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Abstract: To address the challenge of achieving a balance between efficiency and performance in 

steel surface defect detection, this paper presents a novel algorithm that enhances the YOLOv5 

defect detection model. The enhancement process begins by employing the K-means++ algorithm to 

fine-tune the location of the prior anchor boxes, improving the matching process. Subsequently, the 

loss function is transitioned from generalized intersection over union (GIOU) to efficient intersection 

over union (EIOU) to mitigate the former’s degeneration issues. To minimize information loss, 

Carafe upsampling replaces traditional upsampling techniques. Lastly, the squeeze and excitation 

networks (SE-Net) module is incorporated to augment the model’s sensitivity to channel features. 

Experimental evaluations conducted on a public defect dataset reveal that the proposed method 

elevates the mean average precision (mAP) by seven percentage points compared to the original 

YOLOv5 model, achieving an mAP of 83.3%. Furthermore, our model’s size is significantly reduced 

compared to other advanced algorithms, while maintaining a processing speed of 47 frames per 

second. This performance demonstrates the effectiveness of the proposed enhancements in 

improving both accuracy and efficiency in defect detection. 
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1. Introduction  

Steel production is vital to industrialized nations and used extensively in aerospace, automotive 

and defense. The production quality directly affects safety. Recently, the demand for higher steel 

quality has grown, requiring not only performance standards but also excellent surface quality. 

Surface defects arising from environmental factors, raw materials and technology often reduce steel’s 
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wear resistance, corrosion resistance and fatigue strength. If not detected, these defects can pose risks 

in actual use. Early methods employed manual inspection, where operators used visual inspection to 

judge whether products were qualified. This method is characterized by its high costs, intermittent 

defect detection and challenges in data collection. With the increase in steel output, manual methods 

have become uneconomical. In recent years, scholars have conducted a lot of research on automated 

identification methods for steel surface defect detection [1–3]. As computer technology advanced, 

machine vision-based surface defect detection gained acceptance and widespread use in enterprises. 

Traditional object detection methods identify based on the color, texture and edge features of the 

detected object. For example, Wang et al. [4] proposed an automatic defect detection method based on 

template matching. By pixel-by-pixel detection and guiding a series of operations between the 

template and the sorted test image, defects can be accurately located. Nand et al. [5] proposed an 

entropy-based defect detection algorithm. By comparing the entropy of the image with the entropy of 

the background image through background subtraction, the defect part of the image was extracted 

from the entropy image and three types of defects such as water droplets, bubbles and scratches on the 

steel surface were successfully detected. Hu [6] introduced a novel approach for defect detection in 

textured surfaces by utilizing an optimized elliptical Gabor filter, which can be tuned by a genetic 

algorithm to match the texture features of a defect-free template. This method significantly enhances 

defect detection efficiency and effectiveness, as demonstrated by extensive experimental results. 

On the other hand, deep learning technology has evolved significantly. Compared to traditional 

image features, it offers superior capabilities in extracting global features and contextual information 

from images. For example, Xu et al. [7] proposed a deep learning-based method to identify defects in 

subgrade profile images. The method is based on the Faster R-CNN framework [8] and it combined 

feature cascading and data augmentation improvement strategies according to the characteristics of 

subgrade defects, which improved the recognition accuracy. Abu et al. [9] evaluated four deep 

transfer methods including ResNet [10], VGG [11] and MobileNet [12], verifying the effectiveness 

of using the MobileNet model in the application of steel surface defect detection. He et al. [13] 

generated feature maps through CNNs for steel plate defect detection applications and used 

multilevel feature fusion networks to combine multiple levels of features into one feature, 

achieving improved defect detection performance. However, a notable limitation of the 

aforementioned methods is their inability to process in real time. Currently, the application of deep 

learning technology to defect detection still has shortcomings, such as similar defect features to the 

background, insufficient training samples and difficulty in actual model deployment. Some 

scholars have introduced the YOLO series algorithm [14–17] into surface defect detection 

applications, achieving excellent accuracy. However, directly applying these methods to steel 

surface defect detection cannot achieve satisfactory results, mainly because the detection system 

has high requirements for the features of different application defect images and recognition speed. 

