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Abstract: The inverse model based multi-objective evolutionary algorithm (IM-MOEA) generates 
offspring by establishing probabilistic models and sampling by the model, which is a new computing 
schema to replace crossover in MOEAs. In this paper, an active learning Gaussian modeling based 
multi-objective evolutionary algorithm using population guided weight vector evolution strategy 
(ALGM-MOEA) is proposed. To properly cope with multi-objective problems with different shapes 
of Pareto front (PF), a novel population guided weight vector evolution strategy is proposed to 
dynamically adjust search directions according to the distribution of generated PF. Moreover, in order 
to enhance the search efficiency and prediction accuracy, an active learning based training sample 
selection method is designed to build Gaussian process based inverse models, which chooses 
individuals with the maximum amount of information to effectively enhance the prediction accuracy 
of the inverse model. The experimental results demonstrate the competitiveness of the proposed 
ALGM-MOEA on benchmark problems with various shapes of Pareto front. 

Keywords: active learning; multi-objective evolutionary algorithm; weight vector adjustment; 
Gaussian regression model; Pareto front 
 

1. Introduction 

Many practical problems in the fields of machine learning [1–4] and engineering optimization [5,6] 
often involve two or more optimization objectives, which are called multi-objective optimization 
problems (MOPs). These objective functions always conflict with each other. Therefore, it is 
impossible to have a unique optimal solution to optimize all objectives at the same time. For MOPs, the 
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ultimate goal is to find a set of compromise solutions which are non-dominated each other. One of the 
most widely studied MOPs is the box-constrained continuous MOP which is defined as follows. 
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where x   and   represent decision variable vector and search space, respectively. ( )F x
  denotes 

the objective function vector consisting of m objective functions. 
As a kind of random search algorithms, evolutionary algorithm is very suitable for MOPs 

because of its characteristics of population-based search. Currently, multi-objective evolutionary 
algorithms (MOEAs) have used to solve difficult MOPs with complex shapes of Pareto front (e.g., 
discontinuous, degenerated or multi-modal) or with many objectives. Many branches, such as 
dominance modification-based approaches, indicator-based methods and decomposition-based 
strategies have been developed in recent years. The ultimate goal of MOEAs is to obtain a set of 
widely distributed Pareto optimal solutions to approach true Pareto front (PF). In particular, 
decomposition-based algorithm is a kind of effective algorithms due to easy execution. To design an 
effective decomposition-based algorithm, two factors are crucial to the quality of solutions. One is 
how to generate and adjust the search directions in the objective space to guide the population 
towards a true PF [7,8], and another is how to generate new high-quality solutions to ensure 
convergence and diversity [9,10]. 

One interest of this study focuses on dynamically generating search directions for adapting to 
cope with MOPs with various shapes of PF. In general, the search vectors in objective space can be 
represented by a number of weight vectors, which divide the MOP into several sub-problems of single-
objective optimization. The proper setting of the weight vectors helps to generate the high quality non-
dominated solution set [11]. If the PF shape is regular, uniformly distributed weight vectors have the 
potential to obtain uniformly distributed solutions. However, if the PF shape is irregular, it becomes 
very difficult to generate appropriate weight vectors to ensure the diversity of solutions. So far, lots of 
weight vector generation and adjustment strategies have been developed to adjust the weight vectors 
for different shapes of PF, such as the schemes of random or predefined adjustment, fitting-based 
adjustment and adaptive adjustment. Serafini [12] used randomly modified reference vectors to guide 
the search. Jin et al. [13] proposed predefined weight vectors which can be adjusted periodically in a 
fixed way to guide the population evolution. Gu et al. [14] adopted fitting or interpolation strategy to 
approximate the shape of PF, and re-sampled the uniformly distributed weight vectors on the estimated 
Gu et al. [15] designed reference points generation approach by training self-organizing mapping 
(SOM) network. Wang et al. [16] co-evolved the population and the weight vectors. Furthermore, some 
authors propose the weight vector adjustment strategies based on the information of local population 
or local archive. They identify the validity of the weight vectors with the help of the relation between 
the current weight vector and the solution, and dynamically adjust the weight vectors by a deleting-
and-adding operator. Li et al. [8] used an archive and added new weight vectors in unexplored 
promising regions after deleting poorly invalid weight vectors. Yi et al. [17] adopted maximum-vector-
angle-first principle to sequentially choose individual as weight vectors. Ge et al. [18] regenerated new 
reference vectors in the neighborhood of valid reference vectors combined with reference point 
incremental learning. These methods constantly update the weight vector with the help of local 
information of population, which have shown their effectiveness for many problems with certain kinds 
of irregular PF problems. We plan to adopt a learning strategy to dynamically adjust the distribution 



19841 

Mathematical Biosciences and Engineering  Volume 20, Issue 11, 19839–19857. 

