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Abstract: As an essential component of mechanical equipment, the fault diagnosis of rolling 

bearings may not only guarantee the systematic operation of the equipment, but also minimize any 

financial losses caused by equipment shutdowns. Fault diagnosis algorithms based on convolutional 

neural networks (CNN) have been widely used. However, traditional CNNs have limited feature 

representation capabilities, thereby making it challenging to determine their hyperparameters. This 

paper proposes a fault diagnosis method that combines a 1D-CNN with an attention mechanism and 

hyperparameter optimization to overcome the aforementioned limitations; this method improves the 

search speed for optimal hyperparameters of CNN models, improves the diagnostic accuracy, and 

enhances the representation of fault feature information in CNNs. First, the 1D-CNN is improved by 

combining it with an attention mechanism to enhance the fault feature information. Second, a swarm 

intelligence algorithm based on Differential Evolution (DE) and Grey Wolf Optimization (GWO) is 

proposed, which not only improves the convergence accuracy, but also increases the search efficiency. 

Finally, the improved 1D-CNN alongside hyperparameters optimization are used to diagnose the 

faults of rolling bearings. By using the Case Western Reserve University (CWRU) and Jiangnan 

University (JNU) datasets, when compared to other common diagnosis models, the results 

demonstrate the usefulness and dependability of the DE-GWO-CNN algorithm in fault diagnosis 

applications by demonstrating the increased diagnostic accuracy and superior anti-noise capabilities 

of the proposed method. The fault diagnosis methodology presented in this paper can accurately 

identify faults and provide dependable fault classification, thereby assisting technicians in promptly 

resolving faults and minimizing equipment failures and operational instabilities. 
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1. Introduction 

To ensure the safety and stable operation of industrial production within the industrial field, 

equipment fault diagnosis is extremely important. Because of the challenging atmosphere and harsh 

working circumstances, rolling bearings within mechanical equipment are often damaged [1]. 

According to statistics, rolling bearings are responsible for around 30% of mechanical faults in 

rotating equipment and about 20% of mechanical faults in gearboxes [2]. The rolling bearings' 

condition monitoring and fault diagnosis technology serve as an important tool in understanding the 

performance status of bearings and identifying potential faults in time [3]; in addition, it can 

effectively improve the operation management and maintenance efficiency of mechanical equipment, 

thus significantly improving the economic performance of enterprises [4]. 

Nowadays, gathering temperature or pressure data of the equipment for fault diagnosis does not 

yield accurate findings due to the influence of the factory's actual production process; alternatively, 

the equipment is directly connected to the vibration signal, which can therefore represent the device's 

operational status [5]. Thus, there is a high importance placed on research into fault diagnosis 

algorithms for vibration signals. In recent years, there has been a significant increase in computer 

performance due to advances in science and technology. Additionally, experts and academics have 

used machine learning and deep learning algorithms to diagnose faults using vibration signals [6]. 

Common fault diagnosis algorithms include support vector machine [7], k-nearest neighbor [8], 

random forest [9], convolution neural network (CNN) [10], long short-term memory (LSTM)[11] 

and transfer learning(TL) [12]. Wu [13] used the enhanced quantum-inspired differential evolution 

(MSIQDE) method to optimize deep confidence networks and facilitate fault diagnosis. Yuan [14] 

effectively utilized hypergraph algorithms to reduce the dimensionality of fault data features and 

implemented KNN classifiers for precise fault classification. Qing [15] proposed a novel Physical 

Information Residual Network (PIResNet) for the fault diagnosis of rolling bearings. Feng [16] 

created a digital replica of the gearbox's structure and employed a transfer learning algorithm to 

acquire knowledge on faults, which was then used to evaluate surface faults in an actual gearbox. 

