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Abstract: In the current manuscript, a two-patch model with the Allee effect and nonlinear dispersal
is presented. We study both the ordinary differential equation (ODE) case and the partial differential
equation (PDE) case here. In the ODE model, the stability of the equilibrium points and the existence
of saddle-node bifurcation are discussed. The phase diagram and bifurcation curve of our model are
also given as a results of numerical simulation. Besides, the corresponding linear dispersal case is
also presented. We show that, when the Allee effect is large, high intensity of linear dispersal is not
favorable to the persistence of the species. We further show when the Allee effect is large, nonlinear
diffusion is more beneficial to the survival of the population than linear diffusion. Moreover, the results
of the PDE model extend our findings from discrete patches to continuous patches.
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1. Introduction

The conservation of biodiversity is a paramount issue of global scale [1]. One way to protect
endangered species is to create nature reserves or “refuges” [2], where such species are safe and can
breed healthy populations. Studies have shown that remote islands and mountainous regions often
provide opportunities to protect endangered species [3]. However, the destruction of the natural
habitat of many species due to human activities has resulted in fragmentation. Habitat fragmentation
is defined as the breaking up of a large intact area of a single vegetation type into smaller intact
units [4]. This leads to patch-level changes that can negatively impact species diversity [5–8]. Also
note that dispersal strategies, which are necessary to estimate species success under fragmentation,
are not well studied in the field [9]. For example, different dispersal speeds may change how easily a
species can travel between patches or increase the likelihood of leaving resource-filled patches to
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avoid competition or predation [10]. Numerous studies have shown that building bridges between
patches that allow groups to communicate with each other can help communities to endure [11, 12].
Thus, studies of dispersal behavior, particularly between habitat patches are informative for the
conservation of endangered species [13–15]. To this end, the linear diffusion model is well known.
For example, in [16], the author proposed two models, i.e., with discrete patches,

du j

dt
= u j

(
a j − b ju

)
+

m∑
k=1

D
(
uk − u j

)
, j = 1, · · · , m,

and continuous patches,
∂u
∂t
= u (a − bu) + ∇(D∇u),

where D, a j, b j, a and b are positive constants. In these models, linear diffusion means that the species
can move randomly.

Notice that random movement is reasonable only in some cases (e.g., oceanic plankton [17]).
Gurney and Nisbet [18] studied a biased random motion model as follows:

∂u
∂t
= ru + D1∇

2u + D2∇ (u∇u) ,

where r is the intrinsic birth rate, D1 is the random dispersal rate and D2 is a positive constant depending
upon the proportionality between the bias and density gradient. In this model, the authors suggest
that the movement of individual populations is largely random, but is influenced to a small extent by
the overall distribution of peers. The authors considered that members of a population walk pseudo-
randomly in a rectangular network, and that the probability distribution of each step is slightly distorted
by the local population density gradient; thus, the intensity of diffusion is D1∇

2u + D2∇ (u∇u). Later,
Allen [16] came up with a population modeled by pure biased diffusion, i.e., the discrete patches one

du j

dt
= u j

(
a j − b ju

)
+

m∑
k=1

Du j
(
uk − u j

)
, j = 1, · · · , m,

and continuous patches,
∂u
∂t
= u (a − bu) + ∇(Du∇u).

The biased diffusion model was formulated under the assumption that the population density affects
the diffusion rate [19, 20]. In other words, the diffusion rate is governed by the population density.

The Allee effect [21, 22] plays an important role in population dynamics, and it can be divided into
the strong Allee effect and weak Allee effect. And the strong Allee effect can lead to extinction. Liu
et al. [23, 24] studied the influence of strong and weak Allee effects on Leslie-Gower models. The
additive Allee effect, i.e., an Allee effect involving both strong and weak Allee effect, can be written in
the form

du
dt
= u

(
1 − u −

a
m + x

)
.

Lv et al. [25] studied the impact of the additive Allee effect on an SI epidemic model. In order to
protect endangered species, it is particularly important to study the Allee effect in patch models. Chen
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et al. [26] studied the influence of the Allee effect of a two-patch model with linear dispersal:

du
dt
= u

(
1 − u −

a
m + x

)
+ D2v − D1u,

dv
dt
= −v + D1u − D2v,

where a and m are the Allee effect constants. D1 and D2 are dispersal rates of the two patches. Their
study suggests that dispersal and the Allee effect may lead to the persistence or disappearance of the
population in both patches. Wang [27] studied the global stability of the following two-patch models
with the Allee effect:

du
dt
= r1u

(
1 −

u
K1
−

a1

m1 + u

)
+ D2v − D1u,

dv
dt
= r2v

(
1 −

v
K2
−

a2

m2 + v

)
+ D1u − D2v.

Wang demonstrated that moderate dispersal to the better patch facilitates growth in total population
density in the face of strong Allee effects. Many other scholars have studied the strong Allee effect and
weak Allee effect [28–31].

In [32], the authors proposed the following single-species model with the Allee effect:

du
dt
= u

( ru
A + u

− d − bu
)
,

where r is the maximum birth rate, A represents the strength of the Allee effect, d is natural mortality
and b denotes the death rate due to intra-prey competition. It is well known that this type of Allee effect
is the strong Allee effect, increasing the risk of extinction. It will be interesting to study the effects of
diffusion on species via this Allee effect. As we know, there has been no study of the Allee effect
in a two-patch model with nonlinear dispersal; thus for this motivation in this paper, we will study a
two-patch model with the Allee effect and nonlinear dispersal as follows:

du
dt
= u

( ru
A + u

− d − bu
)
+ Du (v − u) ,

dv
dt
= v (a − cv) + Dv (u − v) ,

(1.1)

where u and v are the densities of the population in the first patch and the second patch, respectively.
A is the Allee effect constant. r, d and b are the birth rate, natural mortality and death rate due to intra-
prey competition of the population in the first patch, respectively. a and c are the intrinsic growth rate
and death rate due to intra-prey competition of the population in the second patch, respectively. D is
the dispersal coefficient.

It is worth mentioning that human intervention increased biodiversity in protected areas in spite
of the Allee effect. Thus, in model (1.1), we assume that the population in first patch is affected by
the Allee effect, while the population in the second patch is free of an Allee effect and is consistent
with normal logistic growth. Moreover, it is well known that the natural habitats of many species
are fragmented due to human intervention and exploitation. Thus, some patches are continuous while
others are discrete; hence, it is important to consider both the ordinary differential equation (ODE) and
partial differential equation (PDE) scenarios, while modeling such phenomenon.
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As far as we are aware, this is the first time that both nonlinear dispersal and the Allee effect on
the population dynamics of a species in a two-patch model have been considered. Although Wang
has previously investigated the impace of the strong Allee effect in a patch model in [27], he did not
consider the case in which diffusion between patches is nonlinear; thus, this article would be a good
companion study to his research. By comparing the difference between nonlinear and linear dispersal,
we conclude that nonlinear diffusion is more conducive to persistence in a fragmented environment.

