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Abstract: Current research in cross-modal retrieval has primarily focused on aligning the global
features of videos and sentences. However, video conveys a much more comprehensive range of
information than text. Thus, text-video matching should focus on the similarities between frames
containing critical information and text semantics. This paper proposes a cross-modal conditional fea-
ture aggregation model based on the attention mechanism. It includes two innovative modules: (1)
A cross-modal attentional feature aggregation module, which uses the semantic text features as con-
ditional projections to extract the most relevant features from the video frames. It aggregates these
frame features to form global video features. (2) A global-local similarity calculation module calcu-
lates similarities at two granularities (video-sentence and frame-word features) to consider both the
topic and detail features in the text-video matching process. Our experiments on the four widely used
MSR-VTT, LSMDC, MSVD and DiDeMo datasets demonstrate the effectiveness of our model and its
superiority over state-of-the-art methods. The results show that the cross-modal attention aggregation
approach can effectively capture the primary semantic information of the video. At the same time, the
global-local similarity calculation model can accurately match text and video based on topic and detail
features.

Keywords: cross-modal retrieval; attention mechanism; video and text alignment; global-local
similarity calculation

1. Introduction

The information obtained from various sources is commonly referred to as multi-modal information.
At present, research in this field often begins with the aim of combining multi-modal information and
maximizing the potential of different modal information in real life to create new cross-modal research
areas [1–4]. The demand for content-based video retrieval has increased with the widespread use
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Figure 1. The difference between text and video in terms of information expression.

of video platforms such as TikTok and YouTube. Cross-modal retrieval [5–7] has gained significant
attention from scholars in recent years.

However, text and video modes of conveying information differ significantly. The text conveys
information through words or phrases, while video encompasses a broader range of information. The
text only partially represents some of the content in a video [8]. When performing sentence and video
matching, adopting a more precise approach may be necessary due to redundant frames in videos. For
instance, Figure 1 shows two sample videos and their matching text from the MSR-VTT dataset [9].
Observations have shown that some video frames do not match the semantic meaning of the sentences
and are deemed redundant components in the text-video matching procedure [10]. This highlights the
presence of some bias in the results when matching videos with sentences.

To enhance the precision of text-video retrieval, a proven practical approach involves the elimination
of redundant frames and a focused analysis of video subintervals that are semantically linked to the text,
as demonstrated by Dong et al. [11]. Consequently, the matching model must possess the capability to
extract critical textual content and correctly identify corresponding video segments.However, prevalent
methods commonly resort to mean pooling or employ self-attention mechanisms [6, 12, 13] to derive
global feature embeddings for a given sentence and video. These methods exhibit limitations regarding
the definition and precise localization of keyframes. This limitation is significant, as it can negatively
impact the performance of retrieval tasks, particularly when videos contain content that is not explicitly
described in the accompanying text.

This paper presents a novel cross-modal conditional mechanism designed to address two critical
issues: feature redundancy within videos and the imbalanced semantic alignment between the two
modalities. To tackle these challenges, we propose two key components:

Firstly, we introduce a video feature aggregation module that leverages a text-conditioned attention
mechanism. Here, the text features serve as a guiding condition, enhancing the emphasis on keyframes
while diminishing the influence of redundant frames. The aggregation process combines numerical
values by multiplying attention weights with frame features, resulting in refined video features.

Secondly, we introduce a global-local cross-modal conditional similarity calculation module. This
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module considers video-sentence features as the global data and frame-word features as the local data.
These features are input into the model for similarity calculation, a critical step for text-video match-
ing. This approach enables us to effectively address the overarching topic and the finer details in the
matching process.

2. Related work

2.1. Feature extraction

Text Feature Encoding Previous studies [14–17] examined the extraction of text features and have
achieved exceptional outcomes. The Skip-Gram model [18] begins by considering the central word
and predicts its surrounding words, producing text features. This approach not only cuts down the
computational effort during the training phase but also elevates the quality of the word-to-vector repre-
sentation. To enhance the matching between text and images, the Fisher Vector model [19] examines
text representation and quantifies it using high-level statistical features for text feature extraction [20].
Furthermore, the GRU model [21] was introduced to address the issue of gradient disappearance in
standard RNNs during text encoding. As a result, the GRU model has become a widely utilized text
encoder. OpenAI has also made available a graphical pre-training model for CLIP based on contrast
learning and has a transformer structure [22]. CLIP model has delivered similarly remarkable results
in the coding of text.

