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Abstract: Past works on partially diffusive models of diseases typically rely on a strong assumption
regarding the initial data of their infection-related compartments in order to demonstrate uniform per-
sistence in the case that the basic reproduction number R0 is above 1. Such a model for avian influenza
was proposed, and its uniform persistence was proven for the case R0 > 1 when all of the infected bird
population, recovered bird population and virus concentration in water do not initially vanish. Simi-
larly, a work regarding a model of the Ebola virus disease required that the infected human population
does not initially vanish to show an analogous result. We introduce a modification on the standard
method of proving uniform persistence, extending both of these results by weakening their respec-
tive assumptions to requiring that only one (rather than all) infection-related compartment is initially
non-vanishing. That is, we show that, given R0 > 1, if either the infected bird population or the viral
concentration are initially nonzero anywhere in the case of avian influenza, or if any of the infected
human population, viral concentration or population of deceased individuals who are under care are
initially nonzero anywhere in the case of the Ebola virus disease, then their respective models predict
uniform persistence. The difficulty which we overcome here is the lack of diffusion, and hence the
inability to apply the minimum principle, in the equations of the avian influenza virus concentration in
water and of the population of the individuals deceased due to the Ebola virus disease who are still in
the process of caring.
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1. Introduction

1.1. Motivation from real-world applications

In the past few decades, there has been a growing interest in modeling real-world phenomena via
systems of partial differential equations (PDEs) solved by functions of not only time but also space,
rather than ordinary differential equations (ODEs). In the study of mathematical models of infectious
diseases, the basic reproduction number R0 measures the expected number of secondary infections
caused by one infectious individual during its infectious period in an otherwise susceptible popula-
tion. Proposing and analyzing PDE models of infectious diseases have become very popular, led by
important works such as [1–3].

For clarity of discussions let us state the following definition precisely.

Definition 1.1. Consider a system of m-many PDEs solved by (u1, . . . , um)(x, t):

∂tu1(x, t) = D1∆u1(x, t) + F1(x, t, u1, . . . , um), (1.1a)
∂tu2(x, t) = D2∆u2(x, t) + F2(x, t, u1, . . . , um), (1.1b)
... (1.1c)
∂tum(x, t) = Dm∆um(x, t) + Fm(x, t, u1, . . . , um), (1.1d)

where we denoted ∂t := ∂
∂t . We say that this system (1.1) is

1) “fully diffusive” if D j > 0 for all j ∈ {1, . . . ,m},

2) “partially diffusive” if there exists some k ∈ {1, . . . ,m} such that Dk = 0.

The spatially diffusive terms such as D j∆u j within such PDE models can help capture the movement of
human hosts and other entities such as viruses or bacteria. The diffusivity coefficients D j’s describe the
distinct level of mobility for different population groups. It has been documented for some time (see [4,
5]) that common diffusivity coefficients (i.e., D1 = . . .Dm) are desperately needed so that one can add
equations together, cancel out the nonlinear terms and thereby verify the global existence of a unique
solution, only after which asymptotic behavior of solutions such as global stability may be discussed.
Thus, many models with fully diffusive PDEs have assumed common diffusivity coefficients; we refer
to as examples

1) [6, Eq (1.14)] for a dengue fever model,

2) [7, Eqs (2), (4) and (5)] for a malaria model,

3) [8, Eq (1.1)] for a Lyme disease model,

4) [9, hypothesis of Theorem 2.2] and [10, hypothesis of Theorem 2.1] for a cholera model,

5) [11, hypothesis of Theorem 2.1] for a Zika virus disease model.

As examples of models that are not necessarily of infectious diseases but which assumed uniform
diffusivity coefficients, we refer to

1) [12, Eq (1.9)] for an internal storage model,
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2) [13, Eq (1.5)] for a periodically-pulsed bio-reactor model,

3) [14, Eq (2.1)] for a hydraulic storage zone model,

4) [15, Eq (3.1)] for a zooplankton and harmful algae model.

Proving uniform persistence of disease when R0 is above 1 under additional conditions on initial
data is an important topic that has received much attention (see [16]). The purpose of this work is to
address the uniform persistence results in more extreme cases of partially diffusive models so that not
all equations consist of diffusion. Primary examples of our concern are an avian influenza (AI) model
from [17] in which only the equation of the concentration of the AI virus in water lacked diffusion (see
(1.2)), and an Ebola virus disease (EVD) model from [18] in which only the equation of the population
of individuals deceased due to the EVD lacked diffusion (see (1.4)). Although we will not study this
issue directly in this work, one may also consider the evidence that the coronavirus of 2019 (COVID-
19) survives in the environment for several days (see [19]), and thus including a non-diffusive equation
of concentration of COVID-19 in the environmental reservoir may seem reasonable (see [20]).

A lack of diffusion in general implies an inability to apply the minimum principle on its own across
all equations. This seems to be the main reason why Vaidya et al. [17] obtained uniform persistence
of AI when its R0 is above one under a strong assumption that all of the infected bird population, the
recovered bird population and the AI virus concentration are initially non-vanishing, rather than when
any of the infection-related compartments are initially non-vanishing (see Theorem 1.1). Similarly,
Yamazaki in [18] obtained uniform persistence of EVD when its R0 is above one, and the infected
human population is initially non-vanishing, but not when only the population of the human individuals
who died due to EVD but are still in the process of caring are initially non-vanishing (see Theorem 1.2).

It would be biologically meaningful if the condition on the initial data may be improved to an
assumption that any, rather than all, of the infection-related compartments are initially non-vanishing.
For example, one can try to prove the uniform persistence of AI when only the concentration of the AI
virus in water is initially non-vanishing or the uniform persistence of the EVD when only the population
of the deceased individuals due to EVD still in the process of caring is initially non-vanishing. As we
will explain in detail, in the case of AI, in addition to transmission of AI from a bird to another bird,
uninfected birds may drink water and ingest the virus through excretion of the viruses by infected birds
(see [21–23]). In the case of EVD, we know that burial ceremonies that involve direct contact with the
body of the deceased can also contribute to the transmission (see [24]).

Interestingly, such uniform persistence results starting from initial data that only guarantees that at
least one of the infection-related compartments is non-vanishing exist for systems of fully diffusive
PDEs modeling various infectious diseases. For example, Yamazaki and Wang [10] proved uniform
persistence of the cholera virus in the case R0 > 1 when either infectious population or the concen-
tration of cholera bacteria in water such as rivers is initially non-vanishing; that is, only one of the
infection-related compartments had to be initially non-vanishing for such uniform persistence result
to hold. A key difference was that in this cholera model, the equation of the cholera bacteria had
diffusion. Similarly, Yamazaki in [11] proved uniform persistence of the Zika virus disease when its
R0 is above 1 and any of the exposed human female population, exposed human male population or
exposed mosquito population, and hence any of the infection-related compartments, is initially non-
vanishing. We emphasize again that all the equations of these infection-related compartments had
diffusion. Proofs in [10, 11] crucially relied on the minimum principle (see [25, Theorem 7.1.12]),
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which was available only because all the equations governing the infection-related compartments had
diffusion.

To the best of our knowledge, for this reason, uniform persistence results of partially diffusive
models when the corresponding R0 is above one under a weak assumption that at least one of its
infection-related compartments is initially non-vanishing has never been proven. We achieve this goal
in the cases of the AI and the EVD models (see Theorems 2.1 and 2.2). Our approach is generalizable
to other systems of PDEs too (as we do in [26]). The mathematical novelty consists of discovering
the hidden ability of solutions to non-diffusive equations to induce strict positivity everywhere for not
only their own compartment, but for all other infection-related solution components via an indirect
approach (see Propositions 3.1 and 4.1).

1.2. Main equation

Let us describe the main equations, namely those of AI in (1.2) and EVD in (1.4). In both cases, we
consider the spatial domain Ω which is a bounded, open and connected subset of Rn for n ∈ N with a
smooth boundary ∂Ω.

As a first main model, we introduce the AI model from [17]. AI viruses are of major concern due
to their potential socioeconomic impact and risks to wildlife conservation. Since October 2020, highly
pathogenic AI viruses belonging to geese have been responsible for more than 70 million poultry
deaths and 100 discrete infections in many wild mesocarnivore species (see [27]). It is known that
aquatic birds are the primary reservoir of AI viruses and that AI viruses can be transmitted from bird
to bird, but they may also be transmitted through excretion of the AI virus by infected birds followed
by ingestion of the virus in the drinking water of uninfected birds (see [21–23]). For this reason, the
authors in [17] chose to include an equation V(x, t) for the AI virus concentration in water. For further
details of the AI virus and the derivation of the model, we refer to [17, Sections 1 and 2]. In addition
to V(x, t), let us denote by S (x, t), I(x, t) and R(x, t) the population density of the bird population that
are susceptible, infected and recovered, respectively. We refer to Table 1 for further notations.