Yuan [17] used the local-global standard hypergraph embedding (LGSHE) method to reduce the 

dimensionality of fault information and improve the accuracy of fault classification. Among them, 

CNN has attracted much attention because of its powerful feature extraction ability. Wang [18] 

employed a wavelet analysis to transform time-frequency picture data from one-dimensional (1D) 

vibration data into feature extraction and defect classification using a deep convolution neural 

network. Qiu [19] built a fault diagnosis model based on the CNN model by integrating auxiliary 

classifier generative adversarial network (ACGAN 20T) 20T and a self-attention mechanism. Gao [20] 

proposed a fault diagnosis method by combining maximum correlated kurtosis deconvolution 

(MCKD) and CNN. Hoang [21] transformed the 1D vibration signal into a binary graph and used 

CNN for fault diagnosis; however, this method lost the time series information. Wang [22] used 

improved Markov transformation field (MTF) to convert 1D vibration data into two-dimensional (2D) 

image data, and then used CNN to diagnose faults of rolling bearings. To achieve fault diagnosis, 

Zhao [23] proposed a new dimensionality reduction method and applied it to 1D-CNN with an 

adaptive activation function. 
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However, in the actual use of CNN for fault diagnosis, hyperparameters are often selected based 

on experience, which cannot allow CNN to play an optimal role, as the hyperparameter optimization 

problem for CNN has multi-modal characteristics [24]. Therefore, many scholars use intelligent 

optimization algorithms to optimize the hyperparameters of CNN. Sun [25] took the diagnosis 

accuracy and stability of the model as the optimization objective and used Differential Evolution (DE) 

to optimize the hyperparameters of CNN; however, the convergence speed was not satisfactory. Li [26] 

proposed a fault diagnosis method by combining the symplectic frog leapfrog algorithm (SFLA) and 

CNN, the SFLA is used to optimize the network structure and improve the feature extraction ability 

of CNN, thus improving the fault diagnosis accuracy of the model. Wang [27] combined auxiliary 

classifier generative adversarial network (VMD) with CNN for fault diagnosis by first optimizing the 

parameters of VMD and processing the data by using the improved grey wolf optimization algorithm; 

then, the processed data was inputted into the CNN, which optimized the model parameters through a 

grid search for fault diagnosis. However, the global search capability was not satisfactory. 

Although CNN is an effective method in the field of rolling bearing fault diagnosis, there are 

still some challenges in practical applications such as quickly finding the most suitable 

hyperparameters and improving the feature representation ability of CNN models. To this end, this 

paper compares other intelligent optimization algorithms, and finds that though the DE algorithm has 

excellent global optimization ability [28], the iterative process of the grey wolf optimization (GWO) 

algorithm is quicker [29]. Therefore, this paper proposes a fault diagnosis algorithm that combines 

the two optimization algorithms to optimize the hyperparameters of the 1D convolutional neural 

network (1D-CNN) model and adds an attention mechanism after the 1D-CNN to highlight more 

useful fault feature information. Then, the algorithm uses the optimized 1D-CNN to build a fault 

diagnosis model to diagnose rolling bearing faults. The contribution of this paper can be summarized 

as follows: 

1. A novel deep learning method based on 1D-CNN is proposed, which effectively enhances the 

fault feature information by adding an attention mechanism layer, prevents overfitting of the network 

by adding a dropout layer, and efficiently improves the accuracy of the classification. 

2. A new swarm intelligence optimization algorithm based on DE-GWO is proposed, which not 

only enhances the global search ability, but also improves the convergence speed. 

3. A fault diagnosis method for rolling bears based on DE-GWO-CNN is proposed, which 

efficiently identifies the best combination of six important hyperparameters for the improved 1D-CNN 

algorithm and effectively improves the fault diagnosis accuracy while ensuring fast convergence. 

The remaining of this paper is displayed as follows. Section 2 represents the method used in this 

paper. Section 3 shows the training and testing datasets. The results and comparison are shown in 

Section 4 and the conclusion is drawn in Section 5. 

2. Methods 

The structure of the fault diagnosis method proposed in this paper is shown in Figure 1. 

As seen from Figure 1, the first step is constructing the datasets involves normalizing fault 

signals and tags and dividing them into a training set and a test set. Next, we utilize the DE-GWO 

algorithm proposed in this paper to optimize the hyperparameters of the CNN method. Subsequently, 

we train the fault detection model using both the optimized CNN and the training data. Finally, we 

evaluate the trained model using a test set to ensure its accuracy and effectiveness.  
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Figure 1. The structure of the fault diagnosis method. 

