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1. Introduction

No viable analytical technique is found in the literature that can be utilized to solve
nonlinear differential equations with the generalized-Mittag-Leffler kernel based fractional
derivative [1-3]. This is caused by both the complexity of the Mittag-Leffler kernel and the
nonlinearity of the problem. Because of this, scientists who study this topic typically rely on
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numerical schemes to find numerical answers to these equations [4-14]. Nonetheless, at least one
wants to be certain that these equations admit unique solutions, and the existence and unigqueness
theorems are used for this purpose. The existence and uniqueness theorem for initial value issues
of ordinary differential equations implies the prerequisite for the existence of a solution to a
linear or non-linear initial value problem and guarantees the uniqueness of the discovered
solution. Researchers have been working on methods to ensure that nonlinear ordinary
differential equations based on the Atangana-Baleanu derivative, a unique solution for the better
part of the last ten years [2-5,11-14]. Most of these techniques are, in fact, adaptations of those that
have been proposed for nonlinear differential equations with classical derivatives [6]. Let us not
forget that Picard proposed one of the earliest methods [10,15-18]. An explicit iteration is then
introduced after converting an ordinary differential equation into an integral equation, and in some
cases, the Lipschitz condition can be used to ensure that this iteration will eventually converge to a
singular solution. The nonlinear equations related to the Atangana-Baleanu fractional derivative will
be the subject of our application of this technique.

2. Existence and uniqueness of 1VP with Atangana-Baleanu

Nonlinear ordinary differential equations with the Caputo and the Atangana-Baleanu have been
recognized as important mathematical differential equations to modeling processes with non-local
behaviors. However, due to complexity of these equations, exact solutions are not always easy to
obtain using current analytical techniques. Researchers, therefore, rely on numerical approaches to
derive numerical solution of these equations. However, before deriving a numerical solution, it is
mathematically important to show that the equation has a unique solution under some conditions.
One of the approaches to achieve this is to establish a sequence that converges towards a given
solution, with some important theorem well-established in literature, and we can conclude that the
equation linked to that sequence has a unique solution. In this section, we shall consider the
following IVP:

AEEDEY(t) = f(t,y(©) t>0,
_ €Y)
y(to) = Yo
The above is transformed into:
{y(t) = y(to) + (1 = D)f (£,y(©) + 15 J,, (¢t =D f &,y (D), 2
y(to) = y(0).
We consider the Picard approach to obtain:
{yn(t) = y(to) + (1 = Of (£, Yn-1(0)) + 15 fp, (= D7 f (@, ypa (D), 3
y(to) = y(0).

where D € R X R is a closed rectangle with (t,, y(t,)) € D.
We assume that f:[t, — a,t, + a] X B(a,7) — R is continuous and bounded by &z. Then the
ordinary differential equation with the Atangana-Baleanu derivative has a solution.
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Proof: We show that each y,, (t) is well-defined. Without loss of generality, we show this only for

t € [ty to + Cl.

9 (®) = ¥(t)] < (1 = D|f(t, ynos ()] + % j - D518,y ()| dr,

a (t —ty)”

<(1—a)Q+—QJ(t—r)“ldr,s(l—a).(z+r(a)!2 .

a

F?a) a%, < (1 —a+ Ifé;).() < (1 + '@

<( ).(2<r.

Such that:

1
a
< (%r(@) .
We show that (y,,(t)) is uniformly bounded.

a1 =yl + (1 = )| (t, yn_1(®))|

I—v( ) f(T Yn- 1(1-))(1:_1.)61 1dT

< ly(t)l + (1 = | f (£, yn-1(®)]

e j (@ yna @) = D% e < Iyt + (1 - )0

a

+—nf (t — D)% 17 < |y(to)] + (1 — )2 +%n—

< |y(ty)| + 2 (1 + FCE::))'

We shall show that (y,(t)) is uniformly equicontinuous.

ti,t, € D, suchthat t; > t,.