The rest of this paper is organized as follows. In Section 2, the ODE case of model (2.1) is
introduced. And in this section, the existence and stability of the equilibrium of model (2.1) are
proved; the condition for saddle-node bifurcation to occur is proved and the impacts of the Allee
effect and nonlinear dispersal are given. In Section 3, the PDE case of model (2.1) is introduced. And
the impacts of Allee effect and nonlinear dispersal in PDE case are also given. We end this paper with
a conclusion in Section 4.

2. The ODE case

2.1. Existence and stability of equilibrium

In order to simplify system (1.1), let

ū =
cu
a
, v̄ =

cv
a
, τ = rt

and

m =
Ac
a
, e =

d
r
, h =

ab
cr
, δ =

Da
cr
, s =

a
r
.

We still reserve u, v, t to express ū, v̄, τ, respectively. Then, we get the following simplified system:

du
dt
= u

( u
m + u

− e − hu
)
+ δu (v − u) ,

dv
dt
= sv (1 − v) + δv (u − v) ,

(2.1)

with the following initial conditions: u (0) ≥ 0, v (0) ≥ 0. In the above equation, 0 < e < 1 and m, h, δ
and s are all positive constants. The existence and stability of all nonnegative equilibria of model (2.1)
are respectively proved as follows:

(i) The trivial equilibrium E0 (0, 0) and boundary equilibrium Ev

(
0, s

s+δ

)
always exist.

(ii) The equilibrium Ē(ū, 0) exists on the u coordinate axis where ū satisfies the following equation:

(h + δ) ū2 + [m (h + δ) + e − 1] ū + me = 0. (2.2)

If m ≥ 1−e
h+δ , Eq (2.2) obviously has no positive root. In what follows, we investigate the case that

m < 1−e
h+δ . Notice that the discriminant of Eq (2.2) is ∆1(m) = (h + δ)2m2 − 2(1 + e)(h + δ)m + (1 − e)2.

The discriminant of ∆1(m) is ∆2 = 16e(h + δ)2 > 0. Thus, ∆1(m) = 0 has two positive real roots:

m0 :=

(
1 −
√

e
)2

h + δ
, m1 :=

(
1 +
√

e
)2

h + δ
.
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From 0 < e < 1, we can easily get that m0 <
1−e
h+δ < m1. Thus, if m0 < m < 1−e

h+δ , it follows that
∆1(m) < 0; then, Eq (2.2) has no positive real root.

(iii) Regarding the existence of the positive equilibrium point, from model (2.1) we know that the
positive equilibrium E (u, v) satisfies the following equation:{ u

m+u − e − hu + δ (v − u) = 0,
s (1 − v) + δ (u − v) = 0.

Denote B = sδ
s+δ . The above yields that

(h + B) u2 + [m (h + B) + e − 1 − B] u + m (e − B) = 0. (2.3)

If e = B, Eq (2.3) becomes
u [(h + B) u + m (h + B) − 1] = 0. (2.4)

Therefore, if m ≥ 1
h+B , there is no positive equilibrium; if m < 1

h+B , Eq (2.4) has a unique positive real
root. If B < e < 1, Eq (2.3) has a unique positive real root. In what follows, we investigate the case that
B < e < 1. Notice that the discriminant of Eq (2.3) is ∆3 (m) = (h + B)2 m2 − 2 (e − B + 1) (h + B) m +
(e − B − 1)2. The discriminant of ∆3(m) is ∆4 = 16 (e − B) (h + B)2 > 0. Thus ∆3(m) = 0 has two
positive real roots:

m∗ :=

(
1 −
√

e − B
)2

h + B
, m∗1 :=

(
1 +
√

e − B
)2

h + B
.

From B < e < 1, we get that m∗ < 1+B−e
h+B < m∗1. Therefore, if m∗ < m < 1+B−e

h+B , it follows that ∆3 (m) < 0;
then, Eq (2.3) has no positive real root.

Theorem 2.1. 1) There are two equilibria on the positive coordinate axis of u: Eū1 (ū1, 0) and
Eū2 (ū2, 0) when 0 < m < m0.

2) There is a unique equilibrium on the positive coordinate axis of u: Eū3 (ū, 0) when m = m0. And

ū1 =
1 − e − m (h + δ) +

√
∆1(m)

2 (h + δ)
, ū2 =

1 − e − m (h + δ) −
√
∆1(m)

2 (h + δ)
,

ū3 =
1 − e − m (h + δ)

2 (h + δ)
.

Theorem 2.2. 1) If e < B, there is a unique positive equilibrium E1 (u1, v1).
2) If e = B, there is a unique positive equilibrium E1 (u1, v1) when m < 1

h+B; there is no positive
equilibrium when m ≥ 1

h+B .
3) If B < e < 1,

(i) there are two positive equilibria E1 (u1, v1) and E2 (u2, v2) when m < m∗;
(ii) there is a unique positive equilibrium E3 (u3, v3) when m = m∗;
(iii) there is no positive equilibrium when m > m∗. And

u1 =
1 + B − e − m (h + B) +

√
∆3(m)

2 (h + B)
, u2 =

1 + B − e − m (h + B) −
√
∆3(m)

2 (h + B)
,

u3 =
1 + B − e − m (h + B)

2 (h + B)
.
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Next, we consider the local stability of the equilibrium point. The Jacobian matrix of system (2.1)
at any point E (u, v) is

JE =

(
j11 j12

j21 j22

)
, (2.5)

where
j11 =

(2m + u) u
(m + u)2 − 2 (h + δ) u − e + δv, j12 = δu, j21 = δv, s − 2 (s + δ) v + δu.

Theorem 2.3. 1) E0 (0, 0) is always a saddle.
2) If B < e < 1, Ev

(
0, s

s+δ

)
is locally stable; if e < B, Ev

(
0, s

s+δ

)
is a saddle.

3) If e = B,
(i) Ev

(
0, s

s+δ

)
is an attracting saddle-node, and the parabolic sector is on the right half-plane when

m > 1
h+B;

(ii)Ev

(
0, s

s+δ

)
is an attracting saddle-node, and the hyperbolic sector is on the right half-plane when

m < 1
h+B;

(iii) Ev is a stable node when m = 1
h+B .