2.1. DCNN algorithm 

The main components of a 1D-CNN, which consists of a convolution layer, a pooling layer, and 

a fully connected layer, are similar to those of a typical feed-forward neural network. However, 1D-

CNN has the added benefits of reducing model complexity, avoiding difficult feature extraction 

procedures, and reducing the number of weights required. The convolution, dropout, and pooling 

layers are utilized for feature extraction from the original signal, while the full connection layer 

creates a mapping relationship between the retrieved features and labels to realize the classification 

function. The structure of the 1D-CNN can be visualized in Figure 2. 

 

Figure 2. The structure of the 1DCNN. 

The convolution layer applies a convolution operation to the input's original 1D data using 

convolution kernels, and then uses the activation function to make nonlinear changes to obtain a 

series of feature maps. The following formula [30] can be used to describe the convolution process: 
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where  is the result of the convolution operation,  represents the activation function, which is 

Relu in this paper, represents the input data, * represents the convolution operation,  

represents weights and R

 
Rrepresents bias. 

The dropout is used to prevent an overfitting problem during the training of the CNN model, 

which utilizes random sampling of weights based on a certain probability. 

The purpose of the pooling operation is to improve the training speed of the convolution neural 

network and further avoid overfitting by reducing the dimension of the data. Popular pooling 

techniques include the maximum and average pooling methods; this paper adopts the maximum 

pooling method [30]: 
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where X represents the feature map after dimension reduction and l represents the length of the pooling area. 

Finally, the extracted features are inputted into the full connection layer, the output probability is 

identified through the softmax function; then, the classification results are obtained. In this paper, 

before the full connection layer, a dropout layer is inserted to disregard some neurons and prevent 

overfitting during the training model. 

Although 1D-CNN has a strong feature extraction ability, the selection of hyperparameters in the 

training process of the model will also have a great impact on the training results. At present, 

hyperparameters are generally selected through experience, though the effect is often general. This 

paper optimizes the hyperparameters of 1D-CNN by using the proposed DE-GWO algorithm. 

The hyperparameters that have a great impact on the training results of 1D-CNN are the number 

of convolution kernels, the size of the convolution kernel, the dropout rate, the size of the 

pooling layer, the batch size and the learning rate. As a result, this paper mainly uses DE-GWO 

to optimize these parameters. 

2.2. Attention mechanism 

The attention mechanism can highlight the fault features with important information and 

suppress invalid features through adaptive weighting of different signal segments. The attention 

mechanism in this paper is added between the pooling layer and the fully connected layer. According 

to the attention mechanism, features that have a significant impact on the results will be given a 

greater weight. The structure is shown in Figure 3. 

The input features are automatically extracted through convolution. The attention weight of each 

channel of the feature is obtained by adding an attention layer after the feature map. Then, the output 

feature map is produced using the dot product of the acquired attention weight and the original 

feature. The attention mechanism can be described as follows [31]: 

( ) HHMH C =' , (3) 

kjiy ,, f

kix , ijw ,

ib



19968 

Mathematical Biosciences and Engineering  Volume 20, Issue 11, 19963–19982. 

where mnH  is the original feature map after the convolution operation, n1MC is the 

attention weights for the channel dimensions,  is the feature map after the attention mechanism, 

  is the dot product, and  is described as follows [31]: 

( )  ( )( )CC

avgC HHConvHM max;= , (4) 

where  and  are the global average pooling and global max pooling, respectively, Conv() is 

the convolution operation and σ is the activation function. 

In this paper, the attention mechanism is added after the maxpooling layer to enhance the fault 

feature information of 1D-CNN. 

 

Figure 3. The structure of the attention mechanism. 

2.3. The DE-GWO method 

In 1995, R. Storn and K. Price proposed the DE algorithm as a population-based optimization 

method. Compared with other optimization algorithms, the advantages of DE mainly lie in its 

controllability and few control parameters to be adjusted. Its attributes include a straightforward 

structure, straightforward realization, quick convergence, and high resilience; however, the 

convergence speed becomes slower during the latter part of the algorithm and sometimes even falls 

into the local best. In 2014, Mirjalili proposed the GWO algorithm as a population-based 

optimization method. It benefits from having a strong convergence performance, a straightforward 

structure, few adjustable parameters, and ease of implementation. When solving problems, it 

performs well in terms of convergence speed and accuracy. However, when faced with difficult 

issues, it easily converges early, and the convergence accuracy is not good. Narayan Nahak and 

Ranjan Kumar Mallick [32] combined the two algorithms into one by considering the final 

population of DE as the initial population of GWO, which took the advantages of both DE and GWO. 

