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Abstract: In this work, a new extended shallow water wave equation in (3+1) dimensions was studied,
which represents abundant physical meaning in a nonlinear shallow water wave. We discussed the
interaction between a lump wave and a single solitary wave, which is an inelastic collision. Further,
the interaction between a lump wave and two solitary waves and the interaction between a lump wave
and a periodic wave was also studied using the Hirota bilinear method. Finally, the interaction among
lump, periodic and one solitary wave was investigated. The dynamic properties of the obtained results
are shown and analyzed by some three-dimensional images.
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1. Introduction

A lump wave is a rational soliton with a large amplitude, which is localized only in space and
will not disappear due to time change. In 2015, an effective algebraic method to obtain lump solutions
of integrable systems was proposed by Ma [1]. Subsequently, He [2] also provided theoretical support
for this method and proved it, which made great progress in the solution of the lump wave and attracted
the attention of a large number of researchers, such as Tian [3-5], Lii [6-8], He [9-11], Wen [12-14],
Su [15-17], Lan [18-20], Chen [21-23], Li [24-26] and Ma [27,28] et al.

The shallow water wave equation has become a hot topic in recent years. The wave equation for
shallow water is a model in which the depth of water is less than the wavelength of the free surface
disturbance. Examples of shallow water wave equations are widely used in the field of oceanography
and the atmosphere to simulate the dynamic behavior of water wave propagation. For example, the
shallow water wave equation in a (2+1) dimension [29-31] is given below:

o, -30,0,, - 30,0, + D,,,, =0, ()
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and
(Dyt - 4q)xq)xy - zq)yq)xx + q)xxxy = O, (2)
and the shallow water wave equation in (3+1) dimension:
oy, -D,, - 30, D, —30D,D,, + Dy, = 0. 3)

Recently, a new extended shallow water wave equation in a (3+1) dimension was proposed by Wazwaz
as follows [31]:

a®,, + D, +yD,, + 6Dy, + Oy, — 30,D,, — 30,0, + Dy, = 0, 4)

where ® = ®(x,y,z,1), @, B, y and ¢ are arbitrary constants. Wazwaz [31] obtained the multiple soliton
and lump solutions. In addition, this equation has not been studied in other literatures.
Under the transformation

® =-2(n¢),, &)
where & = &(x,y, z, 1), Eq (4) has the following Hirota bilinear form
[D,D, + DDy + BD:, + aD, + yDyD, + 6D,D, ¢ - € = —aé’ — &,

+3§xy§xx - fy‘fxxx + ‘f(afxx + y‘fxy + 5‘§y2 +ﬁ§yy + é:xxxy + gyt)
_‘:’:tgy - ygxé:y - 6§Z§y - 3§x§xxy =0. (6)

The organization of this paper is as follows: Section two investigates the interaction between a
lump wave and one soliton of Eq (4). Section three obtains the interaction solutions between a lump
and two solitary waves for Eq (4). Section four studies the interaction between a lump and a periodic
wave of Eq (4); Section five discusses the interaction among a lump, periodic and one solitary wave.
Section six makes the conclusions.

2. Lump-1-soliton solution

The lump solutions of Eq (4) have been obtained by Wazwaz. On this basis, we will further
investigate the interaction between the lump wave and one soliton. For this reason, we assume

& = (Gat+Gix+Gyy+ Q3Z)2 + (Gst + Gsx + Gey + Q7Z)2
+ Go+ klegl3t+§10x+§11y+glzz’ %

where G;(i = 1,2,---,12) and k; are undetermined constants. Substituting Eq (7) into (6), we obtain

o e (-6:6 - 2656461 + G:G%)  BG, + G + G
i 5(62+6?) 5 ’
Gs = —[Gs (0 G + BGe + ¥GeGs + 6GsGr) — aGeGh + 2062656
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+G5 (BGs + vGs + 6G)1/(G; + Go),
3(61 + 63) 616 + G5Go) (65 + G¢)
a (G2Gs — G1Gs) 2 ’
2 \/QZ + nglo
Giz = Do -BG11 — Go (7 +§f0) -0G12,G11 = 61#,
VG + 63