Proof. 1) From Eq (2.5), the Jacobian matrix at E0 (0, 0) is

JE0 =

(
−e 0
0 s

)
;

it follows that E0 (0, 0) is a saddle.
2) The Jacobian matrix at Ev

(
0, s

s+δ

)
is

JEv(0, s
s+δ ) =

(
B − e 0

B −s

)
thus, Ev

(
0, s

s+δ

)
is a saddle when e < B, while Ev

(
0, s

s+δ

)
is locally stable when e > B.

3) If e = B, JEv(0, s
s+δ ) has a unique zero eigenvalue. Let U1 = u and V1 = v − s

s+δ ; model (2.1) can
be transformed into the following system:

dU1

dt
= U1

(
U1

m + U1
− e − hU1

)
+ δU1

(
V1 +

s
s + δ

− U1

)
,

dV1

dt
= s

(
V1 +

s
s + δ

) (
1 − V1 −

s
s + δ

)
+ δ

(
V1 +

s
s + δ

) (
U1 − V1 −

s
s + δ

)
.

Applying the Taylor expansion of 1
m+U1

at the origin, it can be rewritten as

dU1

dt
= −

(
h + δ −

1
m

)
U2

1 + δU1V1 +
1

m2 U3
1 +G (U1) ,

dV1

dt
= BU1 − sV1 − (s + δ) V2

1 + δU1V1,

(2.6)

where G (U1) denotes the power series with the term U j
1 satisfying that j > 3. The Jacobian matrix of

system (2.6) at the origin is

J0 =

(
0 0
B −s

)
.

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19781–19807.



19787

Then we make the following transformation:(
U1

V1

)
=

( s
B 0
1 1

) (
x1

y1

)
, t1 = −st;

model (2.6) becomes as follows:

dx1

dt1
= q0x2

1 + q1x1y1 + q2x3
1 +G1 (x1, y1) ,

dy1

dt1
= y1 + p0x2

1 + p1x1y1 + p2y2
1 + p3x3

1 +G2 (x1, y1) ,
(2.7)

where G1 and G2 denote the power series with term xi
1y j

1 satisfying that i + j > 3 and

q0 =
B
m

[m (B + h) − 1] , q1 = −
δ

s
, q2 =

s
m2B
, p0 = −

B
m

[m (B + h) − 1] ,

p1 =
2δ
s
+ 1, p2 =

δ

s
+ 1, p3 = −

s
m2B
.

If m (h + B) > 1 (or m (h + B) < 1), we can see that the coefficient of x2
1 is greater than zero (or less than

zero). Applying Theorem 7.1 in [33], we know that Ev

(
0, s

s+δ

)
is an attracting saddle-node, and the

parabolic (hyperbolic) sector is on the right half-plane when q0 > 0 (q0 < 0). If q0 = 0, i.e., m = 1
h+B ,

system (2.7) becomes as follows:

dx1

dt1
= q1x1y1 + q2x3

1 +G1 (x1, y1) ,

dy1

dt1
= y1 + p0x2

1 + p1x1y1 + p2y2
1 + p3x3

1 +G2 (x1, y1) .

Then we can obtain the implicit function

y1 = −p3x3
1 +G3 (x1) ,

where G3 (x1) denotes the power series with the term xi
1, i > 3. Then

dx1

dt
= q2x3

1 +G4 (x1) ,

where G4 (x1) denotes the power series with the term xi
1, i > 3 and q2 , 0. According to Theorem 7.1

in [33], and combining the previous time changes, it is clear that Ev

(
0, s

s+δ

)
is a stable node. □

Theorem 2.4. 1) Both Eū1 (ū1, 0) and Eū2 (ū2, 0) are unstable when m < m0;
2) Eū3 (ū3, 0) is a repelling saddle-node.

Proof. From Eq (2.5), the Jacobian matrix at Eūi is

JEūi
=

ūi

[
m

(m+ūi)2 − (h + δ)
]
δūi

0 s + δūi


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1) θ1i = ūi

[
m

(m+ūi)2 − (h + δ)
]
, 0; θ2i = s + δūi > 0 are two eigenvalues of JEūi

, i = 1, 2. Therefore,
both Eū1 and Eū2 are unstable.

2) If m = m0, JEū3
has a unique zero eigenvalue. Let U2 = u − ū3 and V2 = v; model (2.1) can be

transformed into the following system:

dU2

dt
= (U2 + ū3)

(
U2 + ū3

m + U2 + ū3
− e − hū3 − hU2

)
+ δ (U2 + ū3) (V2 − U2 − ū3) ,

dV2

dt
= sV2 (1 − V2) + δV2 (U2 + ū3 − V2) .

(2.8)

Using the same method as in Theorem 2.3, system (2.8) can be transformed into a form similar to
Eq (2.7). After a complicated calculation, we get that q0 = − (h + δ)

√
e

1−
√

e < 0. Applying Theorem 7.1
in [33], Eū3 (ū3, 0) is a repelling saddle node; Theorem 2.4 is proved. □

Theorem 2.5. 1) E1 (u1, v1) is stable.

2) E2 (u2, v2) is always a saddle.

3) E3 (u3, v3) is an attracting saddle-node.

Proof. 1) From Eq (2.5), the determinant and the trace of JE1 are, respectively,

Det
(
JE1

)
= u1 (s + u1)

[
h + B −

m
(m + u1)2

]
,

Tr
(
JE1

)
=

mu1

(m + u1)2 − (h + 2δ) u1 − s.

After a simple calculation, we get that Det
(
JE1

)
> 0 and Tr

(
JE1

)
< 0; thus, E1 is locally stable.

2) From Theorem 2.2, if B < e < 1 and m < m∗, then E2 (u2, v2) exists. The determinant of JE2 is

Det
(
JE2

)
=

(h + B) u2 (s + δu2)
(m + u2)2

[
(m + u2)2

− m (h + B)
]
.

After a simple calculation, we get that (m + u2)2
− m (h + B) < 0, which means that Det

(
JE2

)
< 0 and

E2 (u2, v2) is a saddle.
3) When B < e < 1 and m = m∗, E3 (u3, v3) exists. Then γ1 = 0 and γ2 = s + δu3 > 0 are two

eigenvalues of JE3 . Using the same method as in Theorem 2.3, we know that E3 (u3, v3) is an attracting
saddle node; Theorem 2.5 is proved. □

The existence and stability conditions for all equilibria are given in Table 1.
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Table 1. Existence and local stability of all equilibria.