of weight vectors based on population information. 
Another interest of this study is the reproduction strategy. Two kinds of approaches are adopted 

to generate offspring, namely a genetic-based operator and estimation distribution-based algorithms 
(EDAs). In genetic based MOEAs, simulated binary crossover (SBX), particle swarm algorithm (PSO), 
differential evolution (DE) and hybrid operators are often used to generate new individuals, which are 
commonly adopted in most MOEAs. Besides, EDAs are a specific framework, which initially collect 
relevant statistical information of selected solutions and establish probability models to generate new 
solutions by sampling. Different from genetic based operators, EDA-based methods [19–21] can better 
estimate the distribution of population via statistical information, and thus can be easy to create offspring 
in promising locations. Laumanns et al. [22] made use of the relationship of decision variables and 
developed a binary decision tree-based Bayesian optimization model. Karshenas et al. [23] established a 
joint probabilistic model of Bayesian network employing the information of objectives and variables. 
Zhang et al. [24] took advantage of the regularity property of MOPs, and constructed a probability 
distribution of candidate solutions by using local principal component analysis (PCA). Cheng et al. [25] 
utilized the statistical information of population and established Gaussian process-based inverse 
models (IM-MOEA) from objective space to decision space to generate offspring. In the procedure of 
reproduction, once the new test points in objective function space are given as input, the established 
Gaussian regression model will generate new points in decision space as offspring. Recently, many 
scholars have made several variants to IM-MOEA. Farias et al. [26] adopted decomposition framework 
for evolution. A two-stage environmental selection [27] was incorporated with IM-MOEA to improve 
the both convergence and diversity of population. Zhang et al. [28] proposed a non-random grouping 
strategy to enhance the accuracy of models. 

Although IM-MOEA and their variants perform well on MOPs with regular PFs, there exist some 
aspects for improvement. First, a number of evenly distributed weight vectors are adopted to partition 
the population into sub-problems in IM-MOEA. However, if the shape of the true Pareto front is not 
regular (e.g., discontinuous, degenerate, inverted PF or PF with long tail and peak), the evenly 
distributed weight vectors cannot guarantee the uniform partition of the objective space, thereby 
affecting the uniformity and diversity of solutions. Second, in the process of establishing Gaussian 
process based inverse model, the training samples are selected randomly, and this will affect the 
accuracy of the prediction model to some extent. 

To address the above issues, the proposed study aims to develop a learning-to-adjustment scheme 
that dynamically adjusts the reference vectors in objective space, and establish more accurate Gaussian 
regression models to estimate the location of true Pareto optimal set. An active learning Gaussian 
modeling based multi-objective evolutionary algorithm using population-guided weight vector 
evolution strategy (ALGM-MOEA) is proposed. The main contribution focuses on the following 
two aspects. 

1) To properly cope with multi-objective problems with different shapes of Pareto front (PF), a 
new population-guided weight vector evolution strategy is developed, which dynamically adjusts the 
weight vector according to the distribution of generated PF. 

2) To effectively enhance the prediction accuracy of the inverse model, an active learning-based 
training sample selection method is designed to build Gaussian process based inverse models, which 
selects individuals in the population with the maximum amount of information, and this helps to 
improve the prediction accuracy of established models and generate satisfactory offspring. 

The rest of the paper is organized as follows. The basic framework of IM-MOEA is described in 
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Section 2. In Section 3, we elaborate the proposed algorithm. Section 4 presents experimental 
comparisons of the proposed algorithm with the state-of-the-art algorithms. Finally, the conclusion and 
future work are put in Section 5. 

2. Related works 

Estimation of distribution algorithm (EDA) utilizes the statistical information from current 
individuals and establishes the probability distribution model reflecting the geometric shape of Pareto 
front or Pareto set. Subsequently, sampling is executed according to the established model to generate 
new offspring. 

Algorithm 1. The framework of IM-MOEA
01 Initialization: Initialize population P(0) at random, and divide the population into 
02  K  sub-problems by reference vectors; 
03  while termination condition is not satisfied do 
04    Divide the population ( )P t  into K sub-populations, and use non-dominated sorting 
05    and environmental selection to generate K sub-parent populations 1 2( ), ( ), , ( )KP t P t P t . 
06  for k  = 1 to K  do 
07     for j  = 1 to m  do 
08      Inverse Modeling: use random grouping to assign L decision variables to jf ,  

09            and L  Gaussian regression models are built for estimating ( | )i jIM x f . 

10      Reproduction: Sample in the objective space and generate new offspring by  
11            inverse model, and perform mutation on the sampled candidate solutions; 
12endfor 
13   endfor 
14      Update the combined population 

15      1t t   

16endwhile 

IM-MOEA can be classified as a type of estimation of distribution algorithms, which aims to 
build Gaussian regression inverse models (GPR) to approximate the Pareto front. In order to simplify 
the modeling process, the population is partitioned into K  sub-populations by a number of evenly 
distributed weight vectors after calculating the position information of each individual and its 
neighboring reference weight vector. 