gll
Ng \/aglgz +0GsGo + €10 \[G + G2 \[G) + G

Go =

Go=¢6 (8)
VG + G,
GG 6.6 Gs (aG2 - BG3 - ¥61G: - G4G»)
1/ = s = — s = s
un G3 G- Ge G- G GG
G: (BG: - aG2) — oG + GaG2 (BG: + Ga) 36,67,
Gs = GGG ,Go=0,Gs=7F P
2
Gi3 = —a/glllo - BG11 — Gio ()’ + gfo) -0G12,G11 = igzggsm. 9)
GsG- 6.6 G1 (G2 (BG2 + 761 + Gs) - 0GY)
111 = — s = — s = ,
(1) Gs G Go G- G7 GG
3 2
Gy =909 %G) o =065 =500
Gs 2«
2
Gis = -0 _ 3G, — Gio(y + G) - 661, 61y = + 2T (10)

Gu Gs

All other parameters are free and unrestricted. By substituting the results of Egs (8)—(10) into Eqgs
(5) and (7), we can get the corresponding interaction solution for Eq (4). In order to understand the
dynamic properties of the interaction solutions between the lump wave and one soliton, we take Eq (8)
as an example and select special values of parameters (see Figure 1) to obtain a special solution of the
equation as follows:

® = —576[73es (Tt — 16x + 92) + 1927 *3]/[73¢ 5+ [2041£* + 12560y
—2016x + 1134z) + 9(16x — 92)* + 1024y*] + 55296¢3 3. (11)

The dynamic properties of Eq (11) are shown in Figure 1. In Figure 1(a), we can observe that a soliton
and a lump wave propagate forward respectively. In Figure 1(b), the soliton and the lump wave slowly
close together, and the amplitude of the lump wave begins to decrease. Until Figure 1(c), the soliton
and the lump wave gradually converge, and the amplitude of the lump wave becomes smaller. It can
be seen that the interaction between the soliton and the lump wave is an inelastic collision where the
energy is consumed.
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(a) (b) (c)

Figure 1. Solution (11). G, =a=B8=6=y=1,G1 = -4,Gs =G1» =3,k =6,y =0,
gl(): _19 (a)Z: _59 (b)ZZO’ (C)Z: L.

3. Lump-2-soliton solution

Next, we want to further consider the interaction between the lump wave and double solitons.
Therefore, we assume

& = (Q4I+Q1X+Q2Y+Q3Z)2 +(§81+st+gﬁ)’+gﬂ)2
+ Go + kicosh(Gist + Giox + Gy + G122). (12)
Substituting Eq (12) into (6), we derive

o (-6:61 - 265GsG1 + G:G%)  BG, +yG: + G:
5(63+G2) 6
Gs = —1Gs (G + BG +¥GeGs + 6G6Gr) — GG + 2062656
+G5 (BGs + ¥Gs + 6G1/(G5 + Go),
3(G3 + G2) (462G} + 4GsGeG: + 4G2G2G1 +4G3Gs + GGk}
4a (G2Gs — G1Gs) ’
2 G + GeGo

0 =BG —Go (?""Q%o) -0G12, G = ———,
JG+ 6

\/g\/aglgz + aGsGe + ela/\/gf +G; \/§§ +Gs
Go=6 ) (13)