Equilibrium Existence Stability
E0 (0, 0) always Saddle

Ev

(
0, s

s+δ

)
always

B < e < 1, stable
e < B, saddle

e = B, stable node or
attracting saddle node

Eū1 (ū1, 0) , Eū2 (ū2, 0) m < m0 Unstable
Eū3 (ū3, 0) m = m0 Repelling saddle node

Eu1 (u1, v1)
B < e < 1,m < m∗ or

e = B,m < 1
h+B or

e < B
Stable

Eu2 (u2, v2) B < e < 1,m < m∗ Saddle
Eu3 (u3, v3) B < e < 1,m = m∗ Attracting saddle node

Theorem 2.6. The boundary equilibrium Ev

(
0, s

s+δ

)
is globally asymptotically stable when B < e <

1, m > m∗.

Proof. For model (2.1), it is easy to know that du
dt

∣∣∣
u=0
= 0, dv

dt

∣∣∣
v=0
= 0, which means that u = 0 and

v = 0 constitute the invariant set of model (2.1). Thus, all solutions of model (2.1) are nonnegative.
Consider the following equations:

du
dt
≤u (1 − e − hu) + δu (v − u) ,

dv
dt
=sv (1 − v) + δv (u − v) .

Applying the comparison theorem for differential equations, we establish the comparison equations:

dN1

dt
= N1 (1 − e − hN1) + δN1 (N2 − N1) ,

dN2

dt
= sN2 (1 − N2) + δN2 (N1 − N2) .

From Theorem 3.2 in [13], there are positive constants M1 and T1 that yield that Ni (t) ≤ M for ∀t > T1,
i=1, 2. So all solutions of model (2.1) are uniformly bounded. From Theorems 2.3 and 2.4, Ev is locally
asymptotically stable and there is no positive equilibrium when B < e < 1, m > m∗. Therefore, there
exist no limit cycle in the first quadrant. Thus Ev

(
0, s

s+δ

)
is globally asymptotically stable. The proof

of Theorem 2.6 is finished. □

Theorem 2.7. The positive equilibrium E1 (u1, v1) is globally asymptotically stable when e < B or
e = B and m < 1

h+B .

Proof. From Theorems 2.3 and 2.5, the unique positive equilibrium E1 (u1, v1) is locally
asymptotically stable and the boundary equilibrium Ev

(
0, s

s+δ

)
is unstable in the first quadrant when

e < B or e = B and m < 1
h+B . Consider the Dulac function g (u, v) = 1

u2v2 . Applying e ≤ B < s, we get

∂ (gF1)
∂u

+
∂ (gF2)
∂v

=
e − s
u2v2 − M < 0,
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where M = 1
(m+u)2v2 + δ

(
1

u2v +
1

uv2

)
> 0 and

F1 : = u
( u
m + u

− e − hu
)
+ δu (v − u) ,

F2 : = sv (1 − v) + δv (u − v) .
(2.9)

u ’ = u (u/(m + u) − e − h u) + delta u (v − u)
v ’ = s v (1 − v) + delta v (u − v)            

e = 0.04
h = 0.9

delta = 0.1
s = 0.9

m = 0.7
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Figure 1. The phase portraits for model (2.1).

Applying the Bendixson-Dulac discriminant, model (2.1) has no limit cycle in the first quadrant.
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Since the solution of system (2.1) is ultimately bounded, we have that E1 (u1, v1) is globally
asymptotically stable; hence, the proof of Theorem 2.7 is finished. □

Remark 2.1. Theorem 2.6 shows that the level of the Allee constant m has a large effect on the
extinction of the population in the first patch when the intensity of dispersal is low. In detail, when
B < e, i.e., δ < se

s−e (s > e), the species in the first patch will go extinct at any initial value when
m > m∗. The ecological significance of this result is that when the intensity of dispersal is low, if the
birth rate of the population in the first patch is affected by the strong Allee effect such that the
population faces severe difficulties in finding mates, then it will not be able to avoid extinction.
However, when the intensity of dispersal is large, i.e., δ > se

s−e (s > e) which implies that B > e, the
species in both patches will be permanent even though the species in the first patch has a strong Allee
effect. In other words, nonlinear dispersal can be beneficial to the survival of the species.

The phase diagram for model (2.1) is given in Figure 1 for the different parameter cases.

2.2. Saddle-node bifurcation

From Theorem 2.2, model (2.1) has two positive equilibria E1 (u1, v1) and E2 (u2, v2) when B <
e < 1 and m < m∗; However, if m = m∗, it has a unique positive equilibrium E3 (u3, v3). Saddle-node
bifurcation may be induced at here.

Theorem 2.8. Saddle-node bifurcation arises at E3 (u3, v3) when B < e < 1 and m = m∗.

Proof. From Theorem 1.5, we get that Det
(
JE3

)
= 0 and Tr

(
JE3

)
= −

(
B + 2δ2

s+δ

)
u3 − s < 0 when

B < e < 1 and m = m∗. Then JE3 has the unique zero eigenvalue γ1. Let

α :=
(
α1

α2

)
=

(
1
δ

s+δ

)
, β :=

(
β1

β2

)
=

(
1
δu3

s+δu3

)
be the eigenvectors of JE3 and JT

E3
corresponding to a zero eigenvalue. Next, we have

Fm (E3; m∗) =

 − u2
3

(m∗+u3)2

0

 ,
D2F (E3; m∗) (α, α) =

 ∂2F1
∂u2 α

2
1 + 2∂

2F1
∂u∂vα1α2 +

∂2F1
∂v2 α

2
2

∂2F2
∂u2 α

2
1 + 2∂

2F2
∂u∂vα1α2 +

∂2F2
∂v2 α

2
2


(E3; m∗)

=

(
−
√

e − B (h + B)
0

)
,

where F1 and F2 are given in Eq (2.9). It is easy to get

βT Fm (E3; m∗) = −
u2

3

(m∗ + u3)2 , 0,

βT D2F (E3; m∗) (α, α) = −
√

e − B (h + B) , 0.

Applying the Sotomayor theorem [34], system (2.1) will experience saddle-node bifurcation at
E3 (u3, v3) when B < e < 1 and m = m∗; Theorem 2.8 is proved. □

Besides, saddle-node bifurcation also occurs at Eū3 (ū, 0) when m = m0, and its proof is analogous
to Theorem 2.8; thus, we omit it here.
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2.3. Impacts of Allee effect and nonlinear dispersal

From Theorem 2.7, the positive equilibrium point E1 (u1, v1) is globally asymptotically stable when
e < B or e = B and m = 1

h+B . Then, the total population abundance is T = u1 + v1, where v1 =
s+δu1
s+δ and

u1

m + u1
− e − hu1 + B (1 − u1) = 0.