Visual Feature Encoding Visual feature extraction is typically carried out using supervised or self-
supervised research methods. Recently, there has been growing interest in using a transformer-based
image encoder known as the ViT model [23]. While the application of transformers to feature extrac-
tion of video content [24, 25] is still in its early stages, it has shown potential for enhancing action
classification in video text retrieval. Researchers have been exploring new and innovative approaches
to enable models with better generalization capabilities [22, 49]. Text and video pairs obtained from
the internet are collected and formed into large-scale datasets for training. One of the most success-
ful methods is the CLIP model [22], which has achieved state-of-the-art performance in image fea-
ture extraction. The pre-trained CLIP model can learn more sophisticated visual concepts and use
these features in retrieval tasks. To mitigate the impact of diverse topics in the dataset, a MIL-NCE
model [26] based on the CLIP video encoder has been proposed and tested with positive results on the
Howto100M [13] dataset. Furthermore, the ClipBERT [49] model, which is based on the MIL-NCE
model, employs an end-to-end approach to streamline the pre-processing stage of video-text retrieval.
This paper uses a pre-trained CLIP-based ViT model as our video encoder to extract visual features
from the video frames. The effectiveness of the feature extraction has been verified through experi-
mental evaluation.

2.2. Text-video retrieval

In cross-modal retrieval, text-video matching plays a key role in bridging vision and language. Text-
video matching aims to learn the cross-modal similarity function [27] between text and video, so that
related text-video pairs receive higher scores than unrelated ones. Establishing a semantic similarity
model that effectively reduces the semantic gap between visual and textual information is crucial for
the accuracy of this study [28]. Despite the complex matching patterns and vast semantic differences
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between images and texts, this remains a challenging research topic. A common approach to overcome
this challenge is mapping images and texts into a shared semantic space through a suitable embedding
model, i.e., a joint latent space, and then computing cross-modal similarity in this shared space.

Text-video retrieval is typically achieved by integrating a pre-trained language model with a visual
model to associate text features with visual features. When dealing with small datasets, incorporating a
pre-trained model can improve performance. For instance, the Teachtext model [23] uses multiple text
encoders to provide a complementary supervised signal for the retrieval model. MMT [29] and MD-
MMT [30] were early examples of using transformers for multi-modal video processing, integrating
three modal features to accomplish the video retrieval task.

Additionally, some scholars have applied concepts from the data hashing field to tasks involving
cross-modal data processing and information retrieval. The ROHLSE model [31] focuses on address-
ing label noise and exploiting semantic correlations in processing large-scale streaming data. This
work presents an innovative approach for hashing streaming data. The DAZSH model [32] introduces
a hashing method tailored to the zero-shot problem in cross-modal retrieval. Integrating data fea-
tures with class attributes effectively captures relationships between known and unknown categories,
facilitating the transfer of supervised knowledge. Moreover, a neural network-based approach [33]
is designed to learn specific category centers and guide the hashing of multimedia data. Finally, the
SKDCH model [34] proposes a semi-supervised knowledge distillation method for cross-modal hash-
ing. It mitigates heterogeneity gaps and enhances discriminability by improving the triplet ranking
loss. These studies collectively demonstrate the application of data hashing principles to tackle com-
plex challenges in cross-modal data processing and information retrieval.

Recently, the CLIP model [22] utilized a rich text-image dataset to create a joint text-visual model,
which the authors of the CLIP4CLIP model [6] leveraged through transfer learning to achieve state-
of-the-art results in video retrieval tasks. In several studies based on the CLIP model [35], the model
outperformed most other works [2,12,36], even in a zero-shot manner, showcasing its excellent gener-
alization capabilities in text-video understanding.

Several video feature aggregation methods, including average pooling, self-attention, and multi-
modal transformers [4, 6], are commonly used in CLIP-based studies and have been shown to match
text and images effectively. However, there needs to be more research specifically focused on matching
video sub-regions with words [49]. As noted in the previous section, many video frames are seman-
tically irrelevant to the text in matching processes. Thus, using a cross-modal conditional attention
mechanism to reduce the impact of redundant frames on retrieval results is the motivation behind this
paper’s research.

2.3. Cross-modal attention mechanism

In natural language processing, attention mechanisms are widely used to filter redundant informa-
tion [37]. Similarly, attention mechanisms have been used to enhance the focus on visual and textual
local features in cross-modal information-matching tasks. Some researchers have proposed a similar-
ity attention filtration (SAF) module [38] based on attention mechanisms to match images with text.
This module applies attention mechanisms to cross-modal feature alignment, aiming to eliminate the
interference caused by redundant text-image pairs and enhance image retrieval accuracy. Owing to the
remarkable performance of attention mechanisms in the cross-modal domain, certain researchers [39]
have developed more intricate bidirectional focused attention networks, building upon this founda-
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tion to enhance matching accuracy further. Concurrently, other scholars [40, 41] have introduced a
recurrent attention mechanism to investigate the correspondence between fine-grained text regions and
individual words.