This paper proposes an enhanced YOLOv5 network [18]. This improved model is designed to be 

compact enough for embedded deployment while also boosting defect detection performance. The 

main contributions of the work are summarized as follows: 

1)  The K-means++ clustering algorithm [19] is used to more reasonably select the initial 

clustering centroid, and obtain suitable bounding boxes on the training dataset;  

2)  The existing loss function GIOU [20] in YOLOv5 is replaced with EIOU [21], effectively 

solving the degradation problem of GIOU and making the convergence speed faster;  

3)  The Carafe operator [22] is incorporated into the model, enhancing its feature extraction 

capability through the integration of an effective channel attention mechanism. 
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2. Proposed method 

2.1. YOLOv5s network framework enhancement 

YOLOv5 is a single-stage object detection algorithm released in June 2020. Building upon 

YOLOv4 [23], the algorithm introduces enhancements that significantly boost both speed and 

accuracy. YOLOv5 fundamentally retains the CSPDarkNet53 from YOLOv4 for feature extraction, 

while integrating added features for performance optimization. The architecture of YOLOv5 is 

systematically organized into four main components: Input, Backbone, Neck, and Prediction. In the 

Input section, techniques such as data augmentation, adaptive anchor box operations, and image 

scaling are employed to preprocess the input dataset. The Backbone network incorporates both Focus 

and CSP structures, with the Focus module designed to expand the local receptive field range and 

enhance network speed by segmenting the input image. The CSP structure includes two specific 

designs: CSP1_X and CSP2_X. These designs enhance the network's learning capability, ensuring 

accuracy while reducing operations. By splitting the original input into two parallel branches, each 

subjected to convolution operations, CSP enables the model to capture a richer set of features. Within 

this backbone, the CBL module, which stands for Conv + BN + LeakyReLU, plays a crucial role. 

This module combines a convolutional layer, batch normalization, and a leaky rectified linear unit 

(LeakyReLU) activation function to ensure efficient feature extraction and propagation through the 

network. The Neck section utilizes a combined feature pyramid network (FPN) + path aggregation 

network (PAN) structure to harmonize features across different levels, with FPN layers transmitting 

semantic features in a top-down manner, and PAN integrating low-level and high-level features 

through up and down sampling operations. Finally, the Prediction segment encompasses bounding 

box loss and non-maximum suppression, key elements in the object detection process. 

In this study, we optimized the YOLOv5s network structure specifically for steel plate surface 

defect detection. We integrated an effective channel attention mechanism, SE-Net [24], into the 

backbone network. Additionally, we implemented the EIOU loss function to enhance performance. 

Additionally, the K-means++ clustering algorithm has been utilized to refine the selection of initial 

clustering centers, thus determining suitable initial anchor box positions. Lastly, we replaced 

conventional up-sample operations with the more efficient Carafe operator. A schematic 

representation of the refined YOLOv5s network structure is depicted in Figure 1. 

 

Figure 1. Structure of improved YOLOv5s. 
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2.2. K-means++ for anchor box optimization 

While the original YOLOv5 uses the K-means method [25] for clustering anchor box positions, 

K-means has inherent limitations. First, being a heuristic method, K-means doesn’t ensure 

convergence to a global optimum. Second, the initial center selection directly influences the clustering 

outcome. As K-means randomly selects sample points as cluster centers, it can easily cause local 

convergence or require more iterations. In contrast, this paper employs the K-means++ algorithm, 

which refines the initial clustering center selection, ensuring optimal anchor boxes for steel plate 

defect detection. Differing from K-means, K-means++ treats the initial point selection as a 

probabilistic task. This conversion not only facilitates the acquisition of a more favorable initial 

clustering center but also accelerates the algorithm's convergence. The superiority of K-means++ over 

