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Abstract: The aim of this work is to estimate the effect of Imatinib, exosomes, and Imatinib-exosomes
mixture in chronic myeloid leukemia (CML). For this purpose, mathematical models based on Gom-
pertzian and logistic growth differential equations were proposed. The models contained parameters
representing the effects of the three components on CML proliferation. Parameters estimation was
performed under the Bayesian statistical approach. Experimental data reported in the literature were
used, corresponding to four trials of a human leukemia xenograft in BALB/c female rats over a period of
forty days. The models were fitted to the following growth dynamics: normal tumor growth, growth with
exosomes, growth with Imatinib, and growth with exosomes-Imatinib mixture. For the proposed logistic
growth model, it was determined that when using Imatinib treatment the growth rate is 0.93 (95% CrI:
84.33–99.64) slower and reduces the tumor volume to approximately 10% (95% CrI : 8.67–10.81). In
the presence of exosome treatment, the growth rate is 0.83 (95% CrI: 1.52–16.59) faster and the tumor
volume is expanded by 40% (95% CrI: 25.36–57.28). Finally, in the presence of Imatinib-exosomes
mixture treatment, the growth rate is 0.82 (95% CrI: 76.87–88.51) slower and the tumor volume is reduced
by 95% (95% CrI: 86.76–99.85). It is concluded that the presence of exosomes partially inactivates the
effect of the Imatinib drug on tumor growth in a mouse xenograft model.
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1. Introduction

The National Cancer Institute (NCI) defines cancer as a disease in which the cells of an organism
grow uncontrollably and at an accelerated rate, altering cellular homeostasis [1]. The study of cancer
involves monitoring the growth of tumors, usually using mathematical and/or statistical tools. In the
first decade of the 20th century the use of systems theory to study biological processes became popular;
von Bertalanffy was a pioneer in this area, he was the author of the book “Systems Theory.” Published
in 1968, he proposed a growth equation that bears his name [2]. Mathematical modeling has gained
popularity in biological processes and in particular the growth of tumors.

Some of the classic tools for modeling tumors are the growth equations, such as exponential growth
proposed by Thomas Malthus in 1798, Gompertzian growth proposed by Benjamin Gompertz in 1825,
logistic growth proposed by Verhulst in 1838, among others [3]. More sophisticated models have been
proposed throughout history. In the 1990s, James Murray studied the effect of chemotherapies on the
spread of tumors by means of computed tomography [4]; at the end of the 20th century, Chaplain
proposed models for tumor vascularization [5]. Currently, work is being developed by using artificial
intelligence for the simulation of tumor microenvironments [6], among other works that add to the battle
against cancer, which seems to be eternal.

Chronic myeloid leukemia (CML) is a hematological neoplasm of slow progression that originates
in the bone marrow, caused by the Philadelphia (Ph) chromosome [7]. The Ph chromosome is an
abnormally short chromosome 22 that is one of the two chromosomes involved in a translocation with
chromosome 9, producing an overproliferation in the myeloid cell line, and generating imbalance in the
cell populations of the blood. The symptoms of the latter are the following: tiredness without reason,
low body weight, pallor, and skin spots. Most patients with CML do not present symptoms until the
most advanced stages of this cancer. Lin et al. reported an annual incidence of 34,179 cases and 24,054
deaths related to CML worldwide in 2017 [8]. By 2023, the American Cancer Society estimates that
one in 526 people will suffer in their lifetime from CML in the United States [9]. This disease is most
often diagnosed in people over 60 years of age with higher percentage in men.

One treatment available for CML, that decreases the rate of cancer cell proliferation, is Imatinib
(IM), which is an orally administered drug used to block the enzyme tyrosine kinase involved in cancer
cell proliferation, thus slowing cancer progression. Retrospective studies by Adattini et al. [10] on 86
patients with CML medicated with IM in the period 2001–2018 showed that treatment with IM induced
a positive effect on patient survival. Brümmendorf et al. [11], reported an estimated 5-year overall
survival rate greater than 90%. IM treatments have been extensively investigated and are considered
safe. An in vivo study in a mouse xenograft model showed that exosomes promoted the proliferation
and decreased the sensitivity of CML cells to IM, resulting in treatment resistance [12].