Table 1. Definition of parameters in model (1.2a)–(1.2d).

Parameter Definition
α Shedding rate of infected bird hosts in their feces
β1 Direct transmission rate from infectious bird
β2 Indirect transmission rate concentration of AI virus
d Natural death rate of birds
D Diffusivity coefficients of S , I,R
η Rate of bird hosts immunity loss
γ Recovery rate of infected bird hosts
λ Recruitment rate of susceptible bird hosts

Considering the significant mobility of birds in contrast to that of the concentration of the AI virus
in water, the following model was proposed in [17, Eqs (1)–(4)]:

∂tS = D∆S + λ − (β1I + β2V)S − dS + ηR, (1.2a)
∂tI = D∆I + (β1I + β2V)S − (γ + d)I, (1.2b)
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∂tR = D∆R + γI − (η + d)R, (1.2c)
∂tV = αI − c(x)V, (1.2d)

subjected to an initial condition

(S , I,R,V)(x, 0) = (φ1, φ2, φ3, φ4)(x)

and standard Neumann boundary condition. We observe that (1.2) has a disease-free equilibrium
(DFE) of

(S , I,R,V) = (m∗A, 0, 0, 0) where m∗A :=
λ

d
. (1.3)

As a second main model, we introduce the EVD model from [18] (its ODE version was initially
studied in [28]). The EVD is transmitted from wild animals to susceptible humans, and infectious
humans may spread to other humans as well. As recently as September 2022, the Sudan Ebola virus
was confirmed by the Uganda Virus Research Institute in which a total of 164 cases with 77 deaths were
discovered (see [29]). A special feature of the EVD model of concern from [18, 28] is the inclusion
of an equation of D(x, t), the population of the individuals deceased due to the EVD. This is due to
the warm-hearted West African tradition and customs of caring for the deceased individuals by kissing
them, washing them and dressing them up, even those who passed away due to the EVD despite the
risk of infection. Infections during funeral and subsequent death have been documented in various
articles (see [30]). For further details of EVD and the derivation of the model, we refer to [28, Sections
1 and 2] and [18, Sections 1 and 2]. In addition to D(x, t), let us denote S (x, t), I(x, t),R(x, t) and P(x, t)
as the human population of susceptible, infected, recovered individuals and the Ebola virus pathogens
in the environment, respectively. We refer to Table 2 for further notations.

Table 2. Definition of parameters in model (1.4).

Parameter Definition
α Shedding rate of deceased human individuals
1
b Mean caring duration of deceased human individuals
β1 Effective contact rate of infectious human individuals
β2 Effective contact rate of deceased human individuals
Di, i = 1, 2, 3, 4 Diffusion coefficients of S , I,R, P respectively
δ Disease-induced death rate of human individuals
η Decay rate of Ebola virus in the environment
γ Recovery rate of infectious human individuals
λ Effective contact rate of Ebola virus
µ Natural death rate of human individuals
π Recruitment rate of susceptible human individuals
ξ Shedding rate of infectious human individuals

Considering the lack of mobility of the deceased individuals due to the EVD, the following model
was proposed in [18, Eqs (1) and (2)]:

∂tS = D1∆S + π − (β1I + β2D + λP)S − µS , (1.4a)
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∂tI = D2∆I + (β1I + β2D + λP)S − (µ + δ + γ)I, (1.4b)
∂tR = D3∆R + γI − µR, (1.4c)
∂tP = D4∆P + ξI + αD − ηP, (1.4d)
∂tD = δI − bD, (1.4e)

subjected to the initial conditions of

(S , I,R, P,D)(x, 0) = (φ1, φ2, φ3, φ4, φ5)(x)

and standard Neumann boundary conditions. We see that (1.4) has a DFE of

(S , I,R, P,D) = (m∗E, 0, 0, 0, 0) where m∗E :=
π

µ
(1.5)

Remark 1.1. We observe that the diffusivity coefficients in (1.2) were same while those in (1.4) had the
freedom to differ. We refer to [4] for technical details.

Before we proceed further, let us fix the standard notation to represent the solution as u. Because
no confusion occurs, by an abuse of notation, we write

u := (u1, u2, u3, u4) := (S , I,R,V) while u := (u1, u2, u3, u4, u5) := (S , I,R, P,D) (1.6)

as solutions to (1.2) and (1.4), respectively. We consider the space of continuous functions with supre-
mum norm; i.e., ‖ f ‖C(D) := supx∈D| f (x)| and define

X := C(Ω,Rk) =

k∏
i=1

Xi where Xi := C(Ω,R) and Ω̄ := Ω ∪ ∂Ω, (1.7)

which is the space ofRk-valued functions that are continuous in x ∈ Ω and equipped with the supremum
norm of ‖u‖C(Ω) :=

∑k
i=1‖ui‖C(Ω), where k = 4 for the AI model while k = 5 for the EVD model.

Furthermore, we define

X+ := C(Ω,Rk
+) =

k∏
i=1

X+
i where X+

i := { f ∈ C(Ω,R) : f ≥ 0}. (1.8)

1.3. Previous works and mathematical challenges

In this section, we describe previous results, and challenges brought by the absence of diffusion in
some equations. First, let us recall two important definitions.

Definition 1.2. Let Y be any metric space, Y0 ⊂ Y an open set, ∂Y0 := Y \ Y0 and Ψt : Y 7→ Y be any
semiflow on Y.

1) ( [31, p. 6172]; see also [16, Definition 1.3.1]) A continuous function q : Y 7→ [0,∞) is called a
generalized distance function for Ψt if it satisfies q(Ψt(y)) > 0 for all t > 0 whenever

(a) q(y) = 0 and y ∈ Y0,
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(b) or q(y) > 0,

2) ( [16, Definition 1.3.3]) Let q be a generalized distance function for Ψt. Then, Ψt is said to be
uniformly persistent with respect to (w.r.t.) (Y0, ∂Y0, q) if there exists η > 0 such that

lim inf
n→∞

q(Ψn
t (φ)) ≥ η ∀ φ ∈ Y0. (1.9)

Remark 1.2. It is clear from (1.9) that the larger the Y0 chosen, the stronger uniform persistence result
becomes.

Let us list some of the main results obtained in [17, 18].

List 1.1. (a) For any φ ∈ X+, both (1.2) and (1.4) admit a unique non-negative solution that remains
in X+, and thus a semiflow Φt : X+ 7→ X+ defined by Φt(φ) := u(t) for all t > 0 such that
u(x, 0) = φ(x) (see [17, Theorem 3.3] and [18, Theorem 2.1]).

(b) The basic reproduction number R0 was rigorously derived for both systems (1.2) and (1.4) from
their corresponding infection-related compartments, namely I and V in (1.2) and I, P, and D in
(1.4) (see [17, Eq (27)] and [18, Eq (34)]).

(c) When R0 < 1, the corresponding DFE are globally attractive in X+ for both (1.2) and (1.4),
although this result for (1.4) requires D1 = D2 =: D̄ (see [17, Theorem 3.8 (1)] and [18, Theorem
2.2]).

In more detail, to deduce the result from List 1.1 (b), [17] considered the eigenvalue problem asso-
ciated with the infection-related compartments I and V of (1.2), namely

θψ2 = D∆ψ2 + β1H(x)ψ2 + β2H(x)ψ4 − (γ + d)ψ2, (1.10a)
θψ4 = αψ2 − cψ4, (1.10b)

for an arbitrary H : Ω̄ 7→ (0,∞) (see [17, Eq (22)]) and proved the following result.

Lemma 1.1. ( [17, Lemma 3.4 and Proposition 1]) Let R0 be the basic reproduction number of the AI
system (1.2) and (m∗A, 0, 0, 0) its DFE from (1.3). Then, for any H : Ω̄ 7→ (0,∞), the eigenvalue problem
(1.10) has a principal eigenvalue θ(H) associated with a strictly positive eigenfunction. Moreover,
R0 − 1 and θ(m∗A) have the same sign.

Similarly, to deduce the result from List 1.1 (b), [18] considered the eigenvalue problem associated
with the infection-related compartments I, P and D of the EVD system (1.4), namely

θψ2 = D∆ψ2 + (β1ψ2 + β2ψ5 + λψ4)H(x) − (µ + δ + γ)ψ2, (1.11a)

θψ4 = D4∆ψ4 + ξψ2 + αψ5 − ηψ4, (1.11b)
θψ5 = δψ2 − bψ5, (1.11c)

for an arbitrary H : Ω̄ 7→ [0,∞) (see [18, Eq (24)]) and proved the following result.