K-means lies in its deterministic initialization, which reduces the risk of poor convergence and 

ensures a more consistent and efficient clustering process. The specific steps of K-means++ are as 

follows: 

1) Randomly choose a center x from dataset X; 

2) For each data point not yet selected, calculate its Euclidean distance D(x) to the center position; 

3) Randomly choose a new data point as the new center using a weighted probability distribution, 

where the probability of each point being selected, P(x), is calculated using the following formula: 

     
    

 

∑     
 

   
          (1) 

4) Repeat steps 2 and 3 until k center points have been filtered out; 

5) After obtaining the initial centers, continue using the standard K-means clustering. 

2.3. Loss function optimization 

Standard YOLOv5 configurations use the GIOU loss function to measure bounding box 

prediction discrepancies. GIOU is mathematically represented as:  

         
   

 
 ,       (2) 

where   is the smallest bounding box that encloses both the predicted and ground-truth bounding 

boxes, and   is the union of the predicted and ground-truth bounding boxes. However, GIOU has 

limitations, especially with bounding boxes of varied aspect ratios or misalignments, causing 

suboptimal training convergence. In these scenarios, GIOU reverts to a basic intersection over union 

(IOU) metric, which inadequately captures the true extent of overlap between the bounding boxes. To 

address GIOU’s limitations and degeneration issues, we introduce the EIOU loss function. EIOU 

provides stable gradients and handles misalignments and aspect ratio variations better. Unlike GIOU, 

which struggles with bounding boxes that are significantly different in aspect ratios or are misaligned, 

the EIOU algorithm disaggregates the aspect ratio of both the predicted and actual bounding boxes, 

thereby enabling independent calculations for width and height, and providing a more nuanced and 

accurate representation of the overlap between bounding boxes. The EIOU loss function is 

mathematically formulated as: 

                           .     (3) 
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In this equation, IOU quantifies the overlap between predicted and ground-truth bounding boxes, 

calculated as the intersection-to-union area ratio. The coefficient   functions as a modulatory 

weighting factor for the center distance loss,   , which quantifies the Euclidean distance between the 

centroids of the prognosticated and ground-truth bounding boxes. Analogously,   acts as a 

weighting coefficient for the dimensional loss terms,    and   , which denote the discrepancies in 

width and height between the prognosticated and the minimally circumscribed bounding boxes, 

respectively. By breaking down the aspect ratio, EIOU accelerates convergence and enhances 

regression accuracy for predicted bounding boxes. This ensures stable learning across varied object 

shapes and sizes, overcoming GIOU’s inherent limitations. 

2.4. Integration of visual attention mechanism module 

Detecting defects on steel surfaces requires robust deep feature extraction. However, the 

challenge lies in the high similarity between images of steel surface defects and background images, 

coupled with significant variations among images of the same type of defects. Such similarities and 

variations complicate recognition. Recognizing the potential of the attention module to guide the 

network model in extracting defect features within the feature space [26], this study incorporates the 

efficient attention mechanism of SE-NET to augment the network's feature extraction capabilities. 

This approach has demonstrated promising results. Within the enhanced YOLOv5 network, the 

SE-NET module is strategically embedded in the feature fusion area located in the Backbone, as 

depicted in Figure 2. The module boosts the network’s representational ability by modeling 

interdependencies between convolutional feature channels. In the SE-NET attention module, input 

features are sequentially processed through global average pooling on a channel-by-channel basis, 

followed by two fully connected layers, culminating in Sigmoid nonlinearity to determine the weights 

of each channel. The two fully connected layers capture cross-channel nonlinear interactions, aiding 

in dimension reduction.  

  

Figure 2. SE-Net module structure. 