The CML originates in the bone marrow, in the presence of human bone marrow mesenchymal
stem cells (hBMMSC), these cells release nanovesicles of 30–150 nm in diameter called exosomes
(hBMMSC-Exo), endowed with a diverse load of proteins, lipids and nucleic acids [13]. hBMMSC-
Exo can stimulate tumor initiation and therapy resistance in cancer cells [14], due to their cell-cell
communicative function, i.e., the rate of cancer cell proliferation increases in the presence of exosomes
from hBMMSC. For this reason, it is necessary to explore how the proliferation dynamics develop in
the presence of hBMMSC-Exo and in IM-mediated therapy.

A classic way of quantifying cancer cell proliferation is through the volumetric tumor growth, for
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which mathematical models based on already established differential equations can be used. These
models describe the number of cells or tissue volume as a function of time, and they have the following
form:

M ≡
dV(t)

dt
= f (V(t), θ), (1.1)

where f is a function that characterizes the growth dynamics, V(t) is the tumour volume at time t,
and θ is a vector of parameters. Logistic and Gompertz models are widely used. These are expressed
mathematically in Table 1.

Table 1. Sigmoidal growth models.

Name Differential equation Solution

Gompertz model dV(t)
dt = rV(t) ln

(
K

V(t)

)
V(t) = Kee−rt ln

(
V0
K

)

Logistic model dV(t)
dt = rV(t)

(
1 − V(t)

K

)
V(t) = KV0

(K−V0)e−rt+V0

In these cases θ = (r,K), the parameters r and K represent the growth rate in cubic millimeters per
unit of time (mm3t−1) and the carrying capacity in mm3, respectively.

The parameter vector θ can be modified with the factors (1 + e j) or (1 − i j) with j = 1, 2, when
estimating the effect of a growth stimulant or inhibitor, such as Ex and IM, respectively. e, i ∈ [0, 1) are
interpreted as percentages of the stimulant or inhibitory effect on the parameters r and K. Therefore, the
growth models in Table 1 can be rewritten with effects, as shown in Table 2.

Table 2. Sigmoidal growth models with stimulant or inhibitory effects.

Name Differential equation

Gompertz model with stimulus dV(t)
dt = (1 + e1)rV(t) ln

(
(1+e2)K

V(t)

)
Gompertz model with inhibition dV(t)

dt = (1 − i1)rV(t) ln
(

(1−i2)K
V(t)

)
Logistics model with stimulus dV(t)

dt = (1 + e1)rV(t)
(
1 − V(t)

(1+e2)K

)
Logistic model with inhibition dV(t)

dt = (1 − i1)rV(t)
(
1 − V(t)

(1−i2)K

)

The aim of this work is to quantitatively estimate the effects of exosomes (hBMMSC-Exo) and
Imatinib (IM) on the growth rate and carrying capacity of CML. Five specific objectives are proposed:
First, to estimate the parameters of the CML tumor growth; second, to estimate the parameters of the
hBMMSC-Exo effect in CML; third, to estimate the parameters of the IM effect in CML; fourth, to
estimate the parameters of the combined Ex-IM effect in CML; and fifth, to determine the model with
the best predictive performance in the CML observations.
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2. Materials and methods

2.1. Experiment design: Tumor growth with treatments

To perform parameter estimation of the effect of hBMMSC-Exo and Imatinib on CML, we used
the observations made by Zhang et al. [12] with the human CML cell line K562. Four tumor growth
assays were performed by using twenty female BALB/c-un mice that were divided into four groups.
Each group of five mice received a subcutaneous injection of 200 ml into the front of the right rear
of the mice containing K562 cells, the following four treatments were performed for 40 days. Tumor
volume was measured every four days for a total of ten measurements per treatment. Tumor growth
was evaluated by tumor volume, which was calculated by using the modified ellipsoidal formula:
V = 0.5 × length × width2. The detailed procedure of the xenograft protocol can be found in Zhang et
al. [12]. The data are recorded in Figure 1.

K562IMEX

K562

K562IM

K562EX

Days after transplantation
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Figure 1. Experimental data of tumor growth are obtained from [12]. • K562: K562
tumorigenic cell growth, ⋆ K562IM: K562 tumorigenic cell growth with IM, ■ K562EX:
K562 tumorigenic cell growth with exosomes, | K562IMEX: 562 tumorigenic cell growth
with IM and exosomes.