4)

(5)

Mathematical Biosciences and Engineering \Volume 20, Issue 11, 19763-19780.
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|Yn(t1) - .Vn(tz)l (6)

= |<1 = ){f (tr, yn-1(t)) = f(t2, yn-1(t2))}
* %J;Ol(tl - T)a_lf(T' yn—l(T))dT
a K a-1 dr |<
) mf (t2 = D7 (-1 ()d 1< (4 = DIf (12, Yo (1))

- f(tz' yn—l(tz))l

+ ){ f (6 = D" f (2,y0-1(D))de

t1

(t, =D f (7, yn-1(D)dr — 2(tz -0*f(, yn—l(T))dT}

ty tO

< (1 - a)Llyn—1(t1) — yn-1(t)I

@ -1
T, (6= 6y )

< (1= a)Llyn—1(t1) — yn-1(t)|

(t, — tz) (t1 —t)*  (ty —tp)” a (t; — )"
F(a) ’ + a Bl a I“(a)"Q a

Note that the function % is differentiable, therefore, there exists | € [t; — t,, t; — to] such
that by the Mean Value Theorem,

o0l G ey, — gy -ty — 1) ’
= 1 0 2 0/)

a a

= la_l(tl - tz)
Therefore:

[yn (t1) = yu (£2)] (8)

al)
< (1= a)Llyn—1(t1) = yn-1(t)| + == 1%71(t; — t)(t1 — to)

r(a)

0]
+m(t1 — t)“%
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However,

ly1 (1) — y1(t2)| 9

<@1- a)|f(t1,y0(t1))

- f(tz'}’o(tz)” %

J~1(t1-T)“'1f(T,yo(T))dT

t2

—| (tz2— T)a_lf(f' }’O(T))d'f < (1 —a)Llyo(t) — yo(t2)l

to

a
T@

"ty = D (1, y0(0))dr

+ [ -0y @)dr = [ (6 — DT (1 ye(0))dr

< (1= a)Llyo(ty) — yo(t2)l

a a—1 z (tl — tZ)a
+ m_{) {l (ty — ) (t — tp) + r'(a) Z a }

But y,(t) is constant, therefore:

af(t, —t)“ (10)
al (a)

0(t, —t,)*  alal*! nee
(@) ra@ ° @

Assuming that vn > 1 (y,,_,(t)) is equicontinuous.

m@a—nmNsﬁ%nm—ng—mw4+

Na
< a—1 _
<T@ al®(t; —t,) +
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ly1 (1) — y1(E2)I (11)

_ ‘(1 — Of (tny0(t) — (1 = f (2, ¥(t))

+ m f(T ¥o(D) (t; — D) dt

I—v( ) f(T yO(T)) (tZ - T)a 1dT

<(1- 05)|f(t1:YO(t1)) - f(tz'}’o(tz))l

+ % ftozf(‘f, J’O(T)) (t; — )% 1dr — ftozf(‘[' yo(‘[)) (t, — 7)% 1dzr
|F( ), f(T Yo(D) (t — 1)* 'dr

< (1= a)llyy(t)) — yo(t)]
’ %lelf(r' Yo@)|{(ty = D)* " = (t, = 1)* "}de

t1

a 0 a—ld
+ m (tl —17) T
< (1= a)Llyo(t)) — yo(t)| + F?a)ﬂ {(tl _atZ) }

+

a 0 {(t1 —tg)“ _ (t; — ) _ (t, — to)a}

I'(a) a a a
if)
< (1 —a)L]yo(t) — yo(t)] + ﬁ (t, — t)*
+ (1 = a)Ll|yo(t)) — yo(t2)] + I'a ){(t1 —t)% — (t; — tp)“}

Noting that y,(t) is a constant, therefore, y,(t;) —yo(t;) =0, also (t—ty)* is
differentiable, therefore, by the Mean Value Theorem, there exists a [ € [t; — ty, t, — to] such that
a(l —to)%(t; — tp) = (t; — to)* — (£ — tp)*.