2.5. Carafe operator for feature enhancement 

The YOLOv5’s upsample operation uses standard interpolation, focusing on the spatial 

information of the input feature map and overlooking its semantic information. In surface defect 

detection, this can cause information loss, blurring, limited receptive fields, and decreased 

efficiency. To address these challenges, this paper introduces the Carafe operator. It’s a versatile 

upsampling operator skilled at predicting and adjusting upsampling kernels based on the input 

feature map, enhancing the upsampling’s efficacy. The workflow diagram of the Carafe operator is 

shown in Figure 3. 
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Figure 3. The overall framework of CARAFE. 

Carafe consists of two primary modules: The upsampling kernel prediction module and the 

feature reorganization module. Given an input feature map of dimensions × 𝐻 × 𝑊  and an 

upsampling ratio of σ, the upsampling kernel prediction module first predicts the upsampling kernel. 

Subsequently, the feature reorganization module performs the upsampling, resulting in an output 

feature map of dimensions  × 𝜎𝐻 × 𝜎𝑊. 

To elaborate, the input feature map undergoes a 1 × 1 convolution to compress its channels. 

This mainly reduces the computational load for subsequent processes. After channel compression, a 

convolutional layer predicts the upsampling kernel for the modified input feature map. This kernel is 

then expanded in the spatial dimension to derive the final upsampling kernel. Each kernel channel is 

normalized with the softmax function, ensuring its weights total one. For every position in the output 

feature map, its corresponding location in the input feature map is identified. A central fixed-size 

region is extracted from this location, and a dot product with the predicted upsampling kernel for that 

position is computed to determine the output value. 

The Carafe operator stands out with its lightweight design and adaptability to features of 

different content and scales. It possesses the ability to direct the formation of the upsampling kernel, 

guided by the semantic information inherent in the input feature map, thereby expanding the receptive 

field and enhancing the overall quality of the upsampling procedure. 

3. Experiments and analysis  

3.1. Dataset and environment 

In our study, we utilized the NEU-DET [27] dataset from Northeastern University, featuring 

hot-rolled strip steel surface defects. This dataset collects six types of typical hot-rolled strip steel 

surface defects, including cracks (Cr), inclusions (In), patches (Pa), pitting (Ps), rolling scrap (Rs), 

and scratches (Sc). There are 300 samples for each type of defect, and the original resolution of each 

image is 200 × 200 pixels. This dataset presents two main challenges: 1) The defects within the same 

class have significant differences in appearance; 2) The defects between different classes have 

similar aspects, and due to the influence of lighting and material changes, the grayscale of images 

between classes will also change. Some examples of defect image samples are shown in Figure 4. 
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Figure 4. Sample defect images. 

Given YOLOv5’s fixed input size, we adopted the data expansion method from literature [28]. 

We resized the original image to 800 × 800, then cropped 640 × 640 sub-images centered on defects, 

padding edges with gray. Next, we slid the scaled defect area in all directions, maintaining a 30% 

pixel overlap between frames. We then augmented the data using image rotation, translation, 

brightness adjustment, and scaling. The final training dataset and test dataset consisted of 12,600 and 

5,400 images, respectively. The initial learning rate is 0.01, and we use the cosine annealing strategy 

to reduce the learning rate. The batch size is set to 16, and a total of 30,000 iterations are trained. The 

experiment training software environment is Linux4.15.0-142-generic Ubuntu 18.04, the YOLOv5.5 

version. The hardware includes an Intel quad-core i7-7700HQ, 2.80GHz CPU, 16GB memory and 

NVIDIA GeForce GTX1080Ti (11GB). 

3.2. Qualitative results analysis 

In this study, we selected three representative object detection methods, namely, Faster R-CNN, 

Single Shot MultiBox Detector (SSD) [29] and YOLOv4, for comparative analysis with the method 

proposed herein on the dataset. Faster R-CNN achieves superior detection using a two-stage network 

and region proposal network. SSD achieves efficient object detection by predicting multiple 

bounding boxes and class scores in a single pass. YOLOv4 optimizes various aspects including data 

processing, network training, activation and loss functions. The comparative visualization of 

recognition effects between our method and others is depicted in Figure 5. 