In each sub-population, the operators including environment selection, inverse modeling and 
reproduction are executed independently. Given a MOP with m  objective and n  decision variables, 
it is difficult to train a m input and n output     multivariate model to approximate the relation from 

objective vectors to decision vectors. Instead, a group of decomposed univariate probability 
distribution models are built for each objective. To be specific, IM-MOEA takes the j th  objective 
values and the i th   decision values of all solutions in one sub-population as the training data, 
denoted by , [ , ]j i j iT f x , ( 1 1( , ) , ( , )Nt T Nt T

j j j i i if f f x x x   , tN  represents the population size used to 

train the model), and then constructs the conditional probability distribution ( | )i jP x f  to reflect the 

mapping relationship between them, which can be estimated by training a Gaussian process regression 
inverse model ( | )i jIM x f . 
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In each model group for one objective jf , random grouping strategy is adopted to assign a part of 

L  ( L n ) decision variables, that is, 1( , )j jLx x , to establish L  Gaussian process regression models

1j jIM x | f( ), , ( )jL jIM x | f , while the rest of ( )n L  decision variables will remain unchanged. For 

example, if the decision variables 1x   and 2x   are assigned to objective 1f  , then two models 

1 1)IM x | f(  and 2 1)IM x | f( are built. The framework is presented in Algorithm 1 [25].  

In calculation, )i jIM x | f(   is estimated by a Gaussian distribution 2
, ,( ,( ) )j i j iN    , which 

formulated in (2). Using this trained Gaussian regression model, we can input the j th   objective 

values 1( , )Nt T
j j jf f f    and the i th   decision values 1( , )Nt T

i i ix x x    of all solutions in one sub-

population as the training data, and a new point *
jf  sampling in the objective space as test data, and 

then predict the mean and variance of output *
ix   in the decision space as offspring. The detailed 

induction can be referred to [25]. 

2 1
, * ( ( ) )T

j i n iC C I x     

2 2 1
, ** * *( ) ( ( ) )T

j i nC C C I C                                    (2) 

where I  represents an identity matrix, and ( )pq Nt NtC c   is covariance matrix between any two-

training sample  and  p q
j jf f . Here, ( , )p q

pq j jc c f f  is the covariance parameters between any two-

training sample  and  p q
j jf f  . * 1 *

* [ ( , ), , ( , )]Nt T
j j j jC c f f c f f    denotes a covariance parameters 

vector between the test input *
jf  and each element in training sample 1( , )Nt T

j j jf f f  , and **C  is a 

covariance parameters of test data *
jf . 

3. Proposed algorithm 

3.1. Motivation 

In order to enhance the search efficiency of distribution estimation algorithm and improve the 
prediction accuracy of Gaussian model when dealing with complex multi-objective optimization 
problems with irregular shape of Pareto front, and an active learning Gaussian modeling based multi-
objective evolutionary algorithm using population-guided weight vector evolution strategy (ALGM-
MOEA) is proposed. We integrate a learning-to-adjustment scheme into the procedure of update 
weight vector and modification of Gaussian modeling. First, in order to cope with problems with 
complex shape of PF, we dynamically adjust the weight vectors by learning the distribution of current 
population, thereby ensuring that the search occurs in the potential region where the solutions locate. 
Second, an active learning-based training sample selection method is designed to build Gaussian 
process regression inverse models, which selects individuals in the population with the maximum 
amount of information to effectively enhance the prediction accuracy of the inverse model. The outline 
of the proposed algorithm ALGM-MOEA is shown in Figure 1. 

In each generation of ALGM-MOEA, the weight vectors representing search direction first divide 
the population into K   subpopulations. Subsequently, environment selection, the establishment of 
Gaussian process regression models and reproduction are carried out independently in each sub-
problem. The offspring produced by each subpopulation will be combined with the parents to form 
combined population to participate in the next generation. After several generations, the proposed 
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ALGM-MOEA dynamically adjusts the weight vector according to the distribution of the population. 
It can be shown that the key components of ALGM-MOEA, including population-guided weight 
vector evolution strategy and active learning based Gaussian inverse model, which will be elaborated 
in the following. 

 

Figure 1. The overflow of the ALGM-MOEA algorithm. 

3.2. Population-guided weight vector evolution strategy 

In order to dynamically modify the weight vectors in MOPs with different shapes of PF, a 
population-guided weight vector evolution strategy is proposed. During the evolution process, the 
weight vectors co-evolve with the population, and the weight vectors can be dynamically adjusted by 
using the evaluation of the population, further guiding the evolution of the solution towards the optimal 
Pareto front. Specifically, we calculate the fitness of weight vector based on the number and density 
of individuals within its neighborhood. Individuals with high fitness are defined as effective weight 
vectors and survived. Weight vectors with little relevance to candidate solutions will be defined as 
invalid weight vectors and deleted. Thus, the selected weight vectors will be simultaneously improved 
with the evolution of the population. 

The detail of the proposed population-guided weight vector evolution strategy is as follows. 
Initially, calculate the angles between each individual 1, , )is i N(    and all weight vectors

( 1, , )j j K   , which produce an angle matrix, denoted by ( ) ( ( , ))ij N K i j N KR r angle s w   . Subsequently, 
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for each solution is  , we identify its neighborhood weight vectors by a predefined threshold   . 

