11,12,28–30].
In addition, we are also interested in examining how our uncertainty quantification scheme for the
TAC to BAC/BrAC conversion problem performs when compared to the non-physics-based, machine
learning inspired schemes developed in [18–20, 33].
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Appendix

As mentioned in Section 7.2, smoothing the measured TAC curve results in lowering the error
between the time at which the peak value of the TAC is attained using the smoothed TAC curve and the
estimated peak time. Here, we include the results using the smoothed version of the TAC curve. The
following Tables A1 and A2 correspond to Tables 5 and 8, respectively, with the smoothed TAC curve
used instead of the measured TAC curve.

Table A1. The peak time using the smoothed TAC curve, estimated peak time, and the 95%
error band for the nine drinking episodes from the testing set collected using the SCRAM
alcohol biosensor.

Drinking episode Smoothed peak time Estimated peak time 95% Error band

1 3.2000 2.4480 (1.9200, 2.8800)
2 2.8800 2.6080 (2.2400, 2.8800)
3 2.8800 2.8928 (2.5600, 3.2000)
4 3.8400 2.9056 (2.5600, 3.2000)
5 3.2000 2.5728 (2.2400, 2.8800)
6 2.8800 2.8928 (2.5600, 3.2000)
7 3.5200 2.9696 (2.5600, 3.2000)
8 3.5200 2.9312 (2.5600, 3.2000)
9 3.2000 2.9088 (2.5600, 3.2000)

Table A2. The peak time using the smoothed TAC curve, estimated peak time, and the
95% error band for the nine drinking episodes from the testing set collected using the
WrisTAST M7 alcohol biosensor.

Drinking episode Smoothed peak time Estimated peak time 95% Error band

1 2.6667 2.2758 (1.9167, 2.6667)
2 2.1667 3.0125 (2.8333, 3.5000)
3 2.3333 2.5542 (2.0833, 3.3333)
4 2.9167 2.5083 (2.3333, 2.9167)
5 2.6667 2.3117 (2.1229, 2.5833)
6 2.6667 2.6917 (2.5000, 3.0000)
7 2.0833 2.3358 (2.0833, 2.8333)
8 2.6667 1.9383 (1.8333, 2.0833)
9 2.0833 2.6233 (2.3333, 3.0833)
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To smooth the TAC curve, we used cubic splines and we measured the discrepancy between the
smoothed peak time and the estimated peak time using the mean squared error. For the SCRAM
biosensor, the mean squared error decreased from 0.314 (prior to smoothing) to 0.293 (after
smoothing). For the WrisTAST M7 biosensor, the mean squared error decreased from 0.535 (prior to
smoothing) to 0.233 (after smoothing).
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