Then,
afl®(t, — t,) (12)

ly1(t1) —y1 ()] < %Q(l —to)(t; —tz) < ()

Mathematical Biosciences and Engineering \Volume 20, Issue 11, 19763-19780.
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ly2(t2) — ¥2(t2)] (13)
<@1- a)|f(t1,y1(t1)) - f(tz’)ﬁ(tz))l

a
T@

[ ern@) @ -otar - [en®) @ -oea

+ [ ranm) @ -0

Q191 (¢, —
< £01 - @l (t) ~ y (e + L

al®1(t, —t al®1(t, —t
(1 Z)S{l‘I‘L(l—(Z)} (1 2)

<L(1-a)

r'(a) r'(a)
al*1(t, — t,)
<(1+2L) (@)
lys(t1) — y3(t2)] (14)

< (1= a)Lly,(t1) — y2(t2)|

{ f (6, y,@) (6 - DT — f F(0,y,(@) (6 — D e

L
r (CZ) to to

+ J 2f (1.y.(0) (t;, — T)“‘ldr}

a-1 _ a-1 _
S(l—a)£(1+£)am r((él) t2)+am r((;l) t2)

La+L o al*1(t, — t,)
< (@) anl*(t, —t,) + @)

QU (ty — ¢, QU (ty — t,
s(1+(1+1:))a 1“((2) t)s(1+L)2a F((é) £2)

al*1(t, — t,) (15)
r'(a)

al®1(t, —t,) al*1(t; —t,)

r'(a) r'(a)

al*1(t, — t,) - (1+£)3
I'(a) - I'(a)

lya(t) — ya(t)] < (1 — a)Llys(t1) — y3(E)]| +

< L(1+ L)

<1+ LA+ L)%

la_la(tl - tz)
Therefore:

1+ L) (16)

|yn-1(t1) — Yn_1 ()| < (@) al*=(t; — ty).

Thus,

Mathematical Biosciences and Engineering \Volume 20, Issue 11, 19763-19780.
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Q11 — t,
9a() = Yu (O] < (1 = @) Llyny(t) = Y (t)] + F((;) £2) a7

_ n-2 a-—1 _
_a a)l{:g;r D" et — g 4 “ ’ ((;1) t,)
La+or2 al*1(t, — t,)
W@Ql (tl - tz) + F(a)

Q+cLa+om* 1+t
o) anl*(t; —t,) < T @

al*1(t; — toy).

Therefore:
Ve > 0 such that,

[y (t1) = ¥ (t2)] <&,

1+ L)t 1+ L)t

a-1 _ a-—1
@) al*1(t; —ty) < ) all* 15 < e.

We need,
I'(a)e
1+ o)re1q0
Therefore, (y,(t)) is equicontinuous.
By the Arzel&Ascoli theorem, there exist (ym(t)) of (y,(t)) that converges uniformly to a

o<

solution says y(n). Let y,(t) and y,(t) be solutions of the IVP with the ABC derivative,
therefore:

ly1 () — ¥, (O] (18)
<1- a)|f(t, »(@®) - f(t, }’Z(t))ll

+ % f :o: — 0% (1,3:.(0) = £(1,92(D)|de

<A =)Ly () =y (O + 7 f (t =Dy (@) — ¥y (Dl dr,

F( )
(19)
y1(®) = y(O{1 - (1 - )L} < I'a )f [y1(0) — ¥ (DI (¢ — ¥ dr,
t (20)
ly1(8) = y2(0)| < ( ){1 —A-a)L} | Iy1(D) -y @I -1 dr,

1

a + 1.
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al t (21)
Y1(6) = 72 (O] S {1 = (L= @)L} | Ia() =32 (@It — D .
I (a) ty
By the Gronwall’s inequality,
‘ (22)
<0 exp{ (t — r)“‘ldr},
to
(t —to)®
<Oexp lTl,

=0.
Therefore:
y1() = y,(0).