The traditional DE algorithm has a strong global search ability, though its convergence rate is 

not satisfactory. This paper effectively improves the rate of convergence and accuracy of the 

algorithm by integrating the GWO algorithm into the mutation process of DE, which makes the 
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population evolution more directional. Figure 4 depicts the method's organizational structure. 

 

Figure 4. The structure of the DE-GWO. 

The DE-GWO algorithm's operational approaches are as follows. 

Step 1. Population initialization 

The standard DE algorithm uses real number coding. First, generate an initial population with a 

scale of [N, D]. N represents the number of individuals in the population, and D represents the 

number of decision variables. The initial population can be expressed as follows: 

 DNDD xxxx ,,2,1 ,,, = , (5) 

where x represents the initial population and Dix , represents an individual in the population. 

Step 2. Mutation operation with GWO 

The mutation operator used by the traditional mutation strategy is shown as follows [33]:  

210),( ,2,1,0, rrriXXFXV grgrgrgi −+= , (6) 

where  is a mutation individual, ,  and  are individuals randomly selected from 

the population which are different from each other, and F is the scaling factor, which is usually a 

float data type set between 0 and 2. 

However, in this paper, the mutation operation is completed by GWO. The following are the 

precise steps of the operation. First, make a fitness calculation for each person in the population. The 

individuals of the first three optimal solutions are called the head wolf, represented by α, β and δ, 

respectively, and the other individuals are grey wolves. Grey wolves update their hunting positions 

by simulating the hunting process according to the positions of the three head wolves. The 

mathematical formula for this process of hunting is as follows [34]: 

)()(1 tXtXCD −=  , (7) 

)()(2 tXtXCD −=  , (8) 
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where X represents an individual in the population, C represents the wobble factor, which is usually a 

float data type set randomly between 0 and 2, D represents the distance between the head wolves and 

the grey wolves, and A represents the convergence factor, which can decide whether the grey wolves 

move towards the head wolves’ position. The new position of the individual in the population is 

expressed as follows: 

3
)1( 321 XXX
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where  represents an individual in the next generation population. 

Finally, after all grey wolves have updated their positions, the new population is the mutation 

population of the DE algorithm. 

Step 3. Crossover operation 

The population variety may be further increased using the crossover approach. In this paper, the 

binomial crossover is the employed crossover technique [33]: 
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where  represents a crossover individual and Cr is the crossover operator, which is often a float 

data type set at random between 0 and 1. The crossover individual is the mutation individual if 

, and the original individual for the others. 

 Step 4. Select operation 

The selection strategy is the last step of the DE algorithm. The experimental vector obtained 

through the crossover and the mutation is compared with the original vector. In this paper, to solve 

the minimum optimization problem and to enter the next generation, individuals with smaller fitness 

functions are chosen. It can be stated as follows [33]: 
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where  is the next generation,  is the individual after the crossover operation, is the 

parent individual before the mutation and crossover operations, and f stands for the fitness function. 
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3. Data 

3.1. CWRU bearing datasets 

The Rolling Bearing Data Center at CWRU provided the defect diagnosis datasets for this study. 

This paper employs a 48k drive end bearing fault data, a 3 hp motor load, and a 1,730 rpm motor 

speed. Table 1 displays a description of the data. 

Table 1. The data description of CWRU. 

Fault Type Fault Size Fault Position Training Data sets Testing Data sets Label 

Inner Race Fault 0.1778 — 320 80 0 

Ball Fault 0.1778 — 320 80 1 

Outer Race Fault 0.1778 Centered@6:00 320 80 2 

Inner Race Fault 0.3556 — 320 80 3 

Ball Fault 0.3556 — 320 80 4 

Outer Race Fault 0.3556 Centered@6:00 320 80 5 

Inner Race Fault 0.5334 — 320 80 6 

Ball Fault 0.5334 — 320 80 7 

Outer Race Fault 0.5334 Centered@6:00 320 80 8 

Normal — — 320 80 9 

 

The experimental data consist of 10 types, including 9 fault types and 1 normal type. At the hour 

mark, the inner race, ball, and outside race are where the fault is placed; the corresponding fault 

diameters are 0.1778 mm, 0.3556 mm, and 0.5334 mm, respectively. Each type has 400 samples, of 

which 320 serve as training data sets and 80 serve as test data sets; each sample includes 1024 

vibration data. To solve the problem that classifiers are not good at processing attribute data, the one-

hot coding is used to replace the real number encoding. 