Specifically, if the angle between a solution is  and the weight vector j  is less than the threshold 

 , then the individual is labeled as a neighbor of the weight vector; otherwise, the solution is beyond 
the neighborhood, and the element ijr  in angle matrix R  is set as Inf. Second, sort each row of angle 

matrix R  in ascending order, and obtain another sorted matrix ' '( )ij N KR r  , and the calculation of 
'

ijr  is shown in Eq (3). 

' {1,2, , }

( ( , )) ( , )

( , )

i j i j
j K

ij

i j

rank angle s w angle s w
r

Inf angle s w






 




.                           (3) 

Finally, the fitness of one weight vector jw  , termed ( )jfit w  , is formulated in Eq (4), where

'

'

{1,2, , } inf

( )
ij

ij
i N r

num r
  

 represents the number of individuals within the neighborhood of the weight vector 

jw . Algorithm 2 presents the detailed implementation steps. In the operation, the weight vectors are 

updated every few generations. 

'

'

'
'

{1,2, , } inf
{1,2, , } ( inf)

1
( ) 1 ( )

ij

ij

j ij
i N r ij

i N r

fit w num r
r  

  

  


                        (4) 

Algorithm 2. The pseudo-code of Population-guided Weight Vector Evolution Strategy 
Input:  Candidate solutions set S , weight vector set W ; threshold of angle  ; 

Output:  The effective output weight vector set outputW  

01  Calculate the angle matrix R
 

02  Construct the ranking matrix 'R
 

03   for each weight vectors j W   
do 

04       
Calculate the fitness of weight vector ( )jfit w  

05    endfor 

06    
Select C  weight vectors with the highest fitness rank are selected as the effective weight vectors.

 

Figure 2 shows the population guided weight vector evolution strategy with a bi-objective 
minimization problem as an example. Initially, there are six evenly distributed weight vectors, denoted 
by 1w  , 2 3 4 5 6, , , ,w w w w w  , in the objective space. Currently there are four individuals, denoted by 

1 2 3 4, , ,s s s s . For each individual, the angles between the individual and all weight vectors are calculated 

first. Then we use a threshold value    to determine the neighborhood of each individual, and 
calculate its ranking value by fitness values of the weight vectors within its neighborhood. e.g., the 
different colored area is the neighborhood of each individual, 5w  is within the neighborhood of 4s  
and 3s , 4w  is within the neighborhood of 2s  and 3w  is also within the neighborhood of 1s  and 

2s . Then, calculate the fitness value of each weight vector. It is observed that 3w  and 5w  are in the 

neighborhood of two individuals, and gain the best two fitness function values. 4w   is in the 

neighborhood of one individual, and the fitness ranks the third. Finally, several weight vectors with 
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the highest fitness values are selected as effective weight vectors, and the rest of the weight vectors 
are discarded. 

    

Figure 2. Illustration of population guided weight vector evolution strategy with a bi-
objective minimization example. 

3.3. Active learning based Gaussian inverse modeling 

The generation of new individuals includes two stages, including the building of Gaussian inverse 
model and sampling. When evaluating the quality of generated solutions, two key factors need to be 
considered. One is how to enhance the accuracy of the established inverse Gaussian regression model 
to reflect the mapping relationship between the objective function and decision variables; the other is 
how to accomplish highly efficient search to balance the convergence and diversity by sampling in the 
objective space. To enhance the accuracy of Gaussian model and the quality of the generated 
individuals, a new individual generation method is developed. 

In the proposed algorithm, we use active learning theory to continuously update Gaussian process 
regression inverse model by selecting the most uncertainty training samples. In the process of 
reproduction, an adaptive sampling strategy is proposed to dynamically adjust the range of the values 
of the test sampling points by using the established model. In the following, we will introduce active 
learning-based model adjustment strategy, followed by reproduction strategy. 

3.3.1. Active learning-based model adjustment strategy 

The quality of the training sample set directly determines the learning effectiveness of the model, 
and the information contained in the training samples directly affects the accuracy of the model. In 
order to enhance the prediction accuracy of Gaussian process regression inverse model, a sample 
selection method based on active learning with uncertainty is developed to choose test samples with 
large amount of information. As the training samples are constantly updated, the Gaussian process 
regression models are also continuously modified. Figure 3 presents the schematic diagram of the idea 
of active learning-based model adjustment strategy. 
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Figure 3. The schematic diagram of the idea of active learning-based model adjustment strategy. 