3. Linear growth and Lipschitz conditions

Assuming that the function f satisfies the Linear growth condition that is to say,
IfEwWI? <K@+ [ul?).
Then, the following inequality can be derived under the condition that, 2a —1 > 0
(1 < (1= @2 |f (1,32 @)

20(1 — a)
I'(a)

(23)

f:(t ~ 01 (0,301 @)dr)| | ((© s @) o)

2

+ ‘L (t —1)* (1, y(r)d1)

r(a)Jy,

< (1 —a)’KA + |yn11?)
2 (1_ ) ' 2a—2 % ‘ 2 %
%( to(t—T) dr) < tolf(‘[,yn_l(r))l dT)

' <%> ]t:“ B £ @) e

<A -a)?K@+ lyn-11)

2a(1 —a) (t—tO)ZfH% t 2
) < (a—-1) ) (Jt K(1+Iyn_1|2)>

0

a \2 [(t —t)2% 1\ [t i
" <r(06)> ( a—1) )LOK(l + [yn-11%)dr.

Therefore, vn > 1, Vt € [a, b], we have that,

Mathematical Biosciences and Engineering \Volume 20, Issue 11, 19763-19780.
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(O < (1 = )?K(1 + lyn-11%) (24)

t 1 2
f K(1+ |yn_1|2)§ dT)

L2000 - (- £)*°2 (

r@  q-1z Ve
a 2 (t _ tO)ZOC—l t )
+ (r(a)> ( (Za— 1) )Kft (1 + |Yn—1| )dT
Therefore, for n = 1, we have:
_ L ya s ot s  (25)
(OF < (- KA + Iyl + Zal(’l(a) ot (f KL+ Iyol)2 dT>2
Qa—-1)z Vo

* (r?@) <(t(;ato—) 1)_ )KJ (1 + IyolDdr.
We note that Vt € [a, b], y,(t) = y(t,) which is a constant, thus,
Iy (O < (1= a)*K(1 + |yol*) (26)
2a(1 — &) (t — £)*2

) 1 1
= (KA + ly(to)»)?(t — to)2
F(a) (26( _ 1)5 ( Y )

a \2(t—ty)?® ,
(F(a)) Qa—-1) K@+ [y(to)]®).

In particular,
Y1 (O < (1 —a)’K(1 + lyol®) (27)

2a(1— ) (b — tg)*2 N
M@ a1y (KA + ly(t6)1%)?(b — t,)2
a \2(b—ty)**

(I"(a)) 2a—1

Therefore, Vt € [a, b].

ly:(O)I* < K.
Where

1

K =(1—a)? 2y . 2a(1-a) (b=tg)* 2 NN S
K=01-a?KA+ It += o (K1 + |y (t)12)2(b — o) +(r(a))

2 (b—t()2“
20—-1

Vt € [a, b].
ly, (D> < (1 —a)?K(1 + |y, (D)I?) (28)
2a(1 — ) (t — tg)*"2

! . 1
2\\2 _ =
M@ (2q -1y (K + Iy (1) — )2

a 2 (t — tO)Za
<F(a)) 20 —1 K1+ [y (o)1),

Mathematical Biosciences and Engineering \Volume 20, Issue 11, 19763-19780.
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20(1 —a) (t —
r@  (2q-1)2

ly,(0)]? < (1 —a)*K(1+K?) + (K(l + KZ))Z(t - tO)Z

a \2(t—ty)?* N
+(r(a)) Gapy KO+ R <K

Thus, we assume that Vt € [a,b]Vn > 1.
2 —
(Fn-1(®)” < Ky
Then,
(@17 < (1= a)*K(1 + yp—1()*)

1
2a(1—a) (b —t))% 2
e oL (1 + lyes )00 0
Ra—-1)2
a \2(b—ty)? 5
+(7m) e KA+ bl
By inductive hypothesis, we have that that Vt € [a, b]Vn > 1.

|yn—1|2 < Kn—l»
Therefore,
20(1—a)(b—t a3 1
(O < (1 - )%k (1+ Ky ) + ﬁ( ) ) (b~ t) K(1+Kn ) (b - t)2
D Qa- 1)2
2 Kno1’ (b—-t )Za —
_ 2a 0
(r( )) (b -tk (1+Ky”) s <Ku.
vn > 1, we take,
K™ = max{K;},
1<lsn

Vt € [a,b]Vn = 1|y, (H)]|? < K™.