After a simple derivative calculation, we get

du1

dm
= −

u1

C (m + u1)2 < 0,

dv1

dm
=
δ

s + δ
du1

dm
< 0,

where C := (h + B) − m
(m+u1)2 > 0. Thus we have that dT

dm =
du1
dm +

dv1
dm < 0. The above yields that the

stronger the Allee effect, the lower the total population density. Figure 2 is the bifurcation diagram for
parameter m, which was obtained by using MatCont [35].

Consider the subsystem of model (2.1) without nonlinear dispersal:

du
dt
= u

( u
m + u

− e − hu
)
. (2.10)

For model (2.10), it is well known that when the Allee effect is strong, it can lead to population
extinction under certain initial values. For example, in Figure 3, it can be seen that the population of
patch 1 becomes extinct in the absence of dispersal. However, it becomes persistent with the increase
of the dispersal coefficient δ, which reflects the positive effect of dispersal here. In Figure 4, the Allee
effect does not lead to extinction when the dispersal coefficient δ is large enough, which is completely
different from the model in which the Allee effect may lead to extinction of the population. Therefore
reasonable dispersal is necessary for the conservation of scarce animals.
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Figure 2. Saddle node bifurcation diagram for model (2.1), where the other parameters are
e = δ = 0.1 and s = h = 0.9. The blue solid line and the red dashed line indicate the stable
and unstable equilibrium points, respectively. SN denotes the saddle-node point.
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Figure 3. For model (2.1), the curves of u over time for different values of δ, where the rest
of the parameters were fixed as follows: m = 0.7, e = 0.04, h = 0.9, s = 0.9.
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Figure 4. For model (2.1), the curves of u over time for different values of m when B < e < 1.
The rest of the parameters were fixed as follows: δ = 0.1, e = 0.04, h = 0.9, s = 0.9.

In order to better understand the role of nonlinear dispersal, we will present some comparison
between nonlinear dispersal and linear dispersal. We introduce the model with linear dispersal as
follows.

du
dt
= u

( u
m + u

− e − hu
)
+ δ (v − u) ,

dv
dt
= sv (1 − v) + δ (u − v)

(2.11)

For model (2.11), up to now, we cannot present the complete qualitative analysis such as the sufficient
and necessary condition for the existence of a positive equilibrium. We will obtain two sufficient
conditions which ensure that system (2.11) does not have a positive equilibrium and there is a unique
positive equilibrium, respectively. And, the complete qualitative analysis will be our future work.

Theorem 2.9. For model (2.11), if m ≥ 1
h , e > s and δ > es

e−s , then there is no positive equilibrium and
the trivial equilibrium O (0, 0) is globally asymptotically stable.
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Proof. Let the right-hand sides of model (2.11) equal to zero to get

u =
1
δ

[
(−s + δ) v + sv2

]
:= H1 (v) ,

v =
1
δ

u
(
−

u
m + u

+ e + δ + hu
)

:= H2 (u) .
(2.12)

It is easy to obtain that H1 (v) is strictly monotonically increasing and concave. And
H1 (0) = 0,H

′

1 (0) = δ−s
δ
> 0 and H2 (0) = 0. Besides, we can obtain

H
′

2 (u) = −
1
δ

[
u (2m + u)
(m + u)2 − e − δ − 2hu

]
, H

′

2 (0) =
e + δ
δ
> 0.

And if h ≥ 1
m , then

H
′′

2 (u) =
2
δ

[
h −

m2

(m + u)3

]
> H

′′

2 (0) =
2
δ

(
h −

1
m

)
≥ 0.

Thus H2 (u) is also strictly monotonically increasing and concave. The above yields that if
H
′

1 (0) H
′

2 (0) > 1, two curves u = H1(v) and v = H2(u) will not intersect each other in the first
quadrant which implies that model (2.11) has no positive equilibrium. And the diagrams of curves
H1 (v) and H2 (u) are shown in Figure 6. Notice that when e > s and δ ≥ es

e−s , it follows that
H
′

1 (0) H
′

2 (0) > 1. Summarizing the above, we can conclude that m ≥ 1
h and e > s, δ > es

e−s , model
(2.11) has no positive equilibrium, and it only has the trivial equilibrium O (0, 0).

0 5 10 15 20

0

0.02

0.04

0.06

0.08

0.1

t

u

 

 

δ=2

δ=3

δ=10

(a) (t, u) plane

0 5 10 15 20

0

0.02

0.04

0.06

0.08

0.1

0.12

t

v

 

 

δ=2

δ=3

δ=10

(b) (t, v) plane

Figure 5. Curves of u and v over time for model (2.11) for different values of δ where the
rest of the parameters were fixed as follows: m = 2, e = 2, h = 1, s = 1.

Next, we will consider the local asymptotic stability of the trivial equilibrium O (0, 0) of model
(2.11). The Jacobian matrix at O (0, 0) is

JO =

(
−e − δ δ

δ s − δ

)
. (2.13)

And
Det (JO) = (e − s) δ − se > 0,
Tr (JO) = − (e + s + 2δ) < 0.
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Therefore O (0, 0) is locally asymptotically stable. Also model (2.11) has no limit cycle since it has
no positive equilibrium when m ≥ 1

h , e > s and δ > es
e−s . The above yields that O (0, 0) is globally

asymptotically stable. Theorem 2.9 is proved. □

Theorem 2.9 shows that the impacts of nonlinear diffusion and linear diffusion are different. In
detail, high nonlinear diffusion intensity can make the species in both patches coexist (see Figure
3), while high linear diffusion intensity causes the species in the first patch to become extinct (see
Figure 5).

(a) (b)

Figure 6. Number of intersections between u = H1 (v) and v = H2 (u) in the first quadrant:
(a) no intersection; (b) one intersection.

Theorem 2.10. For model (2.11), if m ≥ 1
h and 0 < δ ≤ s, then a unique positive equilibrium Ê (û, v̂)

exists, where û and v̂ satisfy Eq (2.12). And Ê (û, v̂) is globally asymptotically stable when 0 < δ < s−e
2 .