The crucial aspect of implementing the attention model in text-video cross-modal inference lies in
embedding the features of both text and video and subsequently identifying frames that align more
effectively with text semantics, as demonstrated by Tan et al. [28]. We have incorporated a textual
conditional attention module into our cross-modal matching model to achieve this. This module filters
out extraneous semantic information within the frames by computing attention weights for each frame,
using text semantics as a conditional projection.

3. Framework

Text-video retrieval can be defined as two tasks: one is retrieving semantically close text by the
given video information as the input, named t2v. The other is retrieving semantically similar videos by
the sentence given as the input, named v2t. Taking the t2v task as an example, a query text and a set
of video sets to be queried are the input data. The model calculates the similarity score between the
query text and each video in the video set and finds the video with the best semantic match to return.
Similarly, v2t has a similar task. This paper mainly focuses on the t2v task as the leading study. We are
dedicated to enhancing the accuracy of text-video retrieval tasks by implementing two pivotal strate-
gies: filtering out irrelevant frames and aggregating key-frames to construct video features, followed
by performing a global-local multi-modal feature matching approach.

Figure 2 illustrates the framework of our model for the text-video retrieval task. The text-video
retrieval task is quantified into three main components: Data Embedding, Cross-modal Feature Ex-
traction, and Similarity Calculation. In the Data Embedding phase, we feed the input data (including
words and frames) into the text encoder ψ and the image encoder ϕ of the CLIP model, obtaining
embedded data representations. The Cross-modal Feature Extraction section encompasses two crit-
ical steps. Firstly, we employ a self-attention mechanism to extract sentence features from the text.
Secondly, we utilize a conditional attention mechanism to filter out redundant and aggregate frames
semantically relevant to the text, thereby obtaining more precise video features. In the Similarity
Calculation phase, we compute similarity at global and local granularities (i.e., video-sentence and
frame-word features) to consider thematic and detail features during the text-video matching process.
It is worth noting that the Cross-modal Feature Extraction and Similarity Calculation sections contain
two innovative modules introduced in this paper, which are detailed as follows:

Cross-modal Conditional Attention Aggregation Module To process text input t, we pass it
through a text encoder ψ to obtain its word embedding Ew. This embedding is then multiplied with the
weight matrix query projection WQ, to produce the text query vector Qt. For video input v, it is passed
through a video encoder to produce frame embedding E f . This embedding is then multiplied with the
key projection matrix WK and the value projection matrix WV , respectively, to obtain the key embed-
ding of the frames Kv, and the value embedding of the frames Vv. Then we calculate the attention score
of the video frames watt, by taking the dot product of Qt and Kv. The attention scores are used to weight
the value vectors of the video frames Vv, to produce the self-attention frame feature embedding.

Global-Local Similarity Matching Module proposes a cross-similarity calculation module to per-
form the text-video matching task. The module integrates cosine similarity and conditional probability

Mathematical Biosciences and Engineering Volume 20, Issue 11, 20073–20092.



20078

a man and a 

woman cooking on 

a cooking show

N = 12

Text

Video

 (!)

"(#)

Text Encoder

Video Encoder

Word

Embedding

Frames

Embedding

Self-

attention

$!

Query Projection

%&

Key Projection

%'

Value Projection

%*

&!

'#

$*

N 
…

...

a man ... cooking show

a man 

a woman 

cooking show

Global-Local

Similarity Matching

Cross-Modal Conditional Attention Aggregation

...

...

FC

+

LN

Data Embedding Cross-modal Feature Extraction Similarity Calculation

Figure 2. A Brief illustration of our proposed approach.

models to compute the similarity scores between the different modal data feature embeddings, con-
sidering their mutual dependence. The global feature data (text-video) and local feature data (word-
frame) are fed into the model separately, producing their similarity scores. The model then aggregates
the global and local similarity scores through self-attention to obtain the final matching scores.

4. Methodology

In this section, we concentrate on the methods for implementing the model presented in the paper.
To facilitate a comprehensive understanding of our model, we commence by elucidating the proce-
dure for utilizing the pre-trained CLIP model to encode text and video in Section 4.1. Subsequently,
the following two sections introduce pivotal functional components of our model: the Cross-modal
Conditional Attention Aggregation Module (Section 4.2) and the Global-Local Similarity Matching
Module (Section 4.3). Section 4.2 describes the method for incorporating attention mechanisms into
cross-modal feature aggregation to enhance the relevance of video features to text semantics. In Sec-
tion 4.3, we highlight the limitations of traditional similarity computation method for cross-modal
feature matching and propose a novel method for computing the global-local similarity of correlated
cross-modal features. Finally, we present the implementations of training objectives with both the two
modules in Section 4.4.