As illustrated in Figure 5, the method introduced in this paper excels in accurately detecting 

defects of various types and sizes, consistently identifying all defects in the images and significantly 

surpassing YOLOv4. In contrast, SSD struggled to detect patches and scratches, showing weak 

localization for larger targets. Faster R-CNN outperformed the SSD algorithm in object detection, 

securing the highest recognition accuracy for patch targets. Both SSD and YOLOv4 had issues 

detecting cracks, often misidentifying or missing pitting and scratches. 
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Figure 5. Sample defect images. 

3.3. Quantitative result analysis 

The evaluations were carried out to verify the effectiveness of the proposed model. The main 

indicators are selected: Precision (P), recall (R), average precision (AP), and mean average precision 

(mAP). The corresponding equations are as follows:  

  
𝑇𝑝

𝑇𝑝+𝐹𝑃
×  00%          (4) 

𝑅  
𝑇𝑝

𝑇𝑝+𝐹𝑁
×  00%          (5) 

𝐴  ∫   𝑟  𝑟
1

0
 .          (6) 

where 𝑇𝑝 denotes the quantity of defects accurately identified by the detection model, 𝐹𝑃 signifies 

the count of incorrect or unrecognized defects and 𝐹𝑁 designates the number of falsely detected 

targets. The terms   and 𝑅 correspond to the precision and recall, respectively. The average 

precision (AP) is defined as the integral of the precision rate with respect to the recall rate. The mean 

average precision (mAP), representing the average of AP across all categories, serves as a 

comprehensive metric for assessing the performance of the entire model. To substantiate the efficacy 

of the proposed method, ablation experiments were conducted with the objective evaluation and 

corresponding results delineated in Table 1. 
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Table 1. Ablation experiment. 

 

 

 

 

 

 

 

The experimental data reveals that the enhanced detection model possesses a more expansive 

receptive field range, yielding superior results on the dataset when contrasted with the original 

YOLOv5 model. Incorporating additional data augmentation operations resulted in a 2.67 percentage 

point increase in mAP. Using the K-means++ algorithm to adjust the initial anchor box position led 

to a 1.32 percentage point increase in mAP detection precision. Switching from the GIOU to the 

EIOU loss function improved regression accuracy and resulted in a 1.55 percentage point increase in 

mAP. By integrating the Carafe operator, the model’s feature extraction capability was enhanced. 

This led to a 0.9 percentage point increase in mAP, underscoring its effectiveness. Incorporating the 

SE-Net attention mechanism improved the model's image data processing ability, though it slightly 

increased model complexity. 

This study has implemented four key improvements to the original YOLOv5 algorithm model, 

aimed at enhancing defect detection. First, the K-means++ clustering algorithm was employed to 

ascertain the anchor box size specific to the defect dataset, thereby elevating the model’s precision in 

object defect localization. Second, the EIOU loss function was introduced as a replacement for the 

original GIOU, a strategic move designed to harmonize negative and positive samples. Third, the 

integration of the Carafe operator into the model served to refine the feature extraction process, 

adapting to the semantic information of the input feature map, thereby contributing to the overall 

enhancement of the model's performance. Lastly, the integration of the SE-Net module into the 

optimized backbone network served to amplify the efficiency of image feature information 

extraction.  

We also incorporated MSFT-YOLO [30] for comparative experiments. MSFT-YOLO is an 

advanced model specifically tailored for detecting defects on steel surfaces, leveraging a 

combination of CNNs and the transformer architecture. This unique blend allows the model to 

capture both local and global features, significantly enhancing its ability to discern defects from their 

surrounding backgrounds. Furthermore, its structure is an improvement over the YOLOv5 one-stage 

detector, optimizing real-time detection capabilities. A comparative analysis of the efficiency and 

model size between the improved algorithm model and other methods on the dataset is detailed in 

Table 2. 