Algorithm 3. A sample selection method based on active learning with uncertainty 

Input: Alternative query test points set AQ ; the current training sample set CS ; 

Output: New training sample pair ,new new
j iy x   

01 Take the i th decision value of all individuals for consideration, select p individuals from  

02   AQ having maximum minimization distance with the current training sample set CS . 

03   for 1 to |AQ|k   do 

04       for 1 to |CS|t   do 

05              
=   i k t

kt i id x x  

06        endfor 

07          
=mini i

k kt
t

d d  

08  endfor 
09    for 1 to num p  

10          Identify candidate test points with the maximum i
kd from AQ as the test samples.  

11          
{ | max( )}i

sel k
k

Index k d ; 

12          
 = \

selIndexAQ AQ x ; 

endfor 
13  Calculate the variance of each candidate set individuals in 

selIndexx , and select the point with  

14   the max variance as new training sample for output. max{var( )     }lnew
j sel

l

l f l Index 
, 

15   output 
,new new

j iy x 
 

Initially, for a given objective function jf  and one decision variable ix , we randomly select some 

individuals in the current population as the training sample set , { , | 1,2, , / }s s
j i j iT f x s N K       , and 

establish a Gaussian regression inverse model i jIM x | f（ ）. In order to enhance the prediction accuracy 

of established model, a new sample selection method based on active learning is developed in the 
proposed algorithm. We will use the active learning method to select the individuals with the most 
information in the population as new training samples to constantly revise the Gaussian regression 
model, and the modified model is denoted by i jMIM x | f（ ）. 

The framework of sample selection method based on active learning with uncertainty is presented 
in Algorithm 3. The key step in Algorithm 3 is to select some new individuals from the current 
population as unlabeled individuals in objective space in accordance with the rules of maximum and 
minimum distance, and use the established Gaussian model to calculate the variance of these 
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individuals. Lines 3–6 calculate the Euclidean distance between any two individuals in the alternative 
query test points set AQ  and the current training sample set CS , and lines 7–12 fulfill the goal of 
selecting new individuals by maximum and minimum distance. Line 13 calculates the variance of each 
candidate set individuals in selIndexx . The individuals with the largest variance will be selected as the 

new query samples and added to the training sample set. Since the larger the variance is, the bigger 
the possibility of the test sample which cannot be represented by the model obtained by the current 
training samples. Therefore, we can add above samples with the maximal variance to the training set 
as the most informative sample, and train the modified Gaussian regression inverse model by new 
training samples. 

     

Figure 4. The example of active learning-based training sample selection process. 

An example of active learning-based training sample selection process is illustrated in Figure 4. 
It is assumed that after the k th  iteration, the Gaussian regression model is generated via current 
training samples, which is represented by three rectangles in the left subfigure. The mean and variance 
of the established Gaussian process regression model are shown, where the curve and the shaded part 
represent the mean and confidence interval with a confidence level of 95%. Then, the two query points

1t
jf  and 2t

jf  in test input set were selected according to the rules of maximum and minimum distance, 

represented by two triangles. According to the theory of active learning, the variance of 1t
jf

 
and 2t

jf

are calculated. It can be seen that the variance of 2t
jf  is greater than that of 1t

jf , and it is the point 

with the largest amount of information. Then, 2t
jf  is added to the new sample data set, and the new 

sample set was used to obtain the Gaussian model generated at the ( 1)k th   iteration. It can be seen 

from the right-hand side sub-figure that a new Gaussian regression model is established with the 
current four training samples. 

3.3.2. Reproduction to generate new points 

When the inverse Gaussian process regression models are obtained, we will sample the input test 
points *

jf  within the estimated range of the objective space, and then use the mapping relationship 

established by models to generate newly candidate solutions *
ix  as output. 
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In the proposed ALGM-MOEA, we adjust the range of estimating range dynamically [29] in 
different stages of the evolution. In the early stage of evolution, the search range is relatively narrow 
to speed up the convergence, while in the late stage of evolution, the search range will be extended to 
improve diversity and avoid to finding local optimal. The estimated range is calculated by Eq (5), 
where max

jf   and min
jf   are the upper and lower bounds of population in the j th   objective, 

max min= j jf f   and 1a  and 2a  are range coefficients set by the decision maker. gen  is the current 

generation, and the threshold for range adjustment 1  is set to 500. 

min max
1 1 1

min max
2 2 1

[ , ]   gen

[ , ]   gen >
j j

j j

f a f a
range

f a f a

  
  

                                   
(5) 

4. Numerical experiments 

4.1. Compared algorithms, test cases and performance metrics 

In the experiments, we compare the performance of the proposed ALGM-MOEA with six 
algorithms, including IM-MOEA [25], RM-MEDA [24], MOEA/D [31], RVEA [30], RPD-NSGAII [32] 
and PREA [33]. IM-MOEA and RM-MEDA are two representative types of estimation of distribution-
based algorithms. MOEA/D, RVEA and RPD-NSGAII are three popular decompositions based MOEA, 
which use weight vectors or adaptive reference points to divide the MOP into a set of subproblems. 
PREA is a promising-region-based MOEA which integrates the user’s preference. 

In the simulation, two types widely used test cases are employed with different characteristics of 
Pareto front. The first type is the modified benchmarks [25] of ZDT and DTLZ cases, named 
IMMOEA_F1 to IMMOEA_F9. They have various complex features, such as convex or concave with 
linear variable linkage or non-linear variable linkage. The two control parameters 5   and 3  , 

and the number of decision variable is 30. The second type test cases contain various irregular shape 
of PFs, which have degenerated PF, disconnected PF and convex multimodal PF. 