Proof. From the proof of Theorem 2.9, if m ≥ 1
h , we can obtain that both H1 (v) and H2 (u) are strictly

monotonically increasing and concave for u > 0 and v > 0. From H1

(
s−δ

s

)
= H2 (0) = 0 and H

′

1

(
s−δ

s

)
=

s−δ
δ
≥ 0, H

′

2 (0) > 0, then two curves u = H1(v) and v = H2(u) will intersect each other once in the first
quadrant which implies that model (2.1) has a unique positive equilibrium. This is shown in Figure 6
(b). And a simple calculation gives us H

′

1 (v̂) H
′

2 (û) > 1.
From Eq (2.13), we get Det (JO) = e (δ − s) − δs < 0. Thus O (0, 0) is a saddle. Next, we will

consider the stability of the positive equilibrium Ê (û, v̂). From Eq (2.12), model (2.11) can rewritten
as follows:

du
dt
= δ [v − H2 (u)] := Q1,

dv
dt
= δ [u − H1 (v)] := Q2.

The Jacobian matrix at Ê (û, v̂) is

JÊ =

(
−δH

′

2 (u) δ

δ −δH
′

1 (v)

)
.
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And
Det

(
JÊ

)
= δ2

[
H
′

1 (v̂) H
′

2 (û) − 1
]
> 0,

Tr
(
JÊ

)
= −δ

[
H
′

1 (v̂) + H
′

2 (û)
]
< 0.

Therefore Ê (û, v̂) is locally asymptotically stable. Consider again the Dulac function g (u, v) = 1
u2v2 .

Applying δ ≤ s−e
2 , we get

∂ (gQ1)
∂u

+
∂ (gQ2)
∂v

=
e + 2δ − s

u2v2 − M̄ < 0,

where M̄ = 1
(m+u)2v2 + δ

(
1

u3v +
1

uv3

)
> 0. Using the Bendixson-Dulac discriminant in the same way in

Theorem 2.7, we can see that Ê (û, v̂) is globally asymptotically stable. Theorem 2.10 is proved. □

Remark 2.2. In our manuscript, we focus on how dispersal can keep the species with an Allee effect
from becoming extinct. In detail, From Theorem 2.7 and Remark 2.1, we conclude that for the model
(1.2) with a nonlinear dispersal mechanism, a large amplitude of nonlinear dispersal can prevent the
species with a strong Allee effect from going extinct. However, Theorem 2.9 states that if the diffusion
between two patches is linear, the species in both patches may still go extinct when the Allee constant
is large, even if the dispersal intensity is large. Theorem 2.10 states that if the diffusion between
two patches is linear, the species in both patches can persist when the Allee constant is large and
the dispersal intensity is less. Through a comparison of Theorem 2.7, Remark 2.1 and Theorems 2.9
and 2.10, it is not difficult to obtain that linear and nonlinear dispersal have different impaces on
the species’ permanence. In all, a large amplitude of nonlinear dispersal or less intensity of linear
dispersal can keep the species with a strong Allee effect from becoming extinct. The above comparison
of nonlinear diffusion with linear diffusion has theoretical and practical significance.

3. The PDE case

In this section we will study the effect of dispersal rate δ for spatially explicit PDE versions of
systems (2.1) and (2.11).

3.1. Notations and preliminary observations

Lemma 3.1. Consider an m×m system of reaction-diffusion equations , where each equation is defined
as follows: for all i = 1, ...,m,

∂tui − di∆ui = fi(u1, ..., um) in R+ ×Ω, ∂νui = 0 on ∂Ω, ui(0) = ui0, (3.1)

where di ∈ (0,+∞), f = ( f1, ..., fm) : Rm → Rm is continuously differentiable on Ω and ui0 ∈ L∞(Ω).
Then, there exists a time interval T > 0 within which a unique classical solution to Eq (3.1) exists, i.e.,
the solution is well-defined and smooth on [0,T ). Let T ∗ be the maximum value for all such intervals
T . It follows that [

sup
t∈[0,T ∗),1≤i≤m

||ui(t)||L∞(Ω) < +∞

]
=⇒ [T ∗ = +∞].

If the non-linearity ( fi)1≤i≤m is also quasi-positive, i.e., if

∀i = 1, ...,m, ∀u1, ..., um ≥ 0, fi(u1, ..., ui−1, 0, ui+1, ..., um) ≥ 0,
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then
[∀i = 1, ...,m, ui0 ≥ 0] =⇒ [∀i = 1, ...,m, ∀t ∈ [0,T ∗), ui(t) ≥ 0].

Lemma 3.2. Under the same notations and assumptions as in Lemma 3.1, let us consider an additional
condition. Suppose that f exhibits at most polynomial growth and there exist b ∈ Rm and a lower
triangular invertible matrix P with nonnegative entries such that for any r ∈ [0,+∞)m, we have

P f (r) ≤
[
1 +

m∑
i=1

ri

]
b.

Then, for any initial value u0 ∈ L∞(Ω,Rm
+), the system (3.1) admits a strong global solution.

Based on the given assumptions, it is widely recognized that the following local existence result,
originally presented by D. Henry in [36], holds true:

Theorem 3.1. The system (3.1) possesses a unique and classical solution (u, v) defined over the interval
[0,Tmax] ×Ω. If Tmax < ∞, then

lim
t↗Tmax

{
∥u(t, .)∥∞ + ∥v(t, .)∥∞

}
= ∞, (3.2)

where Tmax denotes the eventual blow-up time in L∞(Ω).

3.2. A case of linear dispersal

Consider the following spatially explicit PDE version of the linear dispersal system motivated by
ODE system (2.11), resulting in the following reaction diffusion system, defined on Ω = [0, L]:

∂u
∂t
= δ1uxx + s1(x)u

(
u

m(x) + u
− e(x) − h(x)u

)
,

∂v
∂t
= δ2vxx + s(x)v

(
v

m1(x) + v
− e1(x) − h1(x)v

)
,

∂u
∂ν
=
∂v
∂ν
= 0 on ∂Ω;

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0

(3.3)

Here

m1(x) =

m(x), x ∈ [0, L1],
m(x) = 0, x ∈ [L1, L]

, e1(x) =

e(x), x ∈ [0, L1],
e(x) = 0, x ∈ [L1, L].

h1(x) =

h(x), x ∈ [0, L1],
h(x) = 1, x ∈ [L1, L].

, s1(x) =

s(x) = 1, x ∈ [0, L1],
s(x), x ∈ [L1, L].

In this framework the patch structure is in a simple one dimensional domain [0, L], where the region
from [0, L1] is where the population is subject to an Allee effect, and the region from [L1, L] is where
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the population is not subject to an Allee effect. Here linear dispersal is assumed for the populations
modeled by the standard Laplacian operator.