Lemma 1.2. ( [18, Propositions 4.3 and 4.4]) Let R0 be the basic reproduction number of the EVD
system (1.4) and (m∗E, 0, 0, 0, 0) its DFE from (1.5). Then, for any H : Ω̄ 7→ (0,∞), the eigenvalue prob-
lem (1.11) has a principal eigenvalue θ(H) associated with a strictly positive eigenfunction. Moreover,
R0 − 1 and θ(m∗E) have the same sign.
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Now, let us state the main results from [17, Theorem 3.8 (ii)] and [18, Theorem 2.3].

Theorem 1.1. ( [17, Theorem 3.8 and its proof]) Define

W0 := {ψ ∈ X+ : ψ2 6≡ 0, ψ3 6≡ 0, and ψ4 6≡ 0}, (1.12a)
∂W0 := X+ \W0 = {ψ ∈ X+ : ψ2 ≡ 0 or ψ3 ≡ 0 or ψ4 ≡ 0}, (1.12b)

and
p : X+ 7→ [0,∞) by p(ψ) := min{min

x∈Ω̄
ψ2(x),min

x∈Ω̄
ψ3(x),min

x∈Ω̄
ψ4(x)}. (1.13)

If R0 defined by [17, Eq (27)] satisfies R0 > 1, then the AI system (1.2) admits at least one positive
steady state û and there exists σ > 0 such that for any φ ∈ X+ where φi 6≡ 0 for all i ∈ {2, 3, 4},

lim inf
t→∞

ui(x, t, φ) ≥ σ ∀ i ∈ {1, 2, 3, 4},∀ x ∈ Ω̄, (1.14)

where ui(x, 0, φ) = φi(x); i.e., uniform persistence w.r.t. (W0, ∂W0, p) holds for W0 and ∂W0 defined
in (1.12).

Theorem 1.2. ( [18, Theorem 2.3 and its proof]) Define

W0 := {ψ ∈ X+ : ψ2 6≡ 0}, (1.15a)
∂W0 := X+ \W0 = {ψ ∈ X+ : ψ2 ≡ 0}, (1.15b)

and
p : X+ 7→ [0,∞) by p(ψ) := min{min

x∈Ω̄
ψ2(x),min

x∈Ω̄
ψ3(x),min

x∈Ω̄
φ4(x),min

x∈Ω̄
φ5(x)}. (1.16)

If D1 = D2 =: D̄ and R0 defined by [18, Eq (34)] satisfies R0 > 1, then the EVD system (1.4) admits
at least one positive steady state û and there exists σ > 0 such that for any φ ∈ X+ where φ2 6≡ 0,

lim inf
t→∞

ui(x, t, φ) ≥ σ ∀ i ∈ {1, 2, 3, 4, 5},∀ x ∈ Ω̄, (1.17)

where ui(x, 0, φ) = φi(x); i.e., uniform persistence w.r.t. (W0, ∂W0, p) holds for W0 and ∂W0 defined
in (1.15).

As we pointed out already, the infection-related compartments of the AI system (1.2) are I and
V , while those of the EVD system (1.4) are I, P and D. Further, for the fully diffusive systems of
PDEs such as those for cholera [10] and the Zika virus disease [11], uniform persistence of the disease
when the basic reproduction number was above 1 was successfully proven as long as any one of the
infection-related compartments is initially non-vanishing. Therefore, it is a natural question to ask if
we can improveW0 and consequently ∂W0 in (1.12) to

W0 := {ψ ∈ X+ : ψ2 6≡ 0 or ψ4 6≡ 0}, (1.18a)
∂W0 := X+ \W0 = {ψ ∈ X+ : ψ2 ≡ 0 and ψ4 ≡ 0}, (1.18b)

and improveW0 in (1.15) to

W0 := {ψ ∈ X+ : ψ2 6≡ 0 or ψ4 6≡ 0 or ψ5 6≡ 0}, (1.19a)
∂W0 := X+ \W0 = {ψ ∈ X+ : ψ2 ≡ 0, ψ4 ≡ 0, and ψ5 ≡ 0}; (1.19b)

these are clear improvements based on Remark 1.2. In order to understand the difficulty of this aim, let
us briefly review the proofs of Theorems 1.1 and 1.2. It turns out that both Theorems 1.1 and 1.2 rely
crucially on the following consequence of the minimum principle.
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Lemma 1.3. ( [17, Lemma 3.7]) Define m∗A by (1.3). Suppose that u(x, t, φ) is a solution to (1.2) such
that u(·, 0, φ) = φ(·) ∈ X+.

(1) For any i ∈ {2, 3}, if there exists some ti
0 ≥ 0 such that ui(·, ti

0, φ) 6≡ 0, then ui(x, t, φ) > 0 for all
x ∈ Ω̄ and all t > ti

0.

(2) For any φ ∈ X+, u1(x, t, φ) > 0 for all x ∈ Ω̄ and all t > 0, and

lim inf
t→∞

u1(·, t, φ) ≥
λ

ΥA
, (1.20)

where

c̃ := min
x∈Ω̄

c(x) and ΥA := 2m∗Aβ1 + 4
αm∗A

c̃
β2 + d. (1.21)

(3) If there exists some t2
0 ≥ 0 such that u2(·, t2

0, φ) 6≡ 0, then u4(x, t, φ) > 0 for all x ∈ Ω̄ and all t > t2
0.

In particular, Lemma 1.3 (3) follows from solving for u4 of (1.2) directly as

u4(x, t) = e−c(x)(t−t20)u4(x, t2
0) + αe−c(x)t

∫ t

t20

u2(x, s)ec(x)sds ∀ x ∈ Ω, t ≥ t2
0

and relying on Lemma 1.3 (1).

Lemma 1.4. ( [18, Proposition 4.7]) Define m∗E by (1.5). Suppose that D1 = D2 =: D̄ and u(x, t, φ) is a
solution to (1.4) such that u(·, 0, φ) = φ(·) ∈ X+.

(1) For any i ∈ {2, 3, 4}, if there exists some ti
0 ≥ 0 such that ui(·, ti

0, φ) 6≡ 0, then ui(x, t, φ) > 0 for all
x ∈ Ω̄ and all t > ti

0.

(2) For any φ ∈ X+, u1(x, t, φ) > 0 for all x ∈ Ω̄ and all t > 0, and

lim inf
t→∞

u1(·, t, φ) ≥
π

ΥE
, (1.22)

where

ΥE := β12m∗E + β2

(
4m∗Eδ

b

)
+ λ

ξ4m∗E + [
α8m∗Eδ

b ]
η

 + µ. (1.23)

(3) If there exists some t2
0 ≥ 0 such that u2(·, t2

0, φ) 6≡ 0, then u5(x, t, φ) > 0 for all x ∈ Ω̄ and all t > t2
0.

Proof of Lemma 1.4. The only improvement that we included here is in part (2); in contrast, [18, Propo-
sition 4.7 (2)] stated that there exists T > 0 such that u1(x, t, φ) > 0 for all x ∈ Ω̄ and t > T rather
than u1(x, t, φ) > 0 for all x ∈ Ω̄ and t > 0. As we see, it is also stated in Lemma 1.3 (2) (from [17,
Lemma 3.7 (iii)]) but its proof was omitted. We give a quick proof here. Suppose that there exists
(x∗, t∗) ∈ Ω × (0,∞) at which u1(x∗, t∗, φ) = 0. By non-negativity of the solution, this is a local min-
imum, and thus by Lemma A.1 we have ∆S (x∗, t∗) ≥ 0 and thus (1.4a) gives us ∂tS (x∗, t∗) ≥ π > 0,
which leads to a contradiction because, for some ε ∈ (0, t∗) sufficiently small, S (x∗, t∗ − ε) < 0. There-
fore, S (x, t) > 0 for all x ∈ Ω and all t > 0. It follows immediately from this that S (x, t) > 0 for all
x ∈ Ω̄ and all t > 0 as claimed (see [32, Theorem 7.4.1]).
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Remark 1.3. We make a key observation from both Lemmas 1.3 and 1.4 that an assumption of the
existence of t4

0 ≥ 0 such that u4(·, t4
0, φ) 6≡ 0 in (1.2) or an assumption of the existence of t5

0 ≥ 0 such
that u5(·, t5

0, φ) 6≡ 0 in (1.4) does not immediately give us any positivity on any solution component, not
even itself. This is completely reasonable; the proofs of Lemma 1.3 (1) and Lemma 1.4 (1) consist of
a standard application of the minimum principle (see [25, Theorem 7.1.12]) and it is false in general
that a solution to a non-diffusive equation can attain strict positivity everywhere for all t > t0 based
only on the assumption that it does not vanish at time t0.

Let us point out specifically two occasions where the difficulty would arise if we replace theW0 in
(1.12a) by that in (1.18a) for the AI model (1.2) and similarlyW0 in (1.15a) by that in (1.19a) for the
EVD model (1.4).