3.2. JNU bearing datasets 

The JNU datasets, obtained from Jiangnan University in China [35], is a comprehensive 

collection of bearing data. The datasets were generated using a centrifugal fan system test bed 

specifically designed for fault diagnosis. The test bed utilized a Mitsubishi SB-JR induction motor, 

with the rotor supported by two bearings, one of which was intentionally faulty. To capture the 

vibration signals, accelerometers were strategically placed in the vertical direction of the bearings. 

The datasets consider four distinct health states: normal condition (N), inner ring failure (IF), outer 

ring failure (OF), and rolling body failure (BF). The vibration acceleration signals were meticulously 

collected at three different speeds - 600, 800, and 1000 rpm - with a sampling frequency of 50 kHz, 

ensuring rich and diverse datasets for various analytical purposes. In this paper, four operating states 

of the tachometer 600 are used to carry out troubleshooting experiments. Table 2 displays a 

description of the data. 

The experimental data in this study is comprised of four distinct types, with three fault types and 

one normal type. The faults are deliberately placed in the inner ring, outer ring, and rolling body of 

the bearing. For each type, there are 480 available samples, with 400 samples designated as training 

data sets and 80 samples as test data sets. Each sample contains 1,024 data points of vibration 

information, thereby providing ample data for analysis and model training. 

This article opted not to process the data, and instead conducted an analysis and research using 
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the original datasets. The objective was to preserve the salient features of the original signal with the utmost 

fidelity, thus enabling a better comprehension of the intrinsic properties and characteristics of the data. 

The test was conducted on a computer with an i7-12700 CPU, featuring a main frequency of 3.6 

GHz and 32 GB of memory. The programming software used was Python 3.9.7, with the 

TensorFlow2.0 environment developed by Google. The framework utilized was Keras, and the model 

was sequential. 

Table 2. The data description of JNU. 

Fault Type Training Data sets Testing Data sets Label 

Inner Ring Failure (IF) 400 80 0 

Outer Ring Failure (OF) 400 80 1 

Rolling Body Failure (BF) 400 80 2 

Normal 400 80 3 

4. Results and discussion 

4.1. The performance of the DE-GWO method 

To verify the optimization ability of the proposed algorithm under unimodal and multimodal 

functions, four standard test functions [36,37] are selected and used for simulation experiments, 

where the functions F1–F2 are unimodal, whereas F3–F4 are multimodal, and the proposed 

algorithm's convergence results are contrasted with those of other optimization algorithms and the 

optimization performance is analyzed. The expressions, search intervals and theoretical optimal 

values of the four standard test functions are listed in Table 3. 

Table 3. The standard test functions. 

Function Function Expression d S minf  
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To compare the proposed DE-GWO method, the DE method, and the GWO method's optimum 

performances, the three algorithms were used to solve the four standard test functions listed in Table 

1. For the fairness of comparison, we set the population number to 30, the maximum number of 

iterations was 100, the crossover rates of DE-GWO and DE were both 0.5, and the mutation rate of 

DE was 0.5. For each test function, the three algorithms were independently run 20 times under the 

dimensions d = 30. The solution results are shown in Table 4. 

 The table shows that the proposed DE-GWO algorithm performs better in terms of convergence 

accuracy and robustness compared to either the single DE or single GWO algorithms, whether in 

unimodal or multimodal functions. This supports the efficacy of the enhancement technique suggested in 

this research. Figure 5 displays the convergence curves of the methodologies for the four test functions. 
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Table 4. The solution results of the test functions. 

Test 

function 
d 

DE-GWO DE GWO 

mean SD mean SD mean SD 

F1 30 2.42E-10 2.40E-10 1.27E+3 3.65E+2 1.82E-2 9.32E-2 

F2 30 2.95E-7 1.76E-7 1.77E+1 1.60E+0 2.49E-2 8.42E-3 

F3 30 3.24E-9 1.62E-9 2.12E+2 1.33E+1 3.18E+1 6.49E+0 

F4 30 4.31E-6 2.10E-6 8.94E+0 7.39E-1 2.3E-2 5.6E-3 

 

(a)F1          (b)F2 

 

(c)F3          (d)F4 

Figure 5. The convergence curves of the three algorithms for the four test functions. 