4.1. Data embedding

The video can be considered a sequence of images, with each video frame being an individual
image. In this study, many pre-trained models have been found to extract features from text and images
effectively, enabling cross-modal semantic understanding [6, 22]. These models have been pre-trained
on large and diverse datasets, allowing us to leverage their excellent performance in feature extraction
to simplify the training process of our work.
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CLIP models trained on large, richly typed datasets have demonstrated exceptional feature extrac-
tion abilities and robust performance in downstream tasks. Numerous studies have shown that CLIP
performs well in extracting the rich semantic features of input information [22]. In the task of video
feature extraction, individual video frames are embedded in CLIP’s joint latent space as images. The
video features are obtained by aggregating the embedded features of the individual frames. In this pa-
per, we learn a new joint latent space based on the CLIP model to serve as an encoder for our standard
video-text feature extraction.

Given text t and video v as inputs, we first preprocess the video into quantifiable frames v fn and
input these frames into the CLIP model as images. CLIP then outputs a text embedding Et and a frame
embedding E fn

v as encodings. By aggregating the sequence of frame embeddings S F , we can obtain the
video embedding EV :

Et = ψ(t) ∈ Rd (4.1)

E fn
v = ϕ(v fn) ∈ Rd (4.2)

S etF = [E f1
v , E

f2
v , · · · , E

fn
v ] ∈ Rn×d (4.3)

where ψ is CLIP’s text encoder, and ϕ is CLIP’s image encoder. S etF is the set of frames feature
embedding.

Then we can obtain the video’s feature embedding by a temporal aggregation function ρ:

EV = ρ(S etF) (4.4)

Obviously, Et and E fn
v are the two outputs of CLIP.

4.2. Cross-modal conditional attention aggregation

Previous research has typically used average pooling or self-attention mechanism when calculating
the video embedding by aggregating the frame embeddings [12, 29]. However, this approach results
in a video embedding that contains many redundant visual features that need to be more relevant to
the semantic features of the text. This is because the text has much less semantic information than the
video. As a result, these aggregate methods can negatively impact the accuracy of the final similarity
computation results.

The aggregation of frame features to obtain the video embedding for use in the similarity calcu-
lation model often results in the inclusion of redundant visual features that need to be more relevant
to the semantic features of the text. This can negatively impact the accuracy of the final similarity
computation results.

This module uses the attention mechanism to extract the video features. We combine the semantic
text features to compute the attention weights for the keyframes. This enhances the crucial information
in the frames and filters out redundant information, resulting in video features. Firstly, we project the
text embedding Et as a query vector Qt ∈ R

1×da . The video embedding obtained from Section 4.1 is
then projected as a key vector KF ∈ R

1×da and a value vector VF ∈ R
1×da through dot product operations

with matrices WK ∈ R
d×da and WV ∈ R

d×da , respectively. The calculations are defined as follows:

Qt = WQ · Et (4.5)
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KF = WK · S etF (4.6)

VF = WV · S etF (4.7)

where WQ, WK and WV are the parameter matrices obtained from the neural network training.
Finally, by utilizing the cross-modal attention feature aggregation module, we obtain the joint text-

video semantic attention scores for each frame, represented as S fn .

S V = [S f1 , S f2 , · · · , S fn] = softmax
(

QtKT
v

√
da

)
Vv (4.8)

The above equation is the main idea of the aggregation function ρ, and the input video features
embedding EV can finally be calculated as follows:

EV = S f1 E f1 + S f2 E f2 + · · · + S fn E fn (4.9)

4.3. Global-local similarity matching

In Section 4.1, the CLIP encoder obtains the text feature embedding Et and the set of frame feature
embeddings S etF . Section 4.2 then leverages the attention mechanism to aggregate the frame embed-
dings and get the text-conditional video embedding Ev. Although this approach incorporates semantic
text features into the video feature embedding, conventional similarity computation models, such as
cosine similarity, can only improve the matching accuracy to a certain extent. It may still need to
look at the local semantics expressed in specific keyframes. This section considers the consistency of
structure and text word features in semantic expression to address this issue. It combines the similarity
computation of both video and sentences to perform text-video matching.