First, in the case of the AI model (1.2), in an effort to prove that the DFE is a uniform weak repeller
forW0, they claim on [17, p. 2839]

let ψ̃ := (ψ̃2, ψ̃4) be the strict positive eigenfunction corresponding to [θ(m∗A − δ0) >
0]. Since ui(x, t, φ0) > 0, ∀ x ∈ Ω̄, t > 0, i = 2, 4, there exists ε0 > 0 such that
[(u2(x, t1, φ0), u4(x, t1, φ0)) ≥ ε0eθ(m

∗

A−δ0)t1ψ̃].

Here, if φ ∈ W0 with W0 from (1.18a), then it is possible that the only available assumption is that
φ4 6≡ 0. That alone and Lemma 1.3 cannot guarantee us that both u2(x, t, φ) and u4(x, t, φ) are strictly
positive on Ω̄ for all t > 0; in fact, it cannot even guarantee the strictly positivity of either one. However,
the strict positivity on Ω̄ for all t > 0 is needed to achieve the claim (u2(x, t1, φ0), u4(x, t1, φ0)) ≥
ε0eθ(m

∗

A−δ0)t1ψ̃ because ψ̃ is strictly positive on Ω̄ due to Lemma 1.1.
In the case of the EVD model (1.4), an analogous situation is slightly improved as follows (see [18,

p. 24]).

Now, by hypothesis, we have φ = (φ1, φ2, φ3, φ4, φ5) ∈ W0 so that φ2(·) 6≡ 0. By [Lemma
1.4 (3)] this implies that u2(x, t, φ) > 0, u5(x, t, φ) > 0 for all x ∈ Ω̄, t > 0. Suppose that for
any t0 > 0, we have u4(·, t0, φ) ≡ 0 on Ω̄. But, then by [(1.4d)], we deduce ∂tP > 0 for all
(x, t) ∈ Ω×{t0}, which is a contradiction to [the non-negativity of the solution.] Therefore, we
must have u4(·, t0, φ) 6≡ 0 for all t0 > 0. By [Lemma 1.4 (1)], this implies u4(x, t, φ) > 0 for all
x ∈ Ω̄, t > 0 by arbitrariness of t0 > 0. Thus, we see that in particular (u2, u4, u5)(x, t1, φ) � 0
so that we may find ε > 0 sufficiently small such that (I, P,D)(x, t1, φ) ≥ εψ̃(x).

Although this argument had a nice outcome that only φ2 6≡ 0 led to not only u2, u5 > 0 due to Lemma
1.4 (3) but also u4 > 0, an analogous proof in the case thatW0 in (1.15a) is replaced by that in (1.19a)
seems hopeless. In particular, if all we know is that φ5 6≡ 0, then Lemma 1.4 alone is not sufficient
to guarantee the positivity of all of u2, u4 and u5 on Ω̄ and all t > 0; in fact, it does not guarantee the
strict positivity of any one of them. Yet, strict positivity of all of them is needed to achieve the desired
(I, P,D)(x, t1, φ) ≥ εψ̃(x) considering that ψ̃ is strictly positive due to Lemma 1.2.

Next, the following difficulty to be described next is even more dire than the first. In the case of the
AI model (1.2), the function p defined in (1.13) is claimed to be a generalized distance function for the
semiflow Φt for (1.2) (recall Definition 1.2).

By [Lemma 1.3], it follows that ... p has the property that if p(φ) > 0 or φ ∈ W0 with
p(φ) = 0, then p(Φtφ) > 0, ∀ t > 0
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from [17, p. 2839]. Suppose we replaceW0 in (1.12a) by that in (1.18a). Then, in the case that φ ∈W0

with p(φ) = 0, the only assumption we can make may be that φ4 6≡ 0, from which Lemma 1.3 alone
cannot guarantee that P from (1.13) satisfies

p(Φtφ) = min{min
x∈Ω̄

u2(x, t),min
x∈Ω̄

u3(x, t),min
x∈Ω̄

u4(x, t)} > 0 ∀ t > 0.

In the case of the EVD model (1.4), an analogous situation is again slightly improved as follows
(see [18, p. 24]).

The hypothesis that φ ∈ W0 implies φ2(·) 6≡ 0. By the identical argument in the proof of
[the DFE being a weak repeller], it follows that u2(x, t, φ) > 0 which implies u5(x, t, φ) > 0
by [Lemma 1.4] which leads to that u4(x, t, φ) > 0 for all x ∈ Ω, t > 0 as well. Moreover,
suppose that for any t0 > 0, u3(·, t0, φ) ≡ 0. Then, by [(1.4c)], we obtain ∂tR|t=t0 > 0,R(·, t0) ≡
0 for all x ∈ Ω and hence contradiction to [the non-negativity of the solution]. Therefore,
for all t0 > 0, u3(·, t0, φ) 6≡ 0. By [Lemma 1.4], this implies R(x, t) > 0 for all x ∈ Ω, t > 0.
Hence, p(Φt(φ)) > 0 for all t > 0.

The extra argument presented here allowed the only assumption of φ2 6≡ 0 to verify that p from
(1.16) satisfies

p(Φtφ) = min{min
x∈Ω̄

u2(x, t),min
x∈Ω̄

u3(x, t),min
x∈Ω̄

u4(x, t),min
x∈Ω̄

u5(x, t)} > 0 ∀ t > 0;

thus, it is a generalized distance function. Nevertheless, extending this argument to W0 from (1.19a)
seems difficult; in particular, starting from only an assumption of φ5 6≡ 0, it is not clear if we can
guarantee that all of u2, u3, u4 and u5 are strictly positive on Ω̄ for all t > 0. Again, Lemma 1.4 does
not immediately guarantee that even one of them is strictly positive, even u5 itself.

2. Statement of main results and new ideas to overcome difficulty

2.1. Statement of main results

In this section we present our main results: Theorems 2.1 and 2.2. In sharp contrast to Remark
1.3, starting from the non-vanishing assumption at any t0 ≥ 0 of the solution component of the non-
diffusive equation, strict positivity of all infection-related compartments for all x ∈ Ω̄ and all t > t0 can
be shown (see Propositions 3.1 and 4.1). This ability of a solution to a non-diffusive equation such that
it does not vanish at time t0 to induce strict positivity on Ω̄ for all t > 0 on not only itself but even other
infection-related components is surprising and it can be derived by taking advantage of the structure
of the infectious disease models. Therefore, our approach is general and may prove to be suitable
for many other models, such as the COVID-19 model in [26]. Consequently, Theorems 2.1 and 2.2
improve Theorems 1.1 and 1.2 on systems (1.2) and (1.4) by replacing W0 with those of (1.18a) and
(1.19a), respectively.

Theorem 2.1. DefineW0 and ∂W0 by (1.18), and p by (1.13). If R0 defined by [17, Eq (27)] satisfies
R0 > 1, then (1.2) admits at least one positive steady state û and there exists σ > 0 such that for any
φ ∈ X+ such that φ2 6≡ 0 or φ4 6≡ 0, (1.14) is satisfied so that uniform persistence w.r.t. (W0, ∂W0, p)
holds forW0 and ∂W0 defined in (1.18).
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Theorem 2.2. Let D1 = D2 =: D̄ in (1.4). DefineW0 and ∂W0 by (1.19), and p by (1.16). If R0 defined
by [18, Eq (34)] satisfies R0 > 1, then (1.4) admits at least one positive steady state û and there exists
σ > 0 such that for any φ ∈ X+ such that φ2 6≡ 0 or φ4 6≡ 0 or φ5 6≡ 0, (1.17) is satisfied so that uniform
persistence w.r.t. (W0, ∂W0, p) holds forW0 and ∂W0 defined in (1.19).

In comparison of Theorems 2.1 and 2.2 with Theorems 1.1 and 1.2, there is no direct improvement
concerning the existence of a positive steady state û. Nevertheless, its proof relies on the latter’s
uniform persistence results and therefore definitions ofW0; thus, we included them for completeness.

Before we proceed, we emphasize the novelties of this work and make comments.

(1) Obviously, theW0 in (1.12a) is strictly embedded in theW0 from (1.18a); the same statement can
be made concerning (1.15a) and (1.19a). Thus, both Theorems 2.1 and 2.2 are direct improve-
ments of Theorems 1.1 and 1.2 according to Remark 1.2.

(2) Theorems 2.1 and 2.2 are not only mathematically but also biologically meaningful. In words,
Theorem 2.1 states that, in the case R0 > 1, if initially there are any concentration of AI virus in
water, then the disease persists. Similarly, Theorem 2.2 states that, in the case R0 > 1, if initially
there is any deceased individuals due to EVD still in the process of caring (recall 1

b from Table 2),
then the disease persists.