(29)

(30)

(31)

We can now proceed with the numerical solution since such equations are usually nonlinear.

4. Numerical solution and application

In this section, we aim to provide a numerical solution to the general IVP where the derivative

is that of ABC.

{ABth y@®) =f(t,y@®), t>0
(to) = yo if t=t,.

Applying the AB integral on both sides, yields:

y() = y(t) + 1 —)f(t,y(®) + — (r y(@)) (t —1)* dr.

1"()

(32)

(33)

Mathematical Biosciences and Engineering \Volume 20, Issue 11, 19763-19780.



19774

We consider the above when t =t .
a th+1 (34)
(tass) = ¥(00) + (= Of (s Y(tas)) + s | F(0.3(0) (e = 1),
to

Y(tns1) = y(to) + (1 = &) f (tns1, ¥(tns1)) (35)

' %JZ; ‘[tj f(z.y(@) (tnsr — )M,

Yn+1 = Yo + (1 - a)f(tn+1: )_’n+1)

h® <
+ F(a);f(t,-ﬂ,y,-ﬂ){(n —j D= (=Y,

Vi1 = Yo+ (1 — @) f(tni1) Vns1)

n—-1
h(l
¥ %;f(t’“'yf“){(” —j+ D% = -HY

a

+ mf(trwll yn+1);

he
Fuss = o+ (L= @f (b 3) + 7o ) F(6, )= + D = (=Y,
=0

The above scheme will be used to solve some ordinary nonlinear differential equations and a
system of chaotic problem in the next section. The method used above is the simple Euler
approximation of the nonlinear functions f,(x,y,z,t), f,(x,y,2t) and f,(x,y,zt) within the
interval [¢;,t;,4]. However, instead of ending at the point t,, we decided to end at t,.q, this makes
the scheme become implicit. To solve this problem, we introduced the corrector factor

Xn+1 =(Xn+1, Yn+1, Zn+1) these components are obtained via the simple Euler approximation.
5. Hlustrative examples

In this first example, we will look at the Solow-Swan model [11,12]. We will mention that the
model aimed at augmenting with human capital predicts that if poor countries have similar savings
rates for both physical capital and human capital as a share of output, the poor countries' income
levels will tend to catch up with or converge towards the income levels of rich countries, a process
known as conditional convergence [11,12]. However, savings rates vary greatly between countries.
Saving rates for human capital are anticipated to differ because of cultural and ideological factors in
each country, given the significant finance restrictions for investment in education [11,12]. The
model will be expanded to include the situation of fractional differential equations. However, before
applying the presented numerical scheme, we shall first show that the model satisfies conditions
under which a unique solution exists. We shall also show that the system satisfies the conditions
under which associated Picard iteration converges.

Mathematical Biosciences and Engineering \Volume 20, Issue 11, 19763-19780.
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{ABt";Dé"y(t) =f(ty@®), t>0 (36)
y(to) =y if t=t,.

We shall verify the property of f(t,y(t)).

(£ y(®)] = lay?(t) = (g + A5 + A)y ()], (37)

<aly’ (Ol + 14, + 2 + A]ly@).
< aly@I® + 144 + 4z + A3l ly (O]
If we assume that y(t) has maximum point, then,

f(£y@®)] < a max IyOF + (A + 4z +25) ly o), (38)

<allylls + (1 + 22 + A3llyllo),
< max{[lyll%, I¥lloo} (@ + 141 + A5 + A3) < M < oo,

Under the condition that y(t) is bounded, then f(¢,y(t)) is bounded too.

We shall now apply the numerical scheme on the equation.