4.2. Parameter settings 

Table 1. Parameter settings of the compared algorithms. 

Algorithms Parameter settings 
IM-MOEA the number of reference vectors 30W  ; 

the group size 3L  . 
RM-MEDA 5K   

RVEA 2, 0.1rf  

MOEA/D 1, 1, 20, 20c m c mp p     

The parameters for the compared algorithms are configured to the recommended values in their 
original publications, which are shown in Table 1. In the simulation, the population size is set to 300 
for all algorithms, and the termination condition is set to 300,000 fitness evaluations. For the proposed 
ALGM-MOEA and IM-MOEA, the number of reference vectors and the group size are set to 30 and 3. 
In the proposed ALGM-MOEA, the range coefficient 1a   is set to 0.2 and 2a   is set to 0.5. The 
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threshold of angle   is set to 18
 . 

4.3. Results 

4.3.1. Performance comparison on IMMOEA_F1 to IMMOEA_F9 

Table 2. The average of IGD for compared algorithms. 

Test instances ALGP-MOEA  IM-MOEA  RM-MEDA  PREA  RPDNSGAII  RVEA  MOEA/D 

IMMOEA_F1 
1.228E-03 + 1.697E-03 + 1.334E-03 + 1.771E-01 + 2.018E-01 + 1.292E-01 + 5.868E-02

2.325E-04  3.320E-05  5.200E-05  3.190E-02  -5.420E-02  3.290E-02  2.950E-02

IMMOEA_F2 
1.433E-03 + 1.812E-03 + 1.530E-03 + 6.095E-01 + 3.559E-01 + 2.162E-01 + 4.864E-02

3.316E-04  3.950E-05  1.100E-04  7.200E-17  1.400E-01  6.280E-02  4.870E-02

IMMOEA_F3 
1.249E-03 + 1.769E-03 + 6.141E-02 - 1.169E-03 + 2.588E-03 + 1.086E-02 + 2.028E-03

2.114E-04  2.760E-05  8.280E-02  1.990E-05  2.580E-04  2.020E-03  3.800E-04

IMMOEA_F4 
4.585E-02 + 5.560E-02 - 4.349E-02 + 3.522E-01 + 3.149E-01 + 1.291E-01 + 4.274E-01

1.120E-02  1.410E-03  1.200E-03  2.130E-02  8.090E-02  1.590E-02  4.070E-01

IMMOEA_F5 
8.304E-04 + 1.788E-03 + 4.392E-03 + 1.954E-03 + 4.847E-02 + 5.207E-02 + 6.483E-02

8.374E-05  2.600E-05  8.610E-04  1.280E-03  7.970E-03  7.380E-03  1.130E-02

IMMOEA_F6 
1.409E-03 + 2.462E-03 + 1.173E-02 + 4.587E-03 + 5.801E-02 + 9.588E-02 + 4.854E-02

8.487E-05  9.160E-05  7.920E-03  5.710E-03  1.840E-02  8.640E-03  2.300E-02

IMMOEA_F7 
1.914E-03 + 2.177E-03 + 1.776E-02 - 1.176E-03 + 2.738E-03 + 8.775E-03 + 1.388E-03

3.179E-04  5.740E-05  6.250E-03  1.310E-05  2.810E-04  1.360E-03  1.000E-04

IMMOEA_F8 
4.251E-02 + 6.035E-02 + 8.852E-02 + 2.385E-01 + 2.544E-01 + 1.158E-01 - 3.264E-02

4.615E-03  1.380E-03  6.350E-02  7.460E-02  6.620E-02  8.660E-03  5.860E-04

IMMOEA_F9 
3.115E-03 - 2.379E-03 + 8.085E-02 + 2.492E-03 + 8.707E-03 + 3.256E-02 + 3.882E-03

1.389E-03  1.190E-03  3.320E-02  2.690E-03  2.540E-03  5.390E-03  1.540E-03

(+/=/-) 
            

 (8/0/1)  (8/0/1)  (7/0/2)  (9/0/0)  (9/0/0)  (8/0/1) 

The statistical results of IGD and HV of compared seven algorithms are displayed in Tables 2 and 3, 
and 20 independent runs for each algorithm on each test case are executed. In the table, the mean and 
the standard deviation for each algorithm are displayed in the first and second lines, respectively, and 
the best results are highlighted. The Wilcoxon rank sum test at the significance level of 0.05 is used to 
pairwise compare the proposed ALGM-MOEA and other algorithm in each test case. Symbol ‘+’, ‘-’ and 
‘=’ in front of the results indicate that the proposed ALGM-MOEA is superior to, inferior to or not 
significantly different from the compared algorithm. Some observations in Table 2 can be concluded below. 