The risks of infections from concentration of AI viruses in water to susceptible birds, as well as
from the deceased individuals due to EVD to susceptible individuals during the burial ceremonies
have been documented in the past, e.g., [21–23] in the case of the AI viruses and [24,28,30] in the
case of the EVD. Theorems 2.1 and 2.2 are results with rigorous proofs that support the severity
of such risks by predicting uniform persistence of the diseases even in the initial absence of other
infection-related compartments.

(3) Besides the actual results stated in Theorems 2.1 and 2.2, their proofs offer interesting features to
researchers on PDEs in general. As we pointed out in Remark 1.3, it is false that a solution to an
equation without diffusion has a property similar to Lemma 1.3 (1) or Lemma 1.4 (1). However,
in the case of the AI model, u4 non-vanishing at t0 ≥ 0 can, together with the fact that u1(x, t) > 0
for all x ∈ Ω̄ and t > 0 due to Lemma 1.3 (2), show that u2(x, t) > 0 for all x ∈ Ω̄ and t > 0, and
this in turn actually shows that u4(x, t) > 0 by Lemma 1.3 (3) (see Proposition 3.1 (1)f). Similarly
in the case of EVD model, u5 non-vanishing at t0 6= 0 can, together with the fact that u1(x, t) > 0
for all x ∈ Ω̄ and t > 0 due to Lemma 1.4 (2), show that u2(x, t) > 0 for all x ∈ Ω̄ and t > 0, and
this, in turn shows that u5(x, t) > 0 by Lemma 1.4 (3) (see Proposition 4.1 (1)).

In subsequent sections, we prove Theorems 2.1 and 2.2 in order; due to their similarities, we will
elaborate in detail for the proof of Theorem 2.1, while we will give main ideas only in the proof of
Theorem 2.2. Throughout the rest of the work, for both (W0, ∂W0) defined by (1.18) or (1.19) and Φt,
the solution semiflow for (1.2) or (1.4) that is guaranteed to exist by List 1.1, we define

M∂ := {φ ∈ ∂W0 : Φt(φ) ∈ ∂W0 ∀ t ≥ 0} (2.1)

and ω(φ) to be the omega limit set of the orbit O+(φ) := {Φt(φ) : t ≥ 0}. Moreover, we denote the
Kuratowski measure of non-compactness by κ (see Definition A.1 for precise definition). After proofs,
we follow up with the conclusion; moreover, for readers’ convenience, we leave some preliminaries
and computations in the Appendix.
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3. Proof of Theorem 2.1

Besides the results from List 1.1, Lemmas 1.1 and 1.3, let us recall some results from [17] that will
be needed to prove Theorem 2.1.

Lemma 3.1. ( [17, Lemmas 3.5 and 3.6]) The semiflow Φt : X+ 7→ X+ defined by Φt(φ) = u(t)
guaranteed by List 1.1 (a) is a κ-contraction on X+; i.e., there exists a constant c̃ > 0 such that κ(ΦtB) ≤
e−c̃tκ(B) for all bounded sets B ⊂ X+ such that κ(B) > 0 so that limt→∞ κ(ΦtB) = 0. Moreover,
Φt is κ-condensing and consequently asymptotically smooth. Finally, Φt admits a global connected
attractor A.

The following result is an improvement of Lemma 1.3. In particular, it shows that a solution to the
non-diffusive equation, namely u4 that solves (1.2d), starting from some t4

0 ≥ 0 at which it does not
vanish, does indeed become and remain strictly positive for all t > t0. Not only that, it has the ability
to spread such strict positivity to the other infection-related compartment, namely u2.

Proposition 3.1. Suppose that u(x, t, φ) is the solution to (1.2) such that u(·, 0, φ) = φ(·) ∈ X+.

(1) If there exists ti
0 ≥ 0 such that ui(·, ti

0, φ) 6≡ 0 for i = 2 or i = 4, then uk(x, t, φ) > 0 for all
(x, t) ∈ Ω̄ × (ti

0,∞) and all k ∈ {2, 4}.

(2) Moreover, Φt(W0) ⊆W0 for all t ≥ 0.

Proof of Proposition 3.1. We assume the existence of ti
0 by hypothesis. First, consider the case i = 2

so that u2(·, t2
0, φ) 6≡ 0. Lemma 1.3 (1) immediately implies that u2(x, t, φ) > 0 for all x ∈ Ω̄ and all

t > t2
0; in turn, Lemma 1.3 (3) now implies that u4(x, t, φ) > 0 for all x ∈ Ω̄ and t > t2

0.
Next, consider the other case of u4(·, t4

0, φ) 6≡ 0. This implies that there exists x∗ ∈ Ω̄ such that
u4(x∗, t4

0, φ) > 0. By continuity in space and time, we can assume that x∗ ∈ Ω and t4
0 > 0 by relabeling

if necessary. Then, suppose that u2(·, t4
0, φ) ≡ 0 on Ω̄. Substituting this in (1.2b) and referencing the

strict positivity of u1 for all x ∈ Ω̄ and all t > 0 from Lemma 1.3 (2), we see

∂tu2(x∗, t4
0) = β2u1(x∗, t4

0)u4(x∗, t4
0) > 0.

By the same argument in the proof of Lemma 1.4, this contradicts the non-negativity of u2. Hence,
instead, we must have u2(·, t4

0, φ) 6≡ 0. Thus, by Lemma 1.3 (1) we have u2(x, t, φ) > 0 for all x ∈ Ω̄

and all t > t4
0. In turn, this implies u4(x, t, φ) > 0 for all (x, t) ∈ Ω̄ × (t4

0,∞) by Lemma 1.3 (3). This
completes the proof of Proposition 3.1 (1).

Lastly, we will show that Φt(W0) ⊆ W0 for all t ≥ 0; the case t = 0 is immediate because Φ0 is an
identity and thus we focus on t > 0. In fact, the proof is an immediate consequence of Proposition 3.1
(1) that we just verified. Let φ ∈ W0 so that φ2 6≡ 0 or φ4 6≡ 0. Proposition 3.1 (1) immediately implies
that u2(x, t, φ) and u4(x, t, φ) are both strictly positive on Ω̄ × (0,∞), and this is more than enough to
conclude that Φt(φ) ∈W0 for all t > 0. This concludes the proof of Proposition 3.1 (2).

The following result does not necessarily rely on Proposition 3.1; nevertheless, because we rede-
finedW0 and consequently ∂W0 and M∂ in (1.18) and (2.1) differently from [17], we need to reprove it.

Proposition 3.2. The omega limit set of (1.2) satisfies ω(φ) = {(m∗A, 0, 0, 0)} for all φ ∈ M∂.
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Proof of Proposition 3.2. Let φ ∈ M∂ so that we have Φt(φ) ∈ ∂W0 for all t ≥ 0. Thus, u2(·, t, φ) ≡
u4(·, t, φ) ≡ 0 for all t ≥ 0. Then, from (1.2c) we see

∂tu3 = D∆u3 − (η + d)u3 ∀ x ∈ Ω

and thus limt→∞ u3(x, t, φ) = 0 uniformly for x ∈ Ω̄ by Lemma A.2. Therefore, (1.2a) is asymptotic to

∂tY = D∆Y + λ − dY ∀ x ∈ Ω,

and hence by the theory of asymptotically autonomous semiflows (see for example [33, Corollary 4.3])
we have limt→∞ u1(x, t, φ) = m∗A uniformly for x ∈ Ω̄. Thus, we have limt→∞ u(x, t, φ) = (m∗A, 0, 0, 0),
and it follows that ω(φ) = {(m∗A, 0, 0, 0)} for all φ ∈ M∂.

The next result is the verification that the DFE is a uniform weak repeller for (1.2) that we described
in Section 1.3 to be difficult with choice ofW0 and ∂W0 in (1.18).

Proposition 3.3. If R0 > 1, then the DFE (m∗A, 0, 0, 0) is a uniform weak repeller for W0 in the sense
that there exists δ0 > 0 such that

lim sup
t→∞

‖Φt(φ) − (m∗A, 0, 0, 0)‖C(Ω̄) ≥ δ0 ∀ φ ∈W0. (3.1)

Proof of Proposition 3.3. By hypothesis,R0 > 1 so that by Lemma 1.1 we have θ(m∗A) > 0. Suppose for
purposes of contradiction that there exists φ∗ ∈W0 such that for all δ0 > 0, and hence for δ0 ∈ (0,m∗A),
we have

lim sup
t→∞

||Φt(φ∗) − (m∗A, 0, 0, 0)||C(Ω̄)< δ0. (3.2)

Then, there exists t1 > 0 sufficiently large so that u1(x, t, φ) > m∗A − δ0 for all (x, t) ∈ Ω̄ × [t1,∞).
Thus, (1.2b) satisfies

∂tu2 ≥ D∆u2 + β1(m∗A − δ0)u2 + β2(m∗A − δ0)u4 − (γ + d)u2 ∀ (x, t) ∈ Ω × [t1,∞).