One can typically think of the species u as the population starting in the [0, L1] patch, where it
is subject to an Allee effect and will move via linear dispersal into the [L1, L] patch. Once it enters
this patch, it is no longer subject to an Allee effect. Similarly we can think of the species v as the
population starting in the [L1, L] patch, where there is no Allee effect in place. However it moves into
the [0, L1] patch via linear dispersal and upon entering this patch, it is immediately subject to an Allee
effect. We consider the problem in the spatial dimension n = 1. Also the above mentioned functions
m(x),m1(x), h(x), h1(x), s(x), s1(x), e(x) and e1(x) are all assumed to be in L∞[0, L]. We can state the
following result.

Lemma 3.3. Consider the reaction diffusion system (3.3); then, there exist global in time non-negative
classical solutions to this system, for certain positive bounded initial data.

Proof. The non-negativity of solutions follows via the quasi-positivity of the right-hand-side of
Eq (3.3). Next, via a simple comparison for the u equation we have,

u
( u
m + u

− e − hu
)
≤ u

(u
u
− e − hu

)
= u (1 − e − hu) (3.4)

This follows by using the positivity of the parameter m. Comparison with the logistic equation, via the
use of Lemma 3.2 yields the result. The analysis for the v equation follows similarly. □

3.3. A case of non-linear dispersal

Consider the following spatially explicit version of nonlinear dispersal system (2.1), resulting in the
following reaction diffusion system, defined on Ω = [0, L]:

∂u
∂t
= δ1uuxx + s1(x)u

(
u

m(x) + u
− e(x) − h(x)u

)
,

∂v
∂t
= δ2vvxx + s(x)v

(
v

m1(x) + v
− e1(x) − h1(x)v

)
,

∂u
∂ν
=
∂v
∂ν
= 0 on ∂Ω;

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0

(3.5)

m1(x) =

m(x), x ∈ [0, L1],
m(x) = 0, x ∈ [L1, L]

, e1(x) =

e(x), x ∈ [0, L1],
e(x) = 0, x ∈ [L1, L].

h1(x) =

h(x), x ∈ [0, L1],
h(x) = 1, x ∈ [L1, L].

, s1(x) =

s(x) = 1, x ∈ [0, L1],
s(x), x ∈ [L1, L].

In this framework the patch structure is in a simple one dimensional domain [0, L], where the region
from [0, L1] is where the population is subject to an Allee effect, and the region from [L1, L] is where
the population is not subject to an Allee effect. Here nonlinear dispersal is assumed for the populations
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Figure 7. Numerical simulation illustrating the impact of a small linear dispersal parameter
(δ1 = 0.4, δ2 = 0.004) on the dynamics of system (3.3) in Ω = [0, π] for intial data
[u0(x), v0(x)] = [3 + x2, 2 + x2]. (a) Population density distribution vs space (b) functional
reponses used for simulation (c) surface plot of u (d) surface plot of v.

modeled by a non-standard Laplacian operator. We consider the problem in the spatial dimension
n = 1. Again the functions m(x),m1(x), h(x), h1(x), s(x), s1(x), e(x) and e1(x) are all assumed to be
nonnegative functions in L∞[0, L]. Furthermore, since the s(x), h(x) functions have to mimic the h, s
parameters from the ODE systems considered earlier, we assume that there exists a positive constant
C1 such that 0 < C1 < min(h(x), h1(x), s(x), s1(x)).

We state the following result.

Theorem 3.2. Consider the reaction diffusion system (3.5); then, there exist global in time nonnegative
classical solutions to this system for certain positive bounded initial data.

Proof. Consider the u equation for the reaction diffusion system (3.5). Dividing through by u we
obtain, the following equivalent equation:

∂

∂t
(
log u

)
= δ1uxx + s1(x)

(
u

m(x) + u
− e(x) − h(x)u

)
. (3.6)

This follows by formally dividing through by u and v assuming positivity. Integrating the above
equation over Ω yields,
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Figure 8. Numerical simulation illustrating the impact of a small linear dispersal parameter
(δ1 = 0.4, δ2 = 0.004) on the dynamics of system (3.3) in Ω = [0, π] for non-flat intial data
[u0(x), v0(x)] = [e−( x−1.8√

.008
)2

+ e−( x−0.4√
.008

)2

, e−( x−1.8√
.008

)2

+ e−( x−0.4√
.008

)2

]. (a) Population density distribution
vs space (b) functional reponses used for simulation.
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Figure 9. Numerical simulation illustrating the impact of a small linear dispersal parameter
(δ1 = 0.4, δ2 = 0.004) on the dynamics of system (3.3) in Ω = [0, π] for non-flat intial data
[u0(x), v0(x)] = [e−( x−1.9√

.008
)2

+ e−( x−0.4√
.008

)2

, e−( x−1.9√
.008

)2

+ e−( x−0.4√
.008

)2

]. (a) Population density distribution
vs space (b) functional reponses used for simulation.

d
dt

∫
Ω

log(u)dx +
∫
Ω

s1(x)h(x)udx ≤ s1(x)|(1 − e(x))||Ω|.

From this, it follows that

d
dt

∫
Ω

log(u)dx + (C1)2
∫
Ω

udx ≤ ||s1(x)||∞||(1 − e(x))||∞|Ω|.

It follows, by using the earlier estimate on the right-hand-side of the u equation in Lemma 3.3, that
0 < C1 < min(h(x), h1(x), s(x), s1(x)). Now, by using the inequality log(x) < x, x > 0, we obtain

d
dt

∫
Ω

log(u)dx + (C1)2
∫
Ω

log(u)dx ≤ C2|Ω|.
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Figure 10. Numerical simulation illustrating the impact of a small linear dispersal parameter
(δ1 = 0.4, δ2 = 0.004) on the dynamics of system (3.3) in Ω = [0, π] for non-flat intial
data [u0(x), v0(x)] = [e−( x−1.9√

.008
)2

+ 0.65e−( x−0.4√
.008

)2

, e−( x−1.9√
.008

)2

+ 0.65e−( x−0.4√
.008

)2

]. (a) Population density
distribution vs space (b) functional reponses used for simulation.