Vector Similarity Function The previous methods of calculating the similarity between features of
two different modal data often relied on cosine or Euclidean distance [40]. While these methods can
capture relevance to a degree, they cannot detect finer local correspondences between the vectors. Our
proposed similarity representation function aims to address this issue by leveraging the local features of
the vectors and using cosine similarity calculation as the core component. This enables a more in-depth
analysis of the correlation information between the feature representations from different modalities.
The similarity function is formulated as follows:

f (α1, α2; Wsim) =
Wsim|α1 − α2|

2

∥Wsim|α1 − α2|
2∥2

(4.10)

where ∥α1 − α2∥
2 is the square operation of each element in the result α1 − α2, and ∥Wsim|α1 − α2|

2
∥2 is

the l2− operation of Wsim|α1 − α2|
2. The Wsim in the equation is a learnable parameter matrix to obtain

the similarity vector.
Text-Video Global Similarity Calculation According to the similarity Eq (4.10), we replace α1

and α2 with the text feature embedding Et and the video feature embedding EV , respectively.

S img = f (EV , Et; Wg) =
Wg|EV − Et|

2

∥Wg|EV − Et|
2
∥2

(4.11)

where Wg is the parameter matrix that aims to learn the global similarity through training.
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Frame-Text Local Similarity Calculation To exploit the local semantic information in frames, we
propose a similarity calculation regarding the similarity between the video’s local frames and words.

First, we obtain the cosine similarity Ci j of the frame feature vector vi and the word vector t j:

Ci j =
vT

i · t j

∥vi · t j∥
(4.12)

Then, softmax is used to normalize the cosine similarity to obtain the local feature weights βi j.

βi j =
max(0,Ci, j)√∑n
i=1(max(0,Ci, j)2

(4.13)

After obtaining the attention weights, we calculate the frames feature representation containing the
words’ semantic information:

V f
i =

n∑
i=1

βi jvi (4.14)

Finally, we compute the frame-text local similarity representation between V f
i and t j using Eq (

4.10):

siml
j = f (V f

i , t j; Wl) (4.15)

where Wl is also the parameter matrix like Wg.
Local similarity represents the association between capturing a specific word and the frames that

make up the video, using finer-grained visual semantic alignment to improve similarity prediction.

4.4. Training objective

We take the widely used ranking loss function [42] as the training objective in our cross-modal
retrieval task. Its goal is to evaluate the relative distance between input samples and optimize model
training by incorporating the similarity calculation results into the ranking loss. The similarity compu-
tation model is defined as sim(), with positive samples (V,T ) being the matched video-text pairs and
the negative samples being mismatched pairs:

V
′

= argmaxr,v(r,T ) (4.16)

T
′

= argmaxw,T (V,w) (4.17)

The loss is obtained referring to the ranking loss function:

Loss = ω1Lossloc + ω2Lossglo (4.18)

where:
Lossl(va, vp, vn) =

∑
max(0, s(va, vp) − s(va, vn) + α) (4.19)

Lossg(va, vp, vn) = max(0, s(va, vp) − s(va, vn) + α) (4.20)

where va is the anchor sample, representing the reference vector. vp is the sample I or T that matches
the reference sample. vn is the sample I

′

or T
′

that does not match the reference sample. Vector
parameters in the Lossl function refer to the frame or text local feature vectors. Vector parameters
within the Lossg function refer to the video and text local feature vectors.
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5. Experiments

To validate the effectiveness of our model, in this section, we demonstrate experiments on four
widely used text-video retrieval datasets: MSR-VTT [9], LSMDC [44], MSVD [43] and DiDeMo [12].
The model’s performance is evaluated by testing its performance in terms of different recall rates,
ranking results, and comparing the results with experimental results from existing studies.

5.1. Datasets

MSR-VTT dataset was created by collecting 257 popular video queries from a commercial search
engine, with each query including 118 videos. The current version of MSR-VTT offers 10,000 web
video clips, totaling 41.2 hours and 200,000 clip-sentence pairs, and each video is annotated with ap-
proximately 20 captions. To compare with previous work, 7000 videos were selected for training [13],
and 1000 videos were selected for testing [43], following the commonly used segmentation method
in current studies. Since no validation set was provided, 1000 videos were randomly selected from
MSR-VTT to form the validation set.

LSMDC dataset comprises 118,081 video clips extracted from 202 movies, ranging from two to 30
seconds. The validation set includes 7,408 clips, and the evaluation is performed on a separate test set
consisting of 1000 videos from movies that are distinct from those in the training and validation sets.