1) The proposed ALGM-MOEA performs the best on IMMOEA_F1, IMMOEA_F2, 
IMMOEA_F5 and IMMOEA_F6, while IM-MOEA obtains the best mean value of IGD on 
IMMOEA_F9. Besides, promising-region-based PREA which incorporates user preferences obtains 
the best IGD mean on test questions IMMOEA_F3 and IMMOEA_F7. 

2) From the results, we can also observe that the performance of three distribution estimation 
algorithms, ALGM-MOEA, IM-MOEA and RM-MEDA are significantly outperforming that of the 
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rest of the four algorithms on test cases IMMOEA_F1, IMMOEA_F2 and IMMOEA_F4. The reason 
is that for the adopted test cases IMMOEA_F1-F9 with correlation between decision variables, the 
probabilistic models built by estimation distribution algorithms is very effective for generating 
offspring in the preference area by sampling, and maintains better convergence and diversity. 

3) It can also be seen that the IGD mean value of ALGM-MOEA is superior to that of IM-MOEA, 
especially in problems IMMOEA_F5, F6 and F8, where the relationship between decision variables is 
non-linear. This verifies that the proposed active learning-based training sample selection method can 
improve the prediction accuracy of Gaussian model and enhance the quality of solutions. 

Table 3 summarizes the results of HV of seven algorithms. The best results on IMMOEA_F2, 
IMMOEA_F4, IMMOEA_F5 and IMMOEA_F6 are performed by ALGM-MOEA, while IM-MOEA 
wins on two test cases, IMMOEA_F3 and IMMOEA_F9. The decomposition-based algorithm 
MOEA/D obtained the best HV values on IMMOEA_F7 and IMMOEA_F8. 

Table 3. The average of HV for compared algorithms. 

Test instances ALGP-MOEA  IM-MOEA  RM-MEDA  PREA  RPDNSGAII  RVEA  MOEA/D 

IMMOEA_F1 
8.745E-01 + 8.739E-01 - 8.747E-01 + 6.113E-01 + 5.713E-01 + 7.522E-01 + 8.249E-01

4.660E-04  9.780E-05  1.770E-04  2.020E-02  2.510E-02  1.610E-02  2.050E-02

IMMOEA_F2 
5.408E-01 + 5.402E-01 = 5.407E-01 + 9.091E-02 + 1.716E-01 + 2.857E-01 + 4.665E-01

6.691E-04  7.000E-05  4.130E-04  3.600E-17  7.200E-02  4.780E-02  5.970E-02

IMMOEA_F3 
4.333E-01 = 4.342E-01 + 3.627E-01 + 3.904E-01 + 3.872E-01 + 4.196E-01 + 4.323E-01

5.036E-04  7.380E-05  9.510E-02  1.230E-04  7.130E-04  3.030E-03  7.050E-04

IMMOEA_F4 
7.384E-01 + 7.096E-01 + 7.352E-01 + 4.094E-01 + 3.915E-01 + 5.668E-01 + 4.364E-01

1.752E-02  3.010E-03  3.900E-03  3.100E-03  5.390E-02  3.080E-02  2.820E-01

IMMOEA_F5 
8.751E-01 + 8.729E-01 + 8.687E-01 + 7.217E-01 + 6.713E-01 + 8.013E-01 + 8.212E-01

1.634E-04  8.250E-05  1.650E-03  1.820E-03  6.020E-03  8.290E-03  7.700E-03

IMMOEA_F6 
5.416E-01 + 5.396E-01 + 5.345E-01 + 4.425E-01 + 3.689E-01 + 3.818E-01 + 4.603E-01

2.815E-05  1.320E-04  1.000E-02  9.890E-03  1.790E-02  1.060E-02  2.880E-02

IMMOEA_F7 
4.332E-01 - 4.337E-01 + 4.148E-01 + 3.904E-01 + 3.870E-01 + 4.229E-01 - 4.339E-01

9.350E-04  6.650E-05  7.920E-03  4.950E-05  5.320E-04  1.860E-03  2.560E-04

IMMOEA_F8 
7.468E-01 + 6.889E-01 + 7.088E-01 + 4.347E-01 + 4.222E-01 + 5.871E-01 - 7.517E-01

5.691E-03  3.130E-03  3.960E-02  2.280E-02  2.290E-02  1.560E-02  1.830E-03

IMMOEA_F9 
8.715E-01 - 8.726E-01 + 7.468E-01 + 7.212E-01 + 7.121E-01 + 8.239E-01 + 8.689E-01

2.197E-03  2.290E-03  5.170E-02  3.920E-03  3.630E-03  8.370E-03  2.670E-03

(+/=/-) 
            

 (6/1/2)  (7/1/1)  (9/0/0)  (9/0/0)  (9/0/0)  (7/0/2) 