  

Metric Test set mAP@.5(%) Up(%) 

YOLOv5s 540 73.63 0 

+ Data Augmentation 5,400 76.30 2.67 

+ K-means++ 5,400 77.62 1.32 

+ EIOU 5,400 79.17 1.55 

+ Carafe 5,400 80.07 0.9 

+ SE-Net 5,400 83.30 3.23 
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Table 2. Comparison of efficiency and size indicators. 

 

 

 

 

 

 

 

 

 

 

 

Through a comparative analysis of the detection speed among various defect detection algorithms, 

it becomes evident that the enhanced YOLOv5 model exhibits a distinct advantage in detection speed 

over both SSD and YOLOv4. The MSFT-YOLO, tailored specifically for defect detection, achieves 

an mAP of 77.0% and operates at 30 frames per second (FPS), showcasing its balance between speed 

and accuracy. Concurrently, the method attains an mAP value of 83.3% on the dataset, marking an 

improvement of nearly 11 percentage points compared to YOLOv4. Given that the original 

YOLOv5’s mAP accuracy stands at 76.3%, this substantial increase underscores the efficacy of the 

network feature fusion implemented in our approach. Additionally, the detection outcomes reveal 

that, while employing ResNet-101 as the backbone network ensures a commendable level of 

recognition accuracy within the Faster R-CNN network model, it does so at the expense of 

processing speed due to the high parameter requirements. The comparative performance results of 

the different algorithms are detailed in Table 3. The data therein illustrates that the integration of 

optimization strategies, such as initial anchor box positioning and loss function adjustment, enables 

the refined model to utilize image feature information more comprehensively. Furthermore, the 

incorporation of the SE-Net attention mechanism module into the backbone network ensures the 

model’s real-time operation without a significant increase in model parameters. 

Table 3. Comparison of performance indicators for different detection algorithms. 

 

 

 

 

 

 

 

Method Precision(%) Recall(%) mAP@.5(%) FPS(f/s) Parm(MB) 

Faster R-CNN 80.1 77.5 80.0 12 572 

SSD 65.4 63.2 67.6 25 237 

YOLOv4 73.7 69.3 72.3 33 265 

YOLOv5s 78.3 72.5 76.3 52 42 

MSFT-YOLO 79.3 73.9 77.0 30 86 

Our method 82.2 79.6 83.3 47 78 

Method 
mAP @.5(%) 

Cr In Pa Ps Rs Sc 

Faster R-CNN 51.1 86.2 91.7 89.2 70.2 93.4 

SSD 36.4 73.3 83.2 80.7 52.3 79.6 

YOLOv4 39.9 77.6 90.1 84.8 54.1 87.5 

YOLOv5s 41.3 78.2 91.4 85.7 56.8 88.3 

MSFT-YOLO 38.9 85.2 91.0 84.9 70.3 92.1 

Our method 56.5 88.6 90.4 92.5 77.3 94.3 
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4. Conclusions and future prospects 

This study presented an optimized YOLOv5 model specifically designed for detecting defects 

on steel surfaces. Key enhancements to the model encompassed the use of the K-means++ method 

for optimal anchor box positioning and the adoption of the EIOU loss function in place of the 

traditional GIOU to elevate network performance. Additionally, we integrated the Carafe operator for 

better semantic information adaptation and feature extraction, and embedded the SE-Net attention 

module within the backbone network to further enhance feature extraction capabilities. Compared to 

other state of the art object detection techniques, our enhanced model achieved a notable mAP of 

83.3%, underscoring its effectiveness. Beyond steel defect detection, the model's versatility allowed 

it to be applied in areas like recognizing the maturity of agricultural products and detecting diseases 

and pests. In future research, we aim to enlarge our defect sample dataset for training and to refine 

the network to enhance its defect detection range. 
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