MSVD dataset comprises 1970 videos ranging from 10 to 25 seconds, and each video is annotated
with 40 captions. The videos feature various subjects, including people, animals, actions, and scenes.
Each video was annotated by multiple annotators, with approximately 41 annotated sentences per clip
and a total of 80,839 sentences. The standard splitting [6] was used, with 1,200 videos for training,
100 videos for validation, and 670 videos for testing.

DiDeMo dataset comprises 10,000 flickr videos, each annotated with 40,000 sentences. In the test
set, there are 1000 videos. As per the approach in references, we assess paragraph-to-video retrieval,
wherein all sentence descriptions for a video are concatenated to form a single query. Notably, this
dataset includes localization annotations (ground truth proposals), and our reported results incorporate
these ground truth proposals.

5.2. Implementation details

Data Pre-processing. Different datasets have varying video durations and frame sizes, making
standardizing the model input format challenging. This study extracts 12 frames from each video
according to a specified time window to resolve this issue. It uses them as representatives of the
video content, ensuring a uniform input shape for the model. Additionally, to ensure consistency
with previous work [2, 6, 12] and facilitate testing, the pixel size of each video frame was adjusted to
224 × 224.

Model Settings. The study employs the CLIP model as its backbone and initializes all encoder
parameters based on the pre-trained weights of the CLIP model, as described in [22]. For each video,
the ViT-B/32 image encoder of the CLIP model is used to obtain the frame embeddings, while the
transformer text encoder of the CLIP model is used to obtain the text embeddings. The CLIP encoder
has an output size of 512, which also determines the attention size of the three projection dimensions,
which is set to 512. The weight matrices Wq, Wk, and Wv are randomly initialized, and the bias values
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Table 1. Results of comparative experiments on text-to-video retrieval (R@1/5/10) on four
widely used public datasets.

Method
MSR-VTT LSMDC MSVD DiDeMo
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CE [22] 20.9 48.8 62.4 11.2 26.9 34.8 19.8 49 63.8 16.1 41.1 -
MMT [29] 26.6 57.1 69.6 12.9 29.9 40.1 - - - - - -
Frozen [12] 31 59.5 70.5 15.0 30.8 39.8 33.7 64.7 76.3 34.6 65.0 74.7
HIT-pretrained [47] 30.7 60.9 73.2 14.0 31.2 41.6 - - - - - -
MDMMT [30] 38.9 69.0 79.7 18.8 39.5 47.9 - - - - - -
All-in-one [48] 37.9 68.1 77.1 - - - - - - 32.7 61.4 73.5
ClipBERT [49] 22.0 46.8 59.9 - - - - - - 20.4 48.0 60.8
CLIP-straight [35] 31.2 53.7 64.2 11.2 22.7 29.2 37 64.1 73.8 - - -
CLIP2Video [50] 30.9 55.4 66.8 - - - 47.0 76.8 85.9 - - -
Singularity [51] 42.7 69.5 78.1 - - - - - - 53.1 79.9 88.1
LAVENDER [52] 40.7 66.9 77.6 26.1 46.4 57.3 46.3 76.9 86.0 53.4 78.6 85.3
CLIP4Clip-meanP [53] 43.1 70.4 80.8 20.7 38.9 47.2 46.2 76.1 84.6 43.4 70.2 80.6
CLIP4Clip-seqTransf [53] 44.5 71.4 81.6 22.6 41.0 49.1 45.2 75.5 84.3 42.8 68.5 79.2
VINDLU [54] 46.5 71.5 80.4 - - - - - - 61.2 85.8 91.0
ours 45.3 72.5 81.3 26.5 47.1 57.4 47.6 77.2 86.0 60.7 86.1 92.2

Table 2. The impact of feature aggregation module (Module 1) configurations. Mean, Self-
att, and Cross-Modal respectively denote the employment of mean-based feature aggregation,
self-attention-based feature aggregation, and cross-modal feature aggregation conditioned on
text semantics in the Feature Aggregation Module.

Test Model
Aggregation Method Result
Mean Self-Att Cross-modal R@1 R@5 R@10 MdR MnR

1 ✓ 41.8 70.9 83.5 3.0 13.7
2 ✓ 45.3 74.5 84.7 2.0 12.3
3 ✓ 47.6 77.2 86.0 2.0 10.0

are set to 0. The output units of the fully connected layer are also set to 512, and a dropout of 0.3 is
applied, as described in [45]. The study employs the Adam optimizer [46] for training, with an initial
learning rate of 0.00002, and the learning rate is decayed using a cosine schedule, as described in [22].

The recall [12, 12, 29] represents the ratio of the valuable fraction in the detection results to that in
the dataset. Recall at K was used to measure the model’s performance, and recall at 1 (R@1), recall at
5 (R@5), and recall at 10 (R@10) were used as evaluation metrics during testing.