An application of the Gronwall inequality yields∫
Ω

log(u)dx ≤
C2|Ω|

C2
1

+ log(u0(x))

Similar analysis follows for the v equation. Thus the L1(Ω) norms of the log(u) cannot blow-up at
any finite time T ∗ < ∞ for suitable initial data u0(x) such that the log(u0(x)) is well defined. This in
turn yields control of the L1(Ω) norms of the solution. Here C2 is a pure constants that could absorb
the other parameters in the problem. This, in conjunction with classical theory [36], where essentially
one needs to control the right-hand-side of Eq (3.5) in Lp for p > n

2 , yields the result. □

3.4. Numerical simulations

The numerical simulations for both the linear Eq (3.3) and nonlinear Eq (3.5) in the context of
dispersal PDEs were executed by using MATLAB R2021b. The simulations employed the built-in
function pdepe, specifically designed to solve one-dimensional parabolic and elliptic PDEs. The
spatial domain was set as the unit-sized interval [0, 1], which was discretized into 100 sub-intervals. It
has been numerically validated under some parametric restrictions, and for some given data, a large
magnitude of nonlinear dispersal or less intensity of linear dispersal may prevent species impacted by
the Allee effect from becoming extinct (See Figures 5–13).

4. Conclusions

In this paper, the interplay of the Allee effect and nonlinear dispersal in a two-patch model have been
studied. Our goal was to determine whether nonlinear diffusion between the two patches contributes
to overcoming the Allee effect.

When the dispersal intensity is low, we have concluded that a population u will go extinct when
B < e < 1 and m > m∗. Besides, we also proved that the two positive equilibrium points E1 (u1, v1)
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Figure 11. Numerical simulation illustrating the impact of a large nonlinear dispersal
parameter (δ1 = 2, δ2 = 3) on the dynamics of system (3.5) in Ω = [0, π] for intial data
[u0(x), v0(x)] = [5, 5]. (a) Population density distribution vs space (b) functional reponses
used for simulation (c) surface plot of u (d) surface plot of v.

and E2 (u2, v2) of model (2.1) will undergo saddle-node bifurcation when m = m∗. These findings
suggest that the Allee effect has a major impact on the extinction of the population in patch 1 when
the dispersal intensity is very weak. However, the positive equilibrium E1 (u1, v1) is always globally
asymptotically stable when e < B, i.e., δ > se

s−e . The above result shows that both species will persist
when the nonlinear dispersal intensity is high. In other words, under large nonlinear dispersal, the
persistence of both species seems independent of the Allee effect.

Besides, for the corresponding model with linear dispersal, we have obtained two interesting results
corresponding to when the Allee effect is strong. The results show that when the linear dispersal is high,
both species will go extinct. However, the species with low linear dispersal will persist. We declare that
a large magnitude of nonlinear dispersal or a lower intensity of linear dispersal may prevent species
with a strong Allee effect from becoming extinct.

The above are results derived in the ODE case. We have derived analogous results in the PDE case
as well. Herein, we set up a one dimensional domain to have two explicit patches, i.e., one patch in
which the populations are subject to an Allee effect and the other patch in which they are not. The
species move in and out of these patches via linear diffusion, as well as nonlinear diffusion. What
we observe in the PDE case is that high nonlinear diffusion can eliminate the impact of the strong
Allee effect so that populations do not become extinct; see Figures 11–13. This complements the ODE
model’s findings for continuous patch models. We also observe that, in the case of linear diffusion,
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Figure 12. Numerical simulation illustrating the impact of a large nonlinear dispersal
parameter (δ1 = 2, δ2 = 3) on the dynamics of system (3.5) in Ω = [0, π] for non-flat
intial data [u0(x), v0(x)] = [5, 5]. (a) Population density distribution vs space (b) functional
reponses used for simulation.
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Figure 13. Numerical simulation illustrating the impact of a large nonlinear dispersal
parameter (δ1 = 2, δ2 = 3) on the dynamics of system (3.5) in Ω = [0, π] for non-flat intial
data [u0(x), v0(x)] = [0.0001+e−( x−1.9√

.008
)2

+e−( x−0.4√
.008

)2

, 0.0001+e−( x−1.9√
.008

)2

+e−( x−0.4√
.008

)2

]. (a) Population
density distribution vs space (b) functional reponses used for simulation.

a low intensity of diffusion can also lead to coexistence. This again is in accordance with our ODE
findings. This is also true, even if we take an initial condition in the patch that is subject to an Allee
effect, such that the ||u0||∞ < M, that is the peak of the initial data is below the Allee threshold. Thus
the small linear diffusion allows the species to disperse into the second patch, and escape the Allee
effect before it can cause local extinction; see Figure 10.

Another important use of the PDE model is its applications to habitat fragmentation due to human
intervention and exploitation. Some fragmented patches are large while others are small in area.
Although ODE models with a patch structure are powerful, all in all they are not spatially explicit and
thus cannot capture this effect of patches of different sizes. They cannot explicitly model the case of a
patch, which is actually say 10, 20 or 30 percent of the entire domain. However, in the PDE case with
a patch structure we can model this situation. We included this in our simulations in the PDE case.
You will see that we attempted patches which are both one-third the size of the entire domain and 1/2
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the size of the domain. We note that in both cases we can obtain coexistence. Thus patch size does not
seem to play a part in achieving the coexistence dynamics; one can see this by comparing
Figures 11–13 or Figures 7 and 8. Proving this rigorously will make for very interesting future work.

Recent studies by Srivastava et al. [37] and Chen et al. [38] have inspired further exploration.
These studies investigate the impact of fear in a purely competitive two-species model, where one
species instills fear in the other. To advance our understanding, it would be valuable to enhance future
research by extending the incorporation of the fear effect into both linear and nonlinear dispersal
systems, considering both ODE and PDE formulations. In summary, future investigations that modify
the ODE and PDE versions of linear and nonlinear dispersal systems to incorporate the fear effect
build upon recent work and have the potential to deepen our understanding of ecological dynamics.
By exploring the role of fear in species interactions, we can uncover new dimensions and pave the
way for more accurate modeling and conservation approaches. Other future directions in the PDE
cases will include investigating edge effects with a patch structure [39] and investigating blow-up
prevention with patches [40, 41].

As is known, the traditional growth rate of species is logistic and an Allee effect in place may cause
a species to become extinct. To this end it is interesting to propose a model with two patches, i.e., one
where there is logistic growth and the other where there is an Allee effect. Thus, in this manuscript, we
have explored a suitable dispersal strategy which can benefit species in both patches. In other words,
we discuss the rolet of dispersal in keeping the species subject to an Allee effect from extinction. Our
results show that a large magnitude of nonlinear dispersal or a lower intensity of linear dispersal may
prevent species that are subject to a strong Allee effect from becoming extinct. We point out that it
is also meaningful to investigate a two patch model, where the form of the Allee effect in the various
patches could change, such as a strong effect in one patch versus a weak effect in the other patch. We
leave such an investigation for future work.
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