2.2. Bayesian estimation

2.2.1. Statistical model

Let y = (y1(t1), y2(t2), . . . , yn(tn)) be the vector of n observations of tumor volume over time. The
following statistical model was considered:

yi(ti) = G(M(ti, θ)) + ε(ti), i = 1, 2, . . . , n, (2.1)
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where:

• yi(ti) is the dependent variable of the model and represents the tumor volume at time ti. for the four
treatments of the study.
• θ is the vector of parameters corresponding to each stage of the Bayesian estimation.
• G(M(ti, θ)) is the solution of the model M. For practical purposes, we obtained a numerical

solution using the Runge-Kutta fourth order method.
• ε(ti) is the random error at time ti, the errors are independent for each time, normally distributed

with zero mean and variance σ2.

2.2.2. Likelihood function

Considering the Gaussian assumption ε(ti) ∼ N(0, σ2), then yi(ti) ∼ N
(
G(M(ti, θ)), σ2

)
. For such a

reason, the likelihood function of θ based on y is given by the following equation:

L(θ | y) =
n∏

i=1

(
σ
√

2π
)−1

exp
{
−

(yi(ti) −G(M(ti, θ)))2

2σ2

}
. (2.2)

2.2.3. Posterior distribution

Bayesian statistics allows incorporating information or knowledge of the parameters to the inference
process. This information is specified by the researcher by means of a prior distribution denoted by
P(θ). The prior distribution takes into account the range of values that the parameter takes and can
assign a higher probability to a subset of those values or, in the absence of information, assign the same
probability to all values. For our case, the tumor growth rates r should be in the interval of [0, 1] and
K ≥ 0, and do not exceed 1500 mm3 over the 40 days of the study.

The Bayesian inference is based on the so-called posterior probability distribution, which is defined
by Bayes’ theorem as follows:

P(θ | y) =
L(θ | y)P(θ)

P (y)
, (2.3)

where

• P(θ | y) is the posterior probability of θ given a set of observations y.
• L(θ | y) is the probability of the observations y with specific value of the vector θ, that is, it is the

likelihood.
• P(θ) is the prior distribution.
• P(y) is a normalizing constant defined as

∫
p

L(θ | y)P(θ)dθ.

Note that the expression (2.3) is well defined if P(y) , 0, P(y) is constant, therefore, we can rewrite it as

P(θ | y) ∝ L(θ | y)P(θ). (2.4)

The Bayesian inference is based on the posterior distribution that summarizes the information in the
data and the prior information about the parameters. The mean or median of the posterior distribution is
very important to Bayesian inference, and by definition, they are obtained as a multidimensional integral
of the posterior distribution

E[θ | y] =
∫
· · ·

∫
θP(θ | y) dθ, (2.5)
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however, most of the time this integral is not possible to obtain analytically. This problem has been
solved using numerical methods such as Monte Carlo integration. A better approach is to use Markov
chains Monte Carlo (MCMC) that give the name to a group of algorithms to get a sample from a
probability distribution using a Markov chain. A Markov chain is a discrete stochastic process in which
the probability of an event depends only on the previous event and has the posterior distribution as its
equilibrium distribution. Some examples of MCMC are the Metropolis-Hastings algorithm and the
Gibbs sampling. A more sophisticated method and with better performance is the Hamiltonian Monte
Carlo (HMC).

2.2.4. Hamiltonian Monte Carlo (HMC)

We use the Hamiltonian Monte Carlo (HMC) sampler. HMC has proven to be a more efficient
sampler than the traditional ones. Its acceptance rate is a little less than twice the acceptance rate of
the Metropolis-Hastings algorithm [15]. This sampling technique is based on Hamiltonian mechanical
physics to sample high dimensionality distributions. The reader is referred to Betancourt et al. [16] for a
detailed description of the HMC technique.

2.2.5. Chain convergence criteria

Most MCMC algorithms, including HMC, have the desirable property to have the posterior distribu-
tion as its equilibrium distribution. The actual problem is to determine how many iterations are needed
to converge within an acceptable error. This is the reason why we need convergence diagnostics to know
if we have enough iterations to have a good approximation to the posterior distribution that will be used
for Bayesian inference.