We consider simultaneously
∂tu2 ≥ D∆u2 + β1(m∗A − δ0)u2 + β2(m∗A − δ0)u4 − (γ + d)u2, x ∈ Ω,

∂tu4 = αu2 − c(x)u4, x ∈ Ω,

∇u2 · ν = ∇u4 · ν = 0, x ∈ ∂Ω,

(3.3)

and 
∂tû2 = D∆û2 + β1(m∗A − δ0)û2 + β2(m∗A − δ0)û4 − (γ + d)û2, x ∈ Ω,

∂tû4 = αû2 − c(x)û4, x ∈ Ω,

∇û2 · ν = ∇û4 · ν = 0, x ∈ ∂Ω,

(3.4)

for t ≥ t1 where ν is the outward unit normal vector on ∂Ω. Consider them to have the same values at
t1; i.e., (u2, u4)(·, t1) = (û2, û4)(·, t1). The second equations of (3.3) and (3.4) can be solved directly as

u4(·, t) = e−c(·)(t−t1)u4(·, t1) +

∫ t

t1
αu2(·, s)ec(·)(s−t)ds, (3.5a)
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û4(·, t) = e−c(·)(t−t1)û4(·, t1) +

∫ t

t1
αû2(·, s)ec(·)(s−t)ds. (3.5b)

Thus, we reduce (3.3) and (3.4) to the following systems for t ≥ t1:
∂tu2 ≥D∆u2 + β1(m∗A − δ0)u2

+ β2(m∗A − δ0)
(
e−c(t−t1)u4(t1) +

∫ t

t1
αu2(s)ec(s−t)ds

)
− (γ + d)u2 ∀ x ∈ Ω,

∇u2 · ν = 0 ∀ x ∈ ∂Ω,

and 
∂tû2 =D∆û2 + β1(m∗A − δ0)û2

+ β2(m∗A − δ0)
(
e−c(t−t1)û4(t1) +

∫ t

t1
αû2(s)ec(s−t)ds

)
− (γ + d)û2 ∀ x ∈ Ω,

∇û2 · ν = 0 ∀ x ∈ ∂Ω.

By the comparison principle ( [32, Theorem 7.3.4]), it then follows that

u2(x, t) ≥ û2(x, t) ∀ (x, t) ∈ Ω̄ × [t1,∞). (3.6)

Concerning the second equations of (3.3) and (3.4), (3.6) and (3.5) show that u4(x, t) ≥ û4(x, t) for
all (x, t) ∈ Ω̄ × [t1,∞). As m∗A − δ0 > 0, we may rely on Lemma 1.1 with H ≡ m∗A − δ0 to deduce that
the eigenvalue problem corresponding to (3.4) has principle eigenvalue θ(m∗A − δ0) with corresponding
eigenfunction ψ̃ := (ψ̃2, ψ̃4) � 0. Because θ(m∗A) > 0, by taking δ0 smaller if needed we obtain
θ(m∗A−δ0) > 0. Now, by assumption, we have φ∗ ∈W0 so that φ∗i 6≡ 0 for i = 2 or i = 4. By Proposition
3.1, this implies that uk(x, t, φ∗) > 0 for all (x, t) ∈ Ω̄ × (0,∞) for both k ∈ {2, 4}. Thus, there exists
ε0 > 0 sufficiently small such that

(u2(x, t1, φ
∗), u4(x, t1, φ

∗)) ≥ ε0eθ(m
∗

A−δ0)t1ψ̃.

Finally, as ε0eθ(m
∗

A−δ0)(t−t1)ψ̃ solves (3.4), we see

(u2(x, t, φ∗), u4(x, t, φ∗)) ≥ ε0eθ(m
∗

A−δ0)(t−t1)ψ̃ ∀ (x, t) ∈ Ω̄ × [t1,∞).

Since θ(m∗A − δ0) > 0 and ψ̃ � 0, it follows that u2(x, t, φ∗), u4(x, t, φ∗) → ∞ as t → ∞, which
contradicts (3.2), thereby proving our claim.

Our next task is a verification that p defined by (1.13) is a generalized distance function for Φt

that we described to be difficult in Section 1.3 with our choice of W0 and ∂W0 in (1.18) for the AI
model (1.2) .

Proposition 3.4. Define p by (1.13). If R0 > 1, then

p−1((0,∞)) ⊂W0; (3.7)

moreover, p is a generalized distance function for Φt.
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Proof of Proposition 3.4. First, if ψ ∈ p−1((0,∞)), then p(ψ) ∈ (0,∞) so that clearly ψ ∈W0 by (1.18),
concluding (3.7).

Next, recall from Definition 1.2 that, in order to verify that p is a generalized distance function for
Φt, we must prove that

p(Φt(φ)) = min{min
x∈Ω̄

u2(x, t),min
x∈Ω̄

u3(x, t),min
x∈Ω̄

u4(x, t)} > 0 ∀ t > 0

whenever either p(φ) = 0 and φ ∈W0 or p(φ) > 0.
First, suppose p(φ) = 0 and φ ∈W0. From (1.18), we deduce that φ2 6≡ 0 or φ4 6≡ 0. By Proposition

3.1, we see that u2(x, t, φ), u4(x, t, φ) > 0 for all (x, t) ∈ Ω̄× (0,∞). We wish to prove that u3(x, t, φ) > 0
for all (x, t) ∈ Ω̄× (0,∞). Due to Lemma 1.3 (1), we see that this is achieved if we verify that u3(t) 6≡ 0
for all t > 0. Thus, suppose that u3(·, t0, φ) ≡ 0 for some t0 > 0. Then, (1.2c) gives us

∂tu3(x, t0) = γu2(x, t0) > 0 ∀ x ∈ Ω,

allowing us to find ε ∈ (0, t0) sufficiently small such that u3(x, t0 − ε) < 0 for any x ∈ Ω, which
contradicts the non-negativity of the solution. Hence, instead, we must have u3(·, t, φ) 6≡ 0 for all t > 0
due to the arbitrariness of t0 > 0. Therefore, we have proven that ui(x, t, φ) > 0 for all x ∈ Ω̄, all t > 0,
and all i ∈ {2, 3, 4}; by (1.13), this implies p(Φt(φ)) > 0 for all t > 0.

Finally, suppose that p(φ) > 0 so that

min{min
x∈Ω̄

φ2(x),min
x∈Ω̄

φ3(x),min
x∈Ω̄

φ4(x)} > 0

by (1.13). This implies by Lemma 1.3 (1) that u2(x, t, φ), u3(x, t, φ) > 0 for all x ∈ Ω̄ and all t > 0;
consequently, by Lemma 1.3 (3), we have u4(x, t, φ) > 0 for all x ∈ Ω̄ and all t > 0. Thus, we have
that p(Φt(φ)) > 0 for all t > 0. Hence, we conclude that p is indeed a generalized distance function
for Φt.

At last, we are ready to conclude the proof of Theorem 2.1.

Proof of Theorem 2.1. With all the results we have obtained thus far, the proof of Theorem 2.1 follows
the same line of reasoning used in previous works (see [17, 18]). By Proposition 3.2 we know that any
bounded orbit of Φt in M∂ converges to the DFE (m∗A, 0, 0, 0), which is isolated in X+. If we denote
the stable set of the DFE by W s((m∗A, 0, 0, 0)), we now see that W s((m∗A, 0, 0, 0)) ∩W0 = ∅. Therefore,
considering Proposition 3.2, it follows by [31, Lemma 3] (see also [16, Theorem 1.3.2]) that there
exists σ > 0 such that for all compact chain transitive sets L such that L 6⊂ {(m∗A, 0, 0, 0)}, we have
minφ∈L p(φ) > σ. By Lemma 1.3 (2), taking σ > 0 smaller if necessary to satisfy σ ≤ λ

ΥA
for ΥA from

(1.21), we see then that

lim inf
t→∞

ui(·, t, φ) ≥ σ ∀ φ ∈W0, ∀ i ∈ {1, 2, 3, 4}, (3.8)

which is precisely (1.14). Finally, by Lemma 3.1, we know that Φt : X+ → X+ has a global connected
attractor A, so from [34, Theorem 3.7 and Remark 3.10], we see that Φt : W0 → W0 also has a
global attractor A0. Because Φt(W0) ⊆ W0 from Proposition 3.1 (2), and Φt is also κ-condensing by
Lemma 3.1, it follows from [34, Theorem 4.7] that Φt has an equilibrium ũ ∈ A0 and hence ũ ∈ W0.
It follows immediately from (3.8) that ũ is a positive steady state of (1.2). This completes the proof of
Theorem 2.1.
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4. Proof of Theorem 2.2

Besides the results from List 1.1, Lemmas 1.2 and 1.4, let us recall some results from [18] that will
be needed to prove Theorem 2.2.