The non-dominated solutions with the best IGD values obtained by the ALGM-MOEA and the 
state-of-art compared algorithms on IMMOEA_F1 and IMMOEA_F6 are displayed in Figures 5 and 6. 
On IMMOEA_F1 with convex shape of Pareto front, the three algorithms based on estimation 
distribution (ALGM-MOEA, IM-MOEA and RM-MEDA) achieve good convergence and distribution. 
The non-dominated solution sets obtained by the remaining four algorithms only cover part of the PF, 
and the distribution is not good. On IMMOEA_F6 with concave shape of Pareto front, the solutions 
achieved by ALGM-MOEA show the best convergence and diversity, and IM-MOEA and PREA obtain 
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the second-best performance. The quality of the solutions obtained by the remaining algorithms cannot 
guarantee convergence and diversity. In test instance IMMOEA_F6, the correlation relationship between 
the decision variables is nonlinear. The sample selection method based on active learning in the proposed 
algorithm can more effectively get information between the decision variables and the objective function, 
and obtain offspring with high quality by Gaussian inverse model. 

   

   

   

 

Figure 5. Non-dominated solutions with the best IGD values obtained by each algorithm 
in objective space on IMMOEA_F1. 
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Figure 6. Non-dominated solutions with the best IGD values obtained by each algorithm 
in objective space on IMMOEA_F6. 
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cases, which have degenerated PF, disconnected PF and convex multimodel PF. The characteristics of 
test cases are summarized in Table 4. 

Table 4. The properties of test cases with irregular PFs. 

Problems Properties 
DTLZ5 Concave, degenerated 
DTLZ7 disconnected 
MaF5 Convex, multimodal 
MaF6 Concave, degenerated 
MaF7 Mixed, disconnected, multimodal 

Table 5. The statistical results of IGD on test cases with irregular PFs. 

Test cases ALGM-MOEA IM-MOEA 
DTLZ5 1.0291e-2 (1.98e-3) - 6.2741e-3 (5.00e-4)  
DTLZ7 1.162e-1 (3.45e-2) + 1.6573e-1 (1.52e-2)  
MaF5 1.985e-1 (5.84e-3) + 2.0036e-1(6.45e-3) 
MaF6 8.9997e-3 (1.69e-3) + 9.5047e-3 (9.82e-4)  
MaF7 1.3453e-1 (9.14e-2) + 1.6326e-1 (1.79e-2)  
+/=/- 4/0/1   

Table 6. The statistical results of HV on test cases with irregular PFs. 

Test cases ALGM-MOEA IM-MOEA 
DTLZ5 1.2893e-1(9.40e-4)- 1.9734e-1 (5.29e-4)  
DTLZ7 1.5154e+0(4.62e-2)+ 2.2577e-1 (6.10e-3)  
MaF5 4.7806e+1(1.46e-1)+ 4.7651e+1(1.72e-1) 
MaF6 1.2805e-1(1.00e-3)- 1.9243e-1 (1.18e-3)  
MaF7 1.5238e+0(6.44e-2)+ 2.2723e-1 (7.43e-3)  
+/=/- 3/0/2   

The statistical results of IGD and HV of IM-MOEA and ALGM-MOEA are shown in Tables 5 
and 6. The Wilcoxon rank sum test at the significance level of 0.05 is used to pairwise compare the 
proposed ALGM-MOEA and other algorithm in each test case. Symbol ‘+’ ‘-’ and ‘=’ in front of the 
results indicate that the proposed ALGM-MOEA is superior to, inferior to or not significantly different 
from IM-MOEA. It can be shown that ALGM-MOEA outperforms IM-MOEA in problems DTLZ7 
and MaF7 with disconnected PFs, MaF5 with convex multimodal PF, since the population-guided 
weight vector evolution strategy can dynamically adjust search direction by learning the distribution 
of the population, and delete invalid weight vectors in the region where no solution locates. Therefore, 
the convergence and diversity are enhanced compared with IM-MOEA. In addition, ALGM-MOEA 
behaves worse than IM-MOEA on DTLZ5 with degenerated PF. This may be due to the fact that the 
new sample point selection strategy proposed in ALGM-MOEA pays more attention on individuals 
with uncertainty, and this will lead to a certain deviation in the establishment of the inverse model, 
thus affecting the distribution of the offspring. 
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5. Conclusions 

This work introduces an active learning Gauss modeling based multi-objective evolutionary 
algorithm using population-guided weight vector evolution strategy (ALGM-MOEA). A new 
population-guided weight vector evolution strategy is proposed to alter the weight vectors with the 
knowledge of the current non-dominant solution set. Besides, we develop a Gaussian regression 
modeling based on active learning to generate new individuals, and an adaptive searching strategy to 
explore the unexplored sparse area in objective space and improve the diversity. The proposed ALGM-
MOEA exhibits its competitiveness on search ability for test cases with linear or non-linear correlations 
between the decision variables. Moreover, the performance of ALGM-MOEA and IM-MOEA for test 
cases with irregular PF is compared, and it can be observed that the proposed ALGM-MOEA is 
superior to IM-MOEA, which verifies the effectiveness of the proposed ALGM-MOEA. 

In the future, we will study how to build a more efficient new model to reflect the mapping 
between variables and objective functions, thus further reducing computational complexity. 
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