4.2. 1DCNN optimized by DE-GWO 

The DE-GWO proposed in this paper is used to calculate the result in order to choose the 

hyperparameters of 1D-CNN with the highest fitness; then, the attention mechanism is added in the 

fault diagnosis model. 

This paper chooses six hyperparameters that need to be optimized using DE-GWO in the 1D-

CNN, as they have a great impact on the algorithm performance through numerous experiments, 

namely the number of convolution kernels, convolution step, dropout rate, pooling step, learning rate 

and batch size. An appropriate number of convolution kernels can avoid both underfitting and 

overfitting. The convolution step can affect the training speed and the ability of extract features. The 
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dropout rate can effectively reduce the risk of overfitting of the model. The pooling step can control 

the complexity of the model. The learning rate can influence the convergence speed. The batch size 

has a significant impact on the convergence rate. 

Before using the optimization algorithm, the value range of these six hyperparameters should be 

determined. According to experience, this paper sets the range of the number of convolution cores as 

1 to 100, the convolution step size as 1 to 100, the dropout rate as 0.1 to 0.9, the pooling step size as 

1 to 100, the batch size as 10 to 100, and the learning rate as 0 to 1.  

The parameters of the DE-GWO algorithm are as follows: the maximum evolution times is 10, 

the number of populations is 10, the dimension is 6 and the cross probability is 0.5.  

This paper uses rolling bearing data to train the model; the fitness function of the DE-GWO 

algorithm is as follows： 

gixgi Axf
,

)( , = , (16) 

where  represents the ith individual of the g generation and  represents the loss result of one 

iteration of the 1D-CNN. Figure 6 shows the convergence curves of the three optimized algorithms 

for 1D-CNN. 

 

(a) The convergence curves using CWRU datasets (b) The convergence curves using JNU datasets 

Figure 6. The convergence curves of the three optimized algorithms for 1D-CNN. 

     After the optimization of the DE-GWO, DE and GWO, the fitness hyperparameters of the 1D-

CNN using different algorithms and normal 1D-CNN with hyperparameters selected by experience 

are shown in Table 5. 

Table 5(a). The hyper parameters of 1D-CNN using different algorithms for CWRU datasets. 

Algorithm KC KL PL Dropout Learning Rate Batch Size 

DE-GWO 10 64 9 0.26524 0.00423 42 

DE 17 54 18 0.38586 0.00402 17 

GWO 42 40 36 0.26008 0.00516 33 

normal 8 8 3 0.2 0.004 40 

 

gix , gixA
,
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Table 6(b). The hyper parameters of 1D-CNN using different algorithms for JNU datasets. 

Algorithm KC KL PL Dropout Learning Rate Batch Size 

DE-GWO 14 90 19 0.16168 0.00659 32 

GWO 8 72 40 0.38763 0.00727 25 

DE 58 50 22 0.38547 0.00519 12 

normal 8 8 3 0.2 0.004 40 

 

The padding of the model is the "same", the activation of the convolution layer is relu and the 

classifier is softmax. To enhance fault feature information of 1D-CNN, the attention mechanism is 

added after the maxpooling layer. 

4.3. Fault diagnosis of rolling bearings based on DE-GWO-CNN 

4.3.1. Fault diagnosis experiments using the CWRU datasets 

Taking categorical_crossentropy as the loss function to update model parameters, 80% of the 

data set is used as the training data set of the algorithm and the remaining 20% as the test data set. 

Then, DE-GWO-CNN with attention mechanism, DE-CNN, GWO-CNN and 1D-CNN are used to 

diagnose rolling bearing faults. The iteration number of the algorithm is set as 60. The fault diagnosis 

accuracy and loss function of the four algorithms are shown in Figure 7. 

 

(a)The accuracy of the fault diagnosis methods      (b)The loss of the fault diagnosis methods 

Figure 7. The accuracy and loss of the fault diagnosis methods. 