Lemma 4.1. ( [18, Propositions 4.5 and 4.6 and their proof]) Let D1 = D2 =: D̄ in (1.4). Then,
its semiflow Φt : X+ 7→ X+ defined by Φt(φ) = u(t) guaranteed by List 1.1 (a) is a κ-contraction
of order e−bt on X+; i.e., κ(ΦtB) ≤ e−btκ(B) for all bounded sets B ⊂ X+ such that κ(B) > 0 so that
limt→∞ κ(ΦtB) = 0. Moreover, Φt is κ-condensing and consequently asymptotically smooth. Finally,
Φt admits a global connected attractor A.

The following result is an improvement of Lemma 1.4.

Proposition 4.1. Let D1 = D2 =: D̄ in (1.4). Suppose that u(x, t, φ) is the solution to (1.4) such that
u(·, 0, φ) = φ(·) ∈ X+.

(1) If there exists ti
0 ≥ 0 such that ui(·, ti

0, φ) 6≡ 0 for any i ∈ {2, 4, 5}, then uk(x, t, φ) > 0 for all
(x, t) ∈ Ω̄ × (ti

0,∞) and all k ∈ {2, 4, 5}.

(2) Moreover, Φt(W0) ⊆W0 for all t ≥ 0.

Proof of Proposition 4.1. The proof is similar to that of Proposition 3.1. First, consider the case
u2(·, t2

0) 6≡ 0. It immediately follows by Lemma 1.4 (1) that u2(x, t) > 0 for all (x, t) ∈ Ω̄ × (t2
0,∞)

and hence by Lemma 1.4 (3) that u5(x, t) > 0 for all (x, t) ∈ Ω̄ × (t2
0,∞). Moreover, suppose that

u4(·, t2
0) ≡ 0. The hypothesis that u2(·, t2

0) 6≡ 0 implies that there exists x∗ ∈ Ω̄ at which u2(x∗, t2
0) > 0,

relabeling if necessary. By continuity in space and time, we may assume that x∗ ∈ Ω and t2
0 > 0. Then,

we have from (1.4d)
∂tu4(x∗, t2

0) = ξu2(x∗, t2
0) + αu5(x∗, t2

0) > 0,

indicating that we can find ε ∈ (0, t2
0) sufficiently small so that u4(x, t2

0−ε) < 0, which is a contradiction.
Therefore, u4(·, t2

0) 6≡ 0, and by Lemma 1.4 (1) this implies that u4(x, t) > 0 for all (x, t) ∈ Ω̄ × (t2
0,∞).

Now, consider the case ui(·, ti
0) 6≡ 0 for i = 4 or i = 5. This implies that there exists x∗ ∈ Ω̄ such

that ui(x∗, ti
0) > 0. By spatial and temporal continuity again, we can assume that x∗ ∈ Ω and ti

0 > 0.
Suppose that u2(·, ti

0) ≡ 0. Then, from (1.4b)

∂tu2(x∗, ti
0) = (β2u5(x∗, ti

0) + λu4(x∗, ti
0))u1(x∗, ti

0) > 0,

where the inequality follows by the hypothesis that at least one of u4 or u5 at (x∗, ti
0) is strictly positive,

and u1(x, t) > 0 for all x ∈ Ω̄ and t > 0 due to Lemma 1.4 (2). Therefore, we can find ε ∈ (0, ti
0)

sufficiently small so that u2(x∗, ti
0 − ε) < 0, which is again a contradiction. Hence, u2(·, ti

0) 6≡ 0, which
implies by Lemma 1.4 (1) that u2(x, t) > 0 for all (x, t) ∈ Ω̄ × (ti

0,∞). By the proof in the case
u2(·, t2

0) 6≡ 0, we now see that u j(x, t) > 0 for all (x, t) ∈ Ω̄× (ti
0,∞) and j ∈ {4, 5} \ {i} too. All necessary

cases have been demonstrated; hence, Proposition 4.1 (1) was proven.
Lastly we must show that Φt(W0) ⊆ W0 for all t ≥ 0; it suffices to prove the case t > 0 as Φ0 is an

identity. Let φ ∈ W0 so that φ2 6≡ 0 or φ4 6≡ 0 or φ5 6≡ 0. Proposition 4.1 (1) implies that ui(x, t, φ) > 0
on Ω̄ × (0,∞) for all i ∈ {2, 4, 5}. This is more than enough to deduce that Φt(φ) ∈ W0 for all t > 0,
concluding the proof of Proposition 4.1 (2).
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The following result does not necessarily rely on Proposition 4.1; nevertheless, because we rede-
finedW0 and consequently ∂W0 and M∂ in (1.19) and (2.1) differently from [18], it needs to be proven.

Proposition 4.2. Let D1 = D2 =: D̄ in (1.4). Then, the omega limit set of (1.4) satisfies ω(φ) =

{(m∗E, 0, 0, 0, 0)} for all φ ∈ M∂.

Proof of Proposition 4.2. The proof is similar to that of Proposition 3.2; thus, we leave it in the Ap-
pendix for completeness.

The next result is a verification that the DFE is a uniform weak repeller for (1.4) that we described
in Section 1.3 to be difficult with the choice ofW0 and ∂W0 in (1.18).

Proposition 4.3. If D1 = D2 =: D̄ and R0 > 1, then the DFE (m∗E, 0, 0, 0, 0) is a uniform weak repeller
forW0 in the sense that there exists δ0 > 0 such that

lim sup
t→∞

‖Φt(φ) − (m∗E, 0, 0, 0, 0)‖C(Ω̄) ≥ δ0 ∀ φ ∈W0. (4.1)

Proof of Proposition 4.3. Proof is similar to that of Proposition 3.3. By hypothesis, R0 > 1, so by
Lemma 1.2 we have that θ(m∗E) > 0. Suppose for purposes of contradiction that there exists φ∗ ∈ W0

such that, for all δ0 > 0, and hence for δ0 ∈ (0,m∗E), we have

lim sup
t→∞

||Ψt(φ∗) − (m∗E, 0, 0, 0, 0)||C(Ω̄)< δ0. (4.2)

Then, there exists t1 > 0 sufficiently large so that u1(x, t, φ) > m∗E − δ0 for all (x, t) ∈ Ω̄ × [t1,∞).
Thus, (1.4b) leads us to consider simultaneously

∂tu2 ≥ D̄∆u2 + (β1u2 + β2u5 + λu4)(m∗E − δ0) − (µ + δ + γ)u2, x ∈ Ω,

∂tu4 = D4∆u4 + ξu2 + αu5 − ηu4, x ∈ Ω,

∂tu5 = δu2 − bu5, x ∈ Ω,

∇u2 · ν = ∇u4 · ν = ∇u5 · ν = 0, x ∈ ∂Ω,

(4.3)

and 
∂tû2 = D̄∆û2 + (β1û2 + β2û5 + λû4)(m∗E − δ0) − (µ + δ + γ)û2, x ∈ Ω,

∂tû4 = D4∆û4 + ξû2 + αû5 − ηû4, x ∈ Ω,

∂tû5 = δû2 − bû5, x ∈ Ω,

∇û2 · ν = ∇û4 · ν = ∇û5 · ν = 0, x ∈ ∂Ω,

(4.4)

with t ≥ t1, starting from same values at t1; i.e., (u2, u4, u5)(·, t1) = (û2, û4, û5)(·, t1). Solving for u5 and
û5 as

u5(·, t) = u5(·, t1)eb(t1−t) +

∫ t

t1
δu2(·, s)eb(s−t)ds,

û5(·, t) = û5(·, t1)eb(t1−t) +

∫ t

t1
δû2(·, s)eb(s−t)ds,

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19686–19709.



19704

and using the comparison theorem argument give us

u2(x, t) ≥ û2(x, t), u4(x, t) ≥ û4(x, t), and u5(x, t) ≥ û5(x, t) ∀ (x, t) ∈ Ω̄ × [t1,∞). (4.5)

As m∗E − δ0 > 0, we may rely on Lemma 1.2 with H ≡ m∗E − δ0 to deduce that the eigenvalue
problem corresponding to (4.4) has principle eigenvalue θ(m∗E − δ0) with corresponding eigenfunction
ψ̃ := (ψ̃2, ψ̃4, ψ̃5) � 0. Because θ(m∗E) > 0, by taking δ0 smaller if needed we obtain θ(m∗E − δ0) > 0.
By assumption, we have φ∗ ∈ W0 so that φ∗i 6≡ 0 for i = 2 or i = 4 or i = 5. By Proposition 4.1, this
implies that uk(x, t, φ∗) > 0 for all (x, t) ∈ Ω̄ × (0,∞) for all k ∈ {2, 4, 5}. Therefore, there exists ε0 > 0
sufficiently small such that

(u2(x, t1, φ
∗), u4(x, t1, φ

∗), u5(x, t1, φ
∗)) ≥ ε0eθ(m

∗

E−δ0)t1ψ̃.