G+ G,

9 =

Q __a
PTG

an G = % G = _Qégz’ G o Gl - ngsd(gggﬁ 161+ 69
> 3 1G2

G = +92Q10 Gy = Q% (B§§ - agg) - a/Q‘S‘ + gzgg (BG» + Gs)

e T G1G2Gs ’
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_ 2a° %ok% _ _3Q2Q%0
Go = 4a2gf +9§§§‘1‘0’g5 =+ 0
2
Gis =5 =G = G (v + Glo) ~9G (14)
G<G, G\G G1 (G2 (BG2 +¥G1 + Ga) - aGY)
11 =22 Gy = - = ,
i Gs Gi -Ge Gs 61 0G»Gs
GG+ Gy) _ 222Gk _ _36:G1y
Gs = R —-vGs,Go = WG+ 9g%g?0,gs =F
2
Gis = 21 _ G, - Guo (v + G) - 6G1a Gy = + T, (15)

Gu Gs

All other parameters are free and unrestricted. By substituting the results of Eqs (13)—(15) into Egs (5)
and (12), the corresponding interaction solution of Eq (4) can be obtained. In order to understand the
dynamic properties of the interaction solutions between the lump wave and two solitons, we take Eq
(14) as an example and select special values of parameters (see Figure 2) to obtain a special solution
of the equation as follows:

19t 2 72
d =[96 sinh(?9 +x - ?y —3z) = 25(7t + 8x — 15z)]/[8[g +[3t+2x +

~ g]z .\ (17t = 72x + 64y + 1352)°
4 2304

1 2
6cosh(% +x— ?y ~ 321 (16)

The dynamic properties of Eq (16) are described in Figure 2. In Figure 2(a), we can see that the lump
wave interacts with one of the solitons. In Figure 2(b), the lump wave begins to move to the middle
and interact with another soliton. At this time, the amplitude of the lump wave becomes larger. Until
Figure 2(c), the lump wave shifts to another soliton and its amplitude decreases.

(a) (b) (c)

-5

5
=10 4o

Figure 2. Solution (16). G, =a=B8=6=y=1,G1=2,G4 =G =3,k = -6,y =0,
glO:_1’(a)Z:_4’(b)Z:0’(C)Z:4'
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4. Lump-periodic solution

In this section, we intend to investigate the interaction between the lump and periodic waves, so
we suppose

& = (Gat+Gix+Goy+ G32)* + (Gst + Gsx + Gey + G2)*®
+ Go +kicos(Gist + Giox + Gy + G122). (17)

Substituting Eq (17) into (6), we give

GGy GG aG? — G2Gs (BG> + ¥G1 + G4)
I = —, = — s = ,
() G G- Gs G- G7 GG
G:Gro . G (BGE - aGE) - aGi + GG (BG + Ga)
Gn=+= ,Gs = "
Gs G1G2G5
_ 20°G0K _.36:G%
Go = 402G + 9g§g‘;0’g5 T
G2
Gi3 = =5 =BG = G (v +G%) - 6Gn. (18)
GsG; 6\G> G1 (G2 (BG: +¥G1 + Ga) — aG?)
11 __G9G1 o __ _
( ) QS gl ’g6 gs ’g7 5g2g5 ’
_ G066 +Gy) _ 202Gk _ 3G,G7,
Gs = —gs YGs,Go = 4(12@% N 9Q%Q?O,gs = +—2(x ,
2
Gis = _“glio -BGi11 —Go (7 + g%o) -0G12, G = igzggslo- (19)

All other parameters are free and unrestricted. By substituting the results of Eqs (18) and (19) into Eqs
(17) and (5), we can get the corresponding interaction solution between the lump and periodic waves
of Eq (4). In order to understand the dynamic properties of the interaction solutions between lump and
periodic waves, we take Eq (18) as an example and select special values of parameters (see Figure 3)
to obtain a special solution of the equation as follows:

31t 2

® = [165in(~" x - ?y —32) = 25(7t + 8x — 152)]/[8[(3t + 2x + y —

15z, (17t = 72x + 64y + 135z)* 31t 2y 2

-2 Ccos( — =2 3y . 2
i 2304 cos(g= =¥ =3 =39 = 5l (20)

The dynamic properties of Eq (20) are described in Figure 3. Different from the previous two sections,
the lump wave and periodic wave have been entangled and propagated forward.
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Figure 3. Solution (20) gz = :,3 =0 = Y= glo =1, Ql = —3, kl = -1, §4 = le = 3,
y=0,@z=-2,0z=0,()z=2.