To favor convergence we use four chains with a random init, and the following convergence diagnostic
criteria:

• Traceplot and density compose an empirical approach for convergence control consisting of
graphics of the simulated chain output to detect non-stationary behaviors [17]. The traceplot is a
time series plot of the iteration number vs the realizations of the Markov chain at each iteration.
There is convergence when the graph shows good mixing across chains. The density plot is a
non-parametric estimate of the density of each chain. There is convergence when the densities are
similar.
• Numerical diagnostic Gelman-Rubin’s diagnostic compares two estimations of the variance, inter-

chain and intra-chain. The ratio of the estimation of the variance gives two statistics: the potential
scale reduction factor (PSRF) (also called Rhat, R̂) and its credible interval. There is convergence
of the chains when the PSRF and the upper limit of its credible interval are close to one and less
than 1.2, respectively [18].

2.2.6. Bayes’ estimator

To make inferences, the following Bayes estimator is used

T B = min
T

E[L(T, θ)] = min
T

[∫
L(T, θ)P(θ | y)dθ

]
, (2.6)
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with the quadratic loss function L(T, θ) = (T − θ)2, we found the minimum at T = E [θ], i.e., the
Bayesian estimator obtained is the posterior mean T B = E(θ | y). We used this estimator to make
inferences on the posterior densities. The 95% credible interval (CrI) was calculated using the 2.5th and
97.5th percentiles.

2.2.7. Model comparison

Leave-one-out cross-validation (LOOCV) is a technique used to evaluate the predictive performance
of models, and it is mainly used for model comparison. LOOCV is the extreme case of k-fold cross-
validation when k = n data partitions are used. The data used only has n = 9 observations, that is, it
is a small sample. Using k < n partitions implies eliminating at least two observations, which leaves
an even smaller sample that can produce unreliable model parameter estimates. This technique, in a
Bayesian setting, fits the model with the exclusion of one observation and estimates the expected log
pointwise predictive density (ELPD) for the data out of the sample, in practice for a set y1, . . . , yn of
independent data of θ. The ELPD estimate is defined by the following expression:

elpdloo =

i=1∑
n

log p(yi | y−i) where p(yi | y−i) =
∫

p(yi | θ)p(θ | y−i)dθ. (2.7)

The reader is referred to Vehtari et al. [19] for a detailed description of the Bayesian LOOCV technique.
In practical terms the model with the highest elpdloo value is the model with the highest predictive
performance.

2.3. Statistical software

This work was done in the Julia programming language [20] using the libraries DifferentialEqua-
tions.jl [21] and turing.jl [22]. Parameter estimation of each model was done using four chains of 3500
iterations of the HMC, and a burning of the first 1000 samples.

The convergence diagnostics, Gelman-Rubin and trace plots, were performed by default in the
turing.jl package.

The posterior distributions were fitted by using Julia’s Distributions.jl package [23].
Once the models were fitted, Bayesian LOOCV was calculated using Julia’s Arviz.jl package [24]

which performs an exploratory analysis of Bayesian models.

2.4. Bayesian estimation stages and prior distributions

The Bayesian estimation of the parameters of a model for each data set comprises four stages.

1) First stage: The parameter vector θ = (r,K) for K562 tumor growth is estimated by using the models
in Table 1. Non-informative prior distributions are proposed in A1, see Table 3.

2) Second stage: We estimated the parameter vector θ = (r,K, i1, i2) for K562IM tumor growth by
using the models with inhibitory effect from Table 2. The prior distributions for r and K in the
second stage use the posterior distribution obtained in stage one. The posterior distribution for r is a
Beta distribution that is a generalization of the uniform prior from stage one, with hyperparameters
obtained by fitting the Beta distribution to the posterior distribution of r in stage one. The posterior
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distribution for K is a normal distribution because the posterior distribution obtained in stage one
has a symmetric shape and the hyperparameters are obtained by fitting a normal distribution to the
posterior distribution of K in stage one. Furthermore, since K is the carrying capacity, the possible
values of the normal distribution are restricted to the interval (10, 2500) because 10 is a value close
to the initial volume, and 2500 is twice the maximum observed volume. For the parameters i1 and i2

we proposed non-informative priors in A2 that correspond to a uniform distribution in the interval
(0, 1); see Table 4.