The four methods in the training set can all achieve 100% accuracy after 40 iterations; however, 

the approach suggested in this study has the fastest convergence speed, a smoother curve, and 

superior stability. Table 6 displays the various algorithms' fault diagnostic accuracy and validation 

time for the test data set. Though not statistically different from other algorithms, the proposed fault 

diagnosis method does not have the shortest validation time. However, its accuracy is the highest 

among these algorithms, indicating that it is effective for diagnosing faults in rolling bearings. 

To further clarify the diagnostic superiority of the algorithm proposed in this paper, the 

confusion matrix of the normal 1D-CNN, the improved 1D-CNN and the DE-GWO-CNN are 

compared with each other. The results are shown in Figure 8, which express the accuracy of different 

fault diagnosis benchmarks for different fault types. 
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Table 7. The accuracy and calculation time of fault diagnosis in the test data set. 

Fault diagnosis model DE-GWO-CNN DE-CNN GWO-CNN 1D-CNN 

Accuracy 99.25% 97.25% 92.875% 85.75% 

Recall 99.253% 96.966% 93.011% 85.623% 

F1 99.251% 97.108% 92.893% 85.686% 

Validation time (s/epoch) 0.36 0.68 0.29 0.27 

 

 

(a)The normal 1D-CNN     (b)The improved 1D-CNN   (c)The DE-GWO-CNN 

Figure 8. The confusion matrix of the different algorithms. 

The figure indicates that the proposed algorithm achieves a diagnostic accuracy of 100% for 

states one, five, seven, nine and ten, while the lowest diagnostic accuracy for the remaining five 

states is 97.5%. Compared to the normal 1D-CNN and the improved 1D-CNN, the proposed method 

achieves the highest accuracy, indicating that the fault diagnosis model presented in this paper has a 

superior diagnostic ability. 

4.3.2 Fault diagnosis experiments using the JNU datasets 

Taking categorical_crossentropy as the loss function to update model parameters, 75% of the 

data set is used as the training data set of the algorithm and the remaining 25% as the test data set. 

Then, DE-GWO-CNN with attention mechanism, DE-CNN, GWO-CNN and 1D-CNN are used to 

diagnose rolling bearing faults. The iteration number of the algorithm is set as 60. The fault diagnosis 

accuracy and loss function of the four algorithms are shown in Figure 9. 

The GWO-CNN and DE-GWO-CNN algorithms achieved 100% accuracy after just 30 iterations 

in the training set, outperforming other methods that required more iterations. The proposed 

approach in this study exhibits the fastest convergence speed, a smoother curve, and superior stability. 

Table 7 presents the fault diagnostic accuracy and validation time for various algorithms on the test 

datasets. While the proposed fault diagnosis method does not have the shortest validation time, the 

difference is not significant compared to other algorithms. More importantly, the method achieves 

the highest accuracy among these algorithms, demonstrating its effectiveness in diagnosing faults in 

rolling bearings. This superior accuracy justifies the use of the proposed method for fault diagnosis 

in rolling bearing. 
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(a)The accuracy of the fault diagnosis methods   (b)The loss of the fault diagnosis methods 

Figure 9. The accuracy and loss of the fault diagnosis methods using JNU datasets. 

Table 8. The accuracy and calculation time of fault diagnosis in the test data set. 

Fault diagnosis model DE-GWO-CNN GWO-CNN DE-CNN 1D-CNN 

Accuracy 99.69% 95.00% 92.43% 83.13% 

Precision 99.69% 95.00% 92.43% 83.13% 

Recall 100% 95.02% 93.68% 84.22% 

F1 99.84% 95.01% 93.05% 83.67% 

Validation time (s/epoch) 0.36 0.46 0.28 0.22 

 

To further demonstrate the diagnostic superiority of the algorithm proposed in this paper, a 

comparison of confusion matrices is conducted between the normal 1D-CNN, the DE-CNN, the 

GWO-CNN and the DE-GWO-CNN. As shown in Figure 10, the results illustrate the accuracy of 

different fault diagnosis methods for various fault types. This comparison effectively highlights the 

improved performance of the proposed algorithm. 

 

(a)The DE-GWO-CNN   (b)The GWO-CNN     (c)The DE-CNN     (d)The normal 1D-CNN 

Figure 10. The confusion matrix of the different algorithms. 