Finally, as ε0eθ(m
∗

E−δ0)(t−t1)ψ̃ solves (4.4), we see

(u2(x, t, φ∗), u4(x, t, φ∗), u5(x, t, φ∗)) ≥ ε0eθ(m
∗

E−δ0)(t−t1)ψ̃ ∀ (x, t) ∈ Ω̄ × [t1,∞).

Since θ(m∗E − δ0) > 0 and ψ̃ � 0, it follows that u2(x, t, φ∗), u4(x, t, φ∗), u5(x, t, φ∗) → ∞ as t → ∞,
which contradicts (4.2), thereby proving our claim.

Our next task is a verification that p defined by (1.16) is a generalized distance function for Φt

that we described in Section 1.3 to be difficult with our choice ofW0 and ∂W0 in (1.19) for the EVD
model (1.4).

Proposition 4.4. Define p by (1.16). If D1 = D2 =: D̄ and R0 > 1, then

p−1((0,∞)) ⊂W0; (4.6)

moreover, p is a generalized distance function for Φt.

Proof of Proposition 4.4. The proof is similar to that of Proposition 3.4. First, if ψ ∈ p−1((0,∞)), then
p(ψ) ∈ (0,∞) so that clearly ψ ∈W0 by (1.19), concluding (4.6).

Next, we must prove that p(Φt(φ)) > 0 for all t > 0 whenever either p(φ) = 0 and φ ∈ W0 or
p(φ) > 0.

First, suppose p(φ) = 0 and φ ∈ W0. From (1.19), we deduce that φ2 6≡ 0 or φ4 6≡ 0 or φ5 6≡ 0. By
Proposition 4.1 we see that u2(x, t, φ), u4(x, t, φ), u5(x, t, φ) > 0 for all (x, t) ∈ Ω̄ × (0,∞). To prove that
u3(x, t, φ) > 0 for all (x, t) ∈ Ω̄ × (0,∞), due to Lemma 1.4 (1), it suffices to verify that u3(t) 6≡ 0 for all
t > 0. Suppose that u3(·, t0, φ) ≡ 0 for some t0 > 0. Then, (1.4c) gives us

∂tu3(x, t0) = γu2(x, t0) > 0 ∀ x ∈ Ω,

allowing us to find ε ∈ (0, t0) sufficiently small such that u3(x, t0 − ε) < 0 for any x ∈ Ω, which
contradicts the non-negativity of the solution. Hence, instead, we must have u3(·, t, φ) 6≡ 0 for all t > 0
due to the arbitrariness of t0 > 0. Therefore, we have proven that ui(x, t, φ) > 0 for all x ∈ Ω̄, all t > 0
and all i ∈ {2, 3, 4, 5} so that p(Φt(φ)) > 0 for all t > 0 by (1.16).

At last, suppose that we have p(φ) > 0. Then, by Lemma 1.4 (1), we can obtain
u2(x, t, φ), u3(x, t, φ), u4(x, t, φ) > 0 for all x ∈ Ω̄ and all t > 0. Consequently by Lemma 1.4 (3),
we have u5(x, t, φ) > 0 for all x ∈ Ω̄ and all t > 0. Thus, we have that p(Φt(φ)) > 0 for all t > 0.
Therefore, we conclude that p is indeed a generalized distance function for Φt.
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As we mentioned, with all the results obtained thus far, the proof of Theorem 2.2 follows the same
line of reasoning in the literature, and it is similar to the proof of Theorem 2.1. Thus, we leave this in
the Appendix for completeness.

5. Conclusions

As PDE models of infectious diseases continue to attract attention from researchers, taking into
account distinct mobilities among the solution components and therefore considering partially diffusive
systems of PDEs seems inevitable. In this work, we improved uniform persistence results of such
systems of PDEs, namely the AI model from [17] and the EVD model from [18]. To do so, we weaken
the assumption of initial data so that any (rather than all) of the infection-related components must be
initially non-vanishing. The mathematical novelty is the discovery of the ability of the solution to a
non-diffusive equation that does not vanish at time t0 ≥ 0 to induce strict positivity on Ω̄ for all t > t0

on not only itself but all other infection-related components (see Propositions 3.1 and 4.1). This takes
the place of the minimum principle, which is standard to apply in a fully diffusive system. Specifically,
the key in both cases is to make use of the fact that S (x, t) > 0 for all x ∈ Ω̄ and all t > 0 and verify that,
as a consequence, I(x, t) > 0 for all x ∈ Ω̄ and all t > 0. Ultimately, this closes the gap between the
uniform persistence results of the fully diffusive systems of PDEs and the partially diffusive systems of
PDEs, with such results having previously been known for the former but not the latter. Our approach
seems general and applies to other partially diffusive models such as the COVID-19 model that needs
to take into account of the environmental modes of transmission.
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Appendix

A. Preliminaries

The following well-known fact proved to be useful.

Lemma A.1. Let f : U → R be twice differentiable, where U is an open subset of Rn. If f has a local
minimum at a ∈ U, then ∆ f (a) ≥ 0.

We recall the definition of Kuratowski measure of non-compactness:

Definition A.1. ( [16, p. 3]) Given any metric space Y , the Kuratowski measure of non-compactness
for any bounded set B of Y is defined by

κ(B) := inf{r : B has a finite cover of diameter r}.

We refer to [16, p. 3], [35, Proposition 7.2] and [36, Lemma 2.3.5] for various properties concerning κ.

Lemma A.2. ( [37, Proposition 4.1]) Consider a spatial domain Ω ⊂ Rn for n ∈ N that is bounded
with smooth boundary ∂Ω and the following equation:

∂tw(x, t) = D̃(x)∆w(x, t) − (U(x) · ∇)w(x, t) + g(x) − λw(x, t), (A.1a)

(n · ∇)w(x, t)|∂Ω = 0 for t > 0, and w(x, 0) = ψ(x) for x ∈ Ω, (A.1b)

where Ū ∈ C2(Ω̄), D̃(x) is continuous and D̃(x) ≥ M > 0 for all x ∈ Ω, g(x) > 0 is a continuous
function, and n is an outward unit normal vector. Then, for all ψ ∈ C(Ω,R+), there exists a unique
positive steady state w∗ which is globally attractive in C(Ω,R). Moreover, if g(x) ≡ g, then w∗ ≡ g

λ
.

B. Proof of Proposition 4.2

Let φ ∈ M∂ so that we have Φt(φ) ∈ ∂W0 for all t ≥ 0. Thus, u2(·, t, φ) ≡ u4(·, t, φ) ≡ u5(·, t, φ) ≡ 0
for all t ≥ 0. From (1.4c), we see

∂tu3 = D3∆u3 − µu3

and thus limt→∞ u3(x, t, φ) = 0 uniformly for x ∈ Ω̄ due to Lemma A.2. Therefore, now (1.4a) is
asymptotic to

∂tY = D̄∆Y + π − µY

and hence by the theory of asymptotically autonomous semiflows (see [33, Corollary 4.3]) we have
limt→∞ u1(x, t, φ) = m∗E uniformly for all x ∈ Ω̄. Thus, we see limt→∞ u(x, t, φ) = (m∗E, 0, 0, 0, 0), and it
follows that ω(φ) = {(m∗E, 0, 0, 0, 0)}.
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C. Proof of Theorem 2.2

By Proposition 4.2 we know that any bounded orbit of Φt in M∂ converges to the DFE (m∗E, 0, 0, 0, 0),
which is isolated in X+. Considering Proposition 4.2, it follows by [31, Lemma 3] (see also [16,
Theorem 1.3.2]) that there exists σ > 0 such that for all compact chain transitive sets L such that
L 6⊂ {(m∗E, 0, 0, 0, 0)}, we have minφ∈L p(φ) > σ. By Lemma 1.4 (2), taking σ > 0 smaller if necessary
to satisfy σ ≤ π

ΥE
for ΥE from (1.23), we see then that

lim inf
t→∞

ui(·, t, φ) ≥ σ ∀ φ ∈W0, ∀ i ∈ {1, 2, 3, 4, 5}, (C.1)

which is precisely (1.17). Finally, by Lemma 4.1 we know that Φt : X+ → X+ has a global connected
attractor A. Thus, we see from [34, Theorem 3.7 and Remark 3.10] that Φt : W0 → W0 also has a
global attractor A0. Because Φt(W0) ⊆ W0 from Proposition 4.1 (2), and Φt is also κ-condensing by
Lemma 4.1, it follows from [34, Theorem 4.7] that Φt has an equilibrium ũ ∈ A0 and hence ũ ∈ W0. It
follows from (C.1) that ũ is a positive steady state of (1.4).
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