3) Third stage: We estimated the parameter vector θ = (r,K, e1, e2) for K562EX tumor growth by using
the models with stimulating effect from Table 2. Prior distributions for r and K were selected in a
similar way to the second stage. For the parameters e1 and e2 we proposed non-informative priors in
A3 that correspond to a uniform distribution in the interval (0, 1); see Table 4.

4) Fourth stage: Identical to the second stage, but with the K562IMEX observations.

An overview of the methodology is presented in Figure 2.

K562

K562IM

K562EX

K562IMEX

First stage

Second stage

Third stage

Fourth stage

A1

A2

P1

P2

P4

P3A3

A4

Figure 2. Stages of Bayesian parameter estimation: A1, A2, A3 and A4 are the prior
distributions and P1, P2, P3 and P4 are the posterior distributions.

Remark: Each stage of the estimation requires a prior distribution for σ. In all cases it will be
Inverse-Gamma (0.001, 0.001). The prior distributions of the first stage can be observed in Table 3.

Table 3. Prior distributions of the first stage.

Parameter Distribution Gompertz model Logistic model

r Uniform (α, β)1 (0, 1) (0, 1)

K Uniform (α, β) (500, 2000) (500, 2000)

σ Inverse-Gamma (α, β)2 (0.001, 0.001) (0.001, 0.001)
1 For the uniform distributions, α and β are the minimum and maximum values.
2 For the Inverse-Gamma distribution, α and β are shape and scale parameters, respectively.
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Table 4. Prior distributions to the second, third, and fourth stages.

Parameter Distribution Gompertz model with inhibition Logistic model with inhibition

r Beta (α, β)1 (424.7, 6371.9) (818.91, 3306.4)

K Nt (µ, σ, α, β)2 (1492.9, 115.4, 10, 2500) (951.4, 47.0, 10, 2500)

i1 Uniform (α, β)3 (0, 1) (0, 1)

i2 Uniform (α, β) (0, 1) (0, 1)

e1 Uniform (α, β) (0, 1) (0, 1)

e2 Uniform (α, β) (0, 1) (0, 1)

σ Inverse-Gamma (α, β)4 (0.001, 0.001) (0.001, 0.001)
1 For the beta distributions, α and β are the shape parameters.
2 For the truncated normal distribution, µ, σ, α and β are mean, standard deviation, lower and upper bound of the truncation interval,

respectively.
3 For the uniform distributions, α and β are the minimum and maximum values, respectively..
4 For the Inverse-Gamma distribution, α and β are shape and scale parameters, respectively.

3. Results

3.1. First stage

We show the fitting of Gompertz and logistic models to K562 tumorigenic cell growth (see Figure 3).
Bayesian estimates of parameters r and K are presented in Table 5. The HMC converged as indicated
by traces, densities, and the Gelman-Rubin statistic, which was less than 1.2 [18] for all the parameters
in the models (Figures A1 and A2).

(a) Gompertz model (b) Logistic model

Figure 3. Fitting of models to K562 tumorigenic cell growth: In the left subfigure we show
the fit of the Gompertzian growth model and in the right subfigure we show the fit of the
logistic growth model. The dotted lines are the 95% credibility band, solid line is the posterior
mean and thin gray lines are 300 posterior replicates.
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Table 5. Bayesian parameter estimates for K562 cell growth.

Gompertz model Logistic model

Parameter Mean 95% CrI Mean 95% CrI

r 0.06 (0.05, 0.06) 0.19 (0.18, 0.21)

K 1492.87 (1294.25, 1752.86) 951.40 (863.84, 1050.11)

σ 8.9 (5.4, 15.0 ) 4.4 (2.9, 7.0)

Positive r values for the Gompertz model and logistic model indicate a tumor growth of 0.06 and
0.19 volume units per time unit. The K values represent the mean value of the maximum volume limit
at the 40th day. Credibility intervals at a level of 95% for K of the models do not overlap, indicating a
significant difference in the estimated carrying capacity between the models.

Model selection: The Gompertz model obtained a value of elpdloo = −59.34 and the logistic model
a value of elpdloo = −59.99. It can be stated that the Gompertz model presents a higher predictive
performance for the dynamics of K562 tumor growth, however, both models present a statistically equal
predictive performance.