5. Lump-periodic-1-soliton solutions

In order to investigate the interaction among the lump, periodic and one solitary wave, we suppose

& = (Gat+Gix+Goy+Gs2) 2+ (Gst + Gsx + Gey + gﬂ)z + Gy
+  kyeftITGIGIt o k) cos (Giat + Giox + Giiy + G1a2) s (21)

where G;(i = 14, 15, 16, 17) and k, are undetermined constants. Substituting Eq (21) into (6), we obtain

GGy GG aGl — G:Gs (BG> + ¥G1 + Ga)
1 = s = - ’ = 5
() G3 G- Gs G- Gr 5G.Gs
G, o G6n o G (86 - aG2) - aG! + GG (G + G)
g T G1G2Gs ’
_ 2a° %ok% _ 3Q2§%0
99——4a2g%+9g§g?0,§5— e
Giz = 2 i -BG11 —Go (7+Q2 )—5§12 Gis = _20Gu
Gu 10 ’ 363,
Gy = - i _ - AR =+ 22
= BGi5—Gia ()’ + §14) Gis,G1a = =G0 (22)
GiG7 GiG» aG? — G2Gs (BG> + ¥G1 + G4)
1 991 g - T2 o ,
o)) G G- Gs G- G7 5G.G
G = GG Gy = Gi (ﬁQ% - a/gg) - aGs + G2G: (BG + Ga)
g 7 61G:Gs ’
2060k _36:G5,
G = 402G + 9g§gm’g5 T 2a
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aG? 2
Giz=- Qlllo -BG11 —Go (7+g%o) -0G12,G15 = —;TQ%:‘,
a 2
Gir = —— = BGis ~ Gis (v + G1) — 6G16, Gra = £Go. (23)

ng

All other parameters are free and unrestricted. By substituting the results of Eqs (22) and (23) into Eqs
(21) and (5), we can derive the corresponding interaction solution among the lump, periodic and one
solitary wave. In order to understand the dynamic properties of the interaction solutions among lump,
periodic and one solitary wave, we take Eq (22) as an example and select special values of parameters
(see Figure 4) to obtain a special solution of the equation as follows:

_ 17t 3x 4y 3z RN ( Z)
o= [2[3(48+ > + 3 16)+4e6 3 413t 2x+y+4

(31t 2y 17t 3x 4y 3z\ . wa
_ Ly _3 - i A 4 +x 2z
s1n( e 573 z)]]/[(48 + > + 3 16) +4ee 3

z\? 31t 2y 2
-2 -] - — —x-—=-3z|-=1]. 24
+(3t x+y+4) cos( G by 3 31) 25] 24)

The dynamic properties of Eq (24) are described in Figure 4.

(a) (b) (c)

Figure 4. Solution 24). G, =a==06=y=Giw=1,61=Gis = -2,k = -1,y =0,
Gi=Gn=3k=4@x=-50b)x=0,()x=5.

6. Conclusions

In this article, we investigated a new extended shallow water wave equation in (3+1) dimensions
based on the Hirota bilinear form and symbolic computation [32—44]. The interaction between the
lump wave and single solitary wave is studied. The interaction between the lump wave and two solitary
waves as well as the interaction between lump wave and periodic wave was also discussed. Finally,
we obtained the interaction solutions among the lump, periodic and one solitary wave and discribed
the dynamic properties of the obtained results in Figures 1-4. Since its discovery, the Hirota bilinear
method has been widely used in solving lump wave solutions of nonlinear integrable systems, and this
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method is simple, direct, and effective. In addition to the lump wave solution, this method can also
be used to obtain hybrid rogue wave and breather solutions and has been promoted by many famous
scholars in China [45-48].
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