5.3. Results and analysis

In this section, we present the results of the retrieval performance of our model on the MSR-VTT,
LSMDC, MSVD and DiDeMo datasets. The aim is to showcase the superiority of our model in com-
parison to other existing models.

5.3.1. Comparisons on four datasets

Table 1 presents the results of comparative experiments in text-to-video retrieval (R@1/5/10) across
four widely utilized public datasets.
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Table 3. The impact of similarity calculation module (Module 2) configurations. Local and
Global respectively signify the utilization of local similarity calculation and global similarity
calculation or Global-Local similarity calculation.

Text Model
Similarity Computation Method Result
Local Global R@1 R@5 R@10 MdR MnR

1 ✓ 45.2 75.2 85.6 3.0 11.5
2 ✓ 44.8 73.7 84.5 3.0 12.2
3 ✓ ✓ 47.6 77.2 86.0 2.0 10.0

1 2 3 4 5 6 7 8 9 10 11 12

Cross-Modal Attention Mean Self-attention

1 2 3 4 5 6 7 8 9 10 11 12

Frames:

Frames:

Weights:

Weights:

Text: a group of people are stamp dancing on stage in front of a crowd

Text: bearded guy in grey t-shirt talking to the camera.

Figure 3. Visualization results for two examples of different aggregation strategies on MS-
VTT. The bars show the attention weight values for each frame. cross-Modal Attention
Aggregation is marked in blue. The orange and gray markers are Mean Aggregation and
Self-attention Aggregation without textual semantic involvement, respectively.

Comparing our method’s results with existing approaches, we observe that on the MSR-VTT,
LSMDC, MSVD, and DiDeMo datasets, our average accuracy rates are 66.4% (+ 0.3%), 43.7% (+
0.4%), 70.3% (+ 0.2%) and 79.7% (+ 0.4%), respectively. These scores surpass the performance of
the models listed in the table across all four datasets, thus validating the effectiveness of the approach
presented in this paper.

More accurately, on the LSMDC and DiDeMo datasets, we observed that our model’s R@1 results
were lower than those of the VINDLU model. Upon analysis, it was discovered that the VINDLU
model focuses on effective video-and-language pretraining, utilizing the jointly trained CC3M +We-
bVid2M dataset containing content domains that are more aligned with MSR-VTT, such as sports,
news, and human actions. Consequently, the VINDLU model outperforms our model on the R@1
metric. However, due to our model’s enhancements in capturing video themes and details, our overall
performance excels over VINDLU on the R@5 and R@10 metrics.

Additionally, it is worth noting that only on the MSR-VTT dataset, the R@10 results of the
CLIP4Clip-seqTransf model are slightly higher than our model’s results. On all other datasets and
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Figure 4. The trend of the weights corresponding to the key frames of the first example in
Figure 3.

metrics, our model outperforms CLIP4Clip-seqTransf. Therefore, it can be considered that our
model exhibits better stability in terms of performance compared to CLIP4Clip-seqTransf. Since both
CLIP4Clip-seqTransf and our method use CLIP as the backbone, we can attribute the improvement
in model performance to the fact that CLIP4Clip-seqTransfer employs a text-agnostic visual feature
extraction approach, whereas our model utilizes a frame feature aggregation approach conditioned on
text semantics.

Furthermore, on the LSMDC dataset, the retrieval task is more challenging due to the inherently
vague textual descriptions of movie scenes. This conclusion can be drawn from the generally lower
retrieval scores achieved by previous methods on this dataset. However, our approach outperforms the
models listed in the table across all metrics. This demonstrates the significance of our model’s ability
to aggregate video features conditioned on text semantics. It learns the features of frames most relevant
to the text semantics and suppresses the interference of redundant frames in feature aggregation.

5.3.2. Ablation studies

In this section, a series of ablation experiments are conducted to explore the two modules’ effects
to understand the model’s advantages.

Module 1. The embedding module for video feature acquisition, which utilizes a cross-modal
attention mechanism to aggregate frame features.

Module 2. The global-local similarity-based computation module.
The comparison experiments were performed on the MSR-VTT dataset.
Cross-modal Feature Aggregation
Table 2 presents the results of the ablation study on the cross-modal feature aggregation module

for video feature extraction. The different configurations for the ablation experiments are shown in the
table.