In Figure 3, the solid lines closely follow the observed data points. Although the Gompertz model
performs slightly better in terms of predictive accuracy, the difference is small. This suggests that both
models reasonably capture the overall trend and underlying processes of tumor growth. The values of r
and K obtained indicate that the logistic model suggests faster growth but a lower carrying capacity for
the K562 tumor volume compared to the Gompertz model, which predicts slower growth but a higher
carrying capacity. The posterior distributions of r and K will be used as a priori distributions in stages 2,
3 and 4 to estimate the effects of the treatments.

3.2. Second stage

We show the fit of Gompertz and logistic models to K562 tumorigenic cell growth with IM (see
Figure 4). Bayesian estimates of parameters r, K, i1 and i2 are presented in Table 6. The HMC converged
as indicated by traces, densities and the Gelman-Rubin statistic, which was less than 1.2 [18] for all the
parameters in the models (Figures A3 and A4).

The estimates of r and K for the models with inhibition remain significantly the same as the estimates
obtained in the first stage. The dynamics of tumor growth are affected by drug treatment and the effects
are represented in parameters i1 and i2 for each model.

Model selection: The Gompertz model with inhibition obtained a value of elpdloo = −41.37 and the
logistic model with inhibition obtained a value of elpdloo = −34.62. It can be stated that the logistic
model presents a higher predictive performance for K562IM tumor growth dynamics.

For tumor growth dynamics under the effect of Imatinib drug (K562IM), the logistic model with
inhibitor presents higher predictive performance, the drug generates an inhibitory effect of i1 = 0.06 on
the growth rate of normal tumor volume r = 0.19, which means that in the presence of the drug, the
growth rate is 93.5% slower. The carrying capacity K = 949.22 for the logistic model is affected by
i2 = 0.90, which indicates that the Imatinib treatment reduces the tumor volume to approximately 10%
in the first 40 days.
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(a) Gompertz model with inhibition (b) Logistic model with inhibition

Figure 4. Fitting of models to K562 tumorigenic cell growth with IM: In the subfigure (a) we
show the fit of Gompertzian growth model and in the subfigure (b) we show the fit of logistic
growth model. The dotted lines are the 95% credibility band, solid line is the posterior mean
and thin gray lines are 300 posterior replicates.

Table 6. Bayesian parameter estimates for K562 cell growth with IM.

Gompertz model with inhibition Logistic model with inhibition

Parameter Mean 95% CrI Mean 95% CrI

r 0.06 (0.05, 0.07) 0.19 (0.20, 0.21)

K 1484.46 (1256.35, 1709.98) 949.22 (856.87, 1039.54)

σ 8.97 (5.40, 15.04 ) 4.48 (2.94, 7.03)

i1 0.05 (0.001, 0.271 ) 0.06 (0.003, 0.156)

i2 0.90 (0.86, 0.92 ) 0.90 (0.89, 0.91)

3.3. Third stage

We show the fit of Gompertz and logistic models to K562 tumorigenic cell growth with exosome
(see Figure 5). Bayesian estimates of parameters r, K, e1 and e2 are presented in Table 7. The HMC
converged as indicated by traces, densities, and the Gelman-Rubin statistic which was less than 1.2 [18]
for all the parameters in the models (Figures A5 and A6).

The estimates of r and K for the models with stimulation remain significantly the same as the
estimates obtained in the first stage. The dynamics of tumor growth are affected by exosomes treatment.
The effect are represented in the parameters e1 and e2 for each model.
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(a) Gompertz model with stimulus (b) Logistic model with stimulus

Figure 5. Fitting of models to K562 tumorigenic cell growth with exosomes: In the left
subfigure we show the fit of Gompertz model and in the right subfigure we show the fit of
logistic growth model. The dotted lines are the 95% credibility band, solid line is the posterior
mean and thin gray lines are 300 posterior replicates.

Model selection: The Gompertz model with stimulus obtained a value of elpdloo = −64.82 and the
logistic model with stimulus obtained a value of elpdloo = −58.45. It can be stated that the logistic
model with stimulus presents a higher predictive performance for K562EX tumor growth dynamics.