F(ty(®) = ay?® — Ay + A5 + A3)y(D) (39)

Yn+1 = Y(to) + (1 — a)[ayl,, (40)

n-1
ha
— (A4 + A2 + A3)Vn44] mZ[ayjb+1
=2

a

h
-+ 2+ /13)37j+1]{(n —j+D*=(m—-N*}+ (@) (a5
— (A + 22 + 23)Vn4al,

where
Vn+1 = ¥(to) + (1 — D)[ayy — (A + A5 + 23) ] (41)
he
@ jzo[ay}’ =y + 22 + )y ] {n = j + D = (n = N

Numerical simulations will be presented next. However, we shall apply this to a system of
nonlinear equations. We consider the following nonlinear system:

(42)
AEEDEX(t) = ay(t) + b(a + By*(1))z(t)
AEEDEY(t) = 2(t)
ABeDfz(t) = x(t) — (y(t) — z(t) — B sin h(dx))
With initial conditions,
(2,01,1), a=b=c=2 (43)

Mathematical Biosciences and Engineering \Volume 20, Issue 11, 19763-19780.
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We have that,
ABeDEx () = fi(x,y, 2, 1), (44)
ABthLgy(t) = fy (x) y; Z; t);
YEDE2(t) = f,(x,y,2,1).
Indeed, by posing some conditions on x,y,z we can show that f,,f, and f, are bounded and

satisfies the Lipschitz condition, therefore, with the Picard iteration, we can conclude the system has
a system of unique solutions. The numerical solutions are given as:

Xn+1 = Xo T 1- a)fx(fn+1: Yn+1r Znt1) tn+1) (45)

he &
¥ @;f(tﬁxﬁyﬂj){(n —j+1)% - (n - )%

a

+ mfx(frwl' 3_’n+1' Zns1 tn+1)-
Where the predictor components are presented as follows:
fn+1 = xO + (1 - a)fx(xn' J’n' ZTU tn) (46)

n
h(l
Fo > A2, 2) (= + D = (0= )Y,
r@) L
]:
Yn+1 = Yo T (1- a)fy(fn+1r Yn+1r Zn+1s tn+1)
ha n—-1
+ > B (62,357 — 4 DT = (= D
r(@) L
]=
h(l
+ mfy (fn+1: Yn+1 Znt1s tn+1)-

he <
Zny1 = Yo t (1 - a)fy(xnr Ynr Zno tn) + ijOfZ(tj’xj' yj:Zj){(n _j + 1)a - (n _j)a};

Zny1 = Yo+ (L — ) f;(Xps1, Vn+1r Zns1r tns1)

h“ n-1
+ F(a)jZOfZ(tj’xf’Yj'Zj){(n —j+ D*—(n _j)a}
ha

+ mfz(fn+1: yn+1' Z_n+1' tn+1)r

he <
Z_n+1 =Zp+ (1 - a)fz(xnl Yo Zn tn) + @Z fz(tjlleyjlzj){(n _j + 1)a - (‘I’l _j)a}-
j=0

We present here the numerical simulations of the above model for different values of fractional
order and initial conditions. For these simulations, we have considered the step size to be 0.01, the
initial conditions are given as x(0) = —2; y(0) = 0.1; z(0) = 1; h=0.01. The numerical
solutions are depicted in Figures 1-3.
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Figure 2. Numerical simulation for the fractional order 1 and final time 500.
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Figure 3. Numerical simulation for the fractional ordersl and 0.99 respectively and final
time 100 when the initial conditions are (-2, 0.1, 1).
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6. Conclusions

It has been acknowledged that the derivative based on the generalized Mittag-Leffler kernel is
an operator with significant features that show up in several real-world applications. An important
family of nonlinear ordinary differential equations that are utilized to model processes with crossover
from fading to power law patterns have been established because of this derivative. The
circumstances under which I1VVP with this derivative admit a unique solution were determined in this
study using an iteration technique. To numerically solve these equations with various examples, we
used the predictor corrector method and a straightforward Euler approximation.
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