Using Figure 10, the average recognition accuracy for each operating condition of different 

algorithms is calculated and the results are listed in Table 8. 

According to the table, the proposed algorithm demonstrates a diagnostic accuracy of 100% for 

states one, three, and four, with a slightly lower accuracy of 98.75% for the remaining states. In 

comparison to other algorithms, the proposed method exhibits the highest accuracy. These results 

indicate that the fault diagnosis model presented in this paper possesses superior diagnostic 
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capabilities. 

Table 9. The accuracy for each operation condition of different algorithms. 

Fault diagnosis model DE-GWO-CNN GWO-CNN DE-CNN 1D-CNN 

IF 100% 95.00% 91.25% 88.75% 

OF 98.75% 95.00% 96.25% 81.25% 

BF 100% 92.50% 87.50% 65.00% 

Normal 100% 97.50% 98.75% 97.50% 

4.3.3 Comparison with other methods 

To demonstrate the superiority of the proposed fault diagnosis algorithm, a quantitative 

comparison was made between the algorithm proposed in this paper and DE-GWO-CNN without an 

attention mechanism, as well as three classic models: GoogLeNet, LeNet-5, and AlexNet. All models 

were trained on the CWRU datasets but with different hyperparameters. The test results are presented 

in Table 9. 

Table 10. Comparison between algorithms. 

Fault diagnosis model Accuracy 

The proposed method 99.25% 

DE-GWO-CNN without attention mechanism 94.50% 

GoogLeNet 93.75% 

LeNet-5 91.87% 

AlexNet 96.13% 

 

According to the table, when compared to DE-GWO-CNN without attention mechanism, 

GoogLeNet, LeNet-5, and AlexNet, the proposed algorithm demonstrates a superior accuracy in fault 

diagnosis. Specifically, the proposed method achieves 4.75%, 5.5%, 7.48%, and 2.92% higher 

accuracy than these respective models. This suggests that the proposed algorithm may offer a more 

effective solution for fault diagnosis.  

Finally, to verify the anti-noise ability of the algorithm proposed in this paper, Gaussian white 

noise is added to the original rolling bearing vibration data, and the signal-noise ratio (SNR) is used 

to measure the noise, which is shown as follows [38]:  

noise

signal

P

P
SNR 10log10=  (17) 

where  represents the power of the signal and  represents the power of the noise. 

This paper sets up three sets of noise experiments, with signal-to-noise ratios of -5 dB, 5 dB, and 

10 dB. The four algorithms used for fault diagnosis are DE-GWO-CNN, DE-CNN, GWO-CNN, and 

normal 1D-CNN. The results are presented in Figure 11. 

signalP
noiseP
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Figure 11. Diagnostic accuracy of each algorithm under noise interference. 

The experimental findings clearly demonstrate that the suggested algorithm outperforms the 

other three algorithms in terms of fault diagnostic performance for these three types of Gaussian 

white noise. Moreover, the results also highlight the program's exceptional anti-noise capability and 

its potential for higher engineering application value. 

5. Conclusions 

While the 1D-CNN algorithm is effective in feature extraction, selecting optimal 

hyperparameters can be challenging and its feature representation ability may not always be 

satisfactory. To address these issues, we propose a novel approach that utilizes the DE-GWO 

intelligent optimization algorithm to optimize the hyperparameters of 1D-CNN. By finding the most 

suitable hyperparameters, our method enhances the ability of the 1D-CNN model to extract features 

from bearing vibration signals and improve the fault classification accuracy. Additionally, we 

enhance the feature representation ability of 1D-CNN by incorporating an attention mechanism. 

Comparative tests demonstrate that our proposed algorithm improves the accuracy and convergence 

speed of fault diagnosis. Notably, the algorithm exhibits high anti-noise performance, as it achieves a 

relatively higher accuracy even when the signal-to-noise ratio is set to -5 dB, 5 dB, and 10 dB. 

Furthermore, although the diagnostic accuracy of the rolling bearing fault diagnosis model 

proposed in this paper is reasonably high, there is still room for improvement in terms of its 

transferability. Therefore, our future research efforts will be focused on enhancing the 

transferability of the fault diagnosis model, with the aim of facilitating its broader application in 

real-world industrial settings. 
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