In this set of experiments, we compare the performance of our cross-modal aggregation method with
that of Mean Aggregation and Self-attention Aggregation. The Mean Aggregation method calculates
an unweighted average of the frame feature embeddings, while the Self-attention Aggregation method
computes aggregation weights without utilizing textual semantic information and aggregates the frame
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a women is doing craft and 

talking about that

Ground 

Truth

Query

Top3

Top2

Top1

the women sit at the lap 

top and talk to one another

a person looks at a celebrity 

on the computer

girl is checking twitter

a woman creating a fondant 

baby and flower

a woman is making a hair 

accessory

a man speaks to children

in a classroom

a class is being introduced to a 

digital reading device

------ ------

------ a woman talking about education

Figure 5. Visualization of text-to-video search results on MSR-VTT. The first row is the
query text, the second row is the corresponding Ground Truth. the third, fourth and fifth
rows are the retrieval results for Top1–3.

features using a focused mechanism.
The results of these experiments, as shown in Table 3, reveal an improvement in R@1 values ranging

from 1% to 6%. This indicates that our cross-modal attention-based approach to acquiring video
features leads to a more accurate capture of the relationships between video frames and text semantics.

Global-Local Similarity Calculation
In the ablation experiments of the similarity calculation module, Table 3 demonstrates the impact

of various strategies on similarity analysis and score prediction. The results indicate that using video
features obtained from the cross-modal attention feature aggregation method (as outlined in Section
4.3) as input data for the similarity calculation module slightly decreases performance compared to
using frame-word local features. This suggests two things: (1) the aggregation process may result in
a loss of detailed features, and (2) the slight performance decrease also implies that the aggregated
video features can effectively capture the features present in the frames. The global-local similarity
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calculation approach leads to an improvement of 1–3% in R@1 compared to using either method
individually.

Figure 3 displays the attention weights of selected video frames generated by the cross-modal fea-
ture aggregation model. As can be observed from the examples, the model’s attention mechanism can
distinguish the relative importance of each frame’s content, assigning lower weights to frames with
limited correlation to textual information. In comparison, the self-attention aggregation method can
recognize frames with crucial information but fails to differentiate between frames with subtle dif-
ferences. On the other hand, the mean weighting aggregation method doesn’t differentiate between
frame.

The line graph in Figure 4 showcases the trend of the weight assigned to the key frames of the
first example shown in Figure 3. The results demonstrate that the cross-modal Attention mechanism
effectively identifies the frames relevant to the critical information in the video as it assigns higher
weights to these frames. On the other hand, the mean aggregation method presents a flat trend, with
no significant fluctuations in the weight assignments. In comparison, the self-attention method appears
less responsive to the changes in the frame content, leading to a more moderate trend in the graph.

5.3.3. Qualitative results

The results in Figure 5 show the effectiveness of the text-to-video model developed in this study.
The first row displays the input query text, while the second shows the ground truth. The remaining
rows (3–5) present each query’s top 1–3 ranked results. The retrieved video frames are visually similar
to the ground truth and semantically align with the given text query, demonstrating the ability of the
model to match textual and visual information.

The first column in Figure 5 demonstrates the model’s aptitude in retrieving videos accurately re-
lated to the query text. The query “doing craft”, is reflected in the captions of the retrieved videos, all
of which pertain to “craft” and feature a “woman”. This indicates that the model can efficiently match
text and video topics during retrieval. The second column showcases the model’s focus on the criti-
cal elements shared between the text and video modalities, as the top-ranked retrieval result, despite
not being the ground truth, contains the crucial information from the query, namely a “woman” and a
“laptop”. Similarly, both the top 2 and top 3 ranked videos in the last column depict a “student” and a
“teacher” in a “classroom”.

The utilization of cross-modal feature aggregation and global-local similarity calculation in the
model elevates the accuracy and sophistication of text-to-video retrieval results. This allows the model
to concentrate on the topics and visual aspects of the videos, resulting in a more precise and refined
retrieval outcome.

6. Conclusions

This paper improves the performance of text-video matching by implementing two modules: the
cross-modal attention feature aggregation module and the global-local similarity calculation module.
The cross-modal attention feature aggregation module leverages the pre-trained CLIP model’s multi-
modal feature extraction capabilities to extract highly relevant video features, focusing on the frames
most pertinent to the text. Meanwhile, the global-local similarity calculation module calculates simi-
larities based on the video-sentence and frame-word granularities, allowing for a more nuanced con-
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sideration of both the topic and detail features in the matching process. The experimental results,
conducted on the benchmark dataset, clearly demonstrate the efficacy of our proposed modules in cap-
turing both topic and detail features, leading to improvement in text-video matching accuracy. This
work contributes to multi-modal representation learning, highlighting the potential of advanced feature
aggregation and similarity calculation techniques in enhancing text-video matching. Further research
may be necessary to realize our methods in real-world applications fully.
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