Tumor growth under the effect of hBMMSC-Exo exosomes (K562EX), the logistic model with
stimulation presents higher predictive performance against the Gompertz model with stimulation. The
presence of hBMMSC-Exo generates an effect of e1 = 0.08 on the original rate r = 0.1975, which
means that the growth rate of tumor volume is 0.83 faster. The effect e2 = 0.40 on the original carrying
capacity K = 948.08 indicated in the presence of hBMMSC-Exo the tumor volume is expanded to 40%
in the first 40 days, which allows us to conclude that the growth in tumor volume will be faster and
potentially greater than the tumor growth without exosomes.

Table 7. Bayesian parameter estimates for K562 cell growth with exosomes.

Gompertz model with stimulus Logistic model with stimulus

Parameter Mean 95% CrI Mean 95% CrI

r 0.06 (0.05, 0.06) 0.19 (0.18, 0.20)

K 1492.22 (1261.29, 1726.19) 948.08 (850.44, 1041.81)

σ 52.80 (35.25, 82.42 ) 36.96 (24.39, 57.74)

e1 0.08 (0.004, 0.214 ) 0.08 (0.01, 0.16)

e2 0.34 (0.15, 0.54 ) 0.40 (0.25, 0.57)
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3.4. Fourth stage

We show the fit of Gompertz and logistic models to K562 tumorigenic cell growth with IM and
exosomes (see Figure 6). Bayesian estimates of parameters r, K, i1 and i2 are presented in Table 8. The
HMC converged as indicated by traces, densities and the Gelman-Rubin statistic, which was less than
1.2 [18] for all the parameters in the models (Figures A7 and A8).

The estimates of r and K for the models with stimulus remain significantly the same as the estimates
obtained in the first stage. The dynamics of tumor growth are affected by the combined drug treatment
and exosomes. The effect is represented in the parameters i1 and i2 for each model.

Model selection: The Gompertz model obtained a value of elpdloo = −63.14 and the logistic model
obtained value of elpdloo = −59.00. It can be stated that the logistic model presents a higher predictive
performance for the dynamics of K562 tumor growth and K562 cell growth with IM and exosomes.
Once again, the difference between the values of elpdloo is not much and both models are good in their
predictive performance.

For Imatinib-exosomes mixture treatment (K562IMEX), the logistic model with inhibitor presents
higher predictive performance. The mixture generates an inhibitory effect of i1 = 0.17 on the growth
rate of tumor volume r = 0.19, which means that in the presence of the mixture treatment, the growth
rate is 0.82 slower. The carrying capacity K = 984.92 for the logistic model are affected at i2 = 0.045.
The Imatinib-exosome mixture treatment reduced tumor volume to 95%.

Gompertz fitted model

(a) Gompertz model with inhibition

Logistic fitted model

(b) Logistic model with inhibition

Figure 6. Fitting of models to K562 tumorigenic cell growth with IM and exosomes: In the
subfigure (a) we show the fit of the Gompertzian growth model and in the subfigure (b) we
show the fit of the logistic growth model. The dotted lines are the 95% credibility band, solid
line is the posterior mean and thin gray lines are 300 posterior replicates.
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Table 8. Bayesian parameter estimates for K562 cell growth with IM and exosomes.

Gompertz model with stimulus Logistic model with stimulus

Parameter Mean 95% CrI Mean 95% CrI

r 0.06 (0.05, 0.06) 0.19 (0.18, 0.21)

K 1572.03 (1358.80, 1778.83) 984.92 (910.96, 1061.79)

σ 58.08 (37.82, 91.83 ) 28.91 (19.00, 46.18)

i1 0.16 (0.03, 0.26 ) 0.17 (0.11, 0.23)

i2 0.08 (0.003, 0.267 ) 0.045 (0.001, 0.1324)

4. Conclusions

The Bayesian approach used provides the advantage of working with few observations of tumor
growth and the possibility of using prior distributions plays a crucial role in the estimation of the effects
generated by the drug and exosomes.

As expected, the Imatinib treatment reduces the tumor volume but the presence of exosomes
(hBMMSC-Exo) in the tumor microenvironment leads to a significant increase in the growth of chronic
myeloid leukemia xenografts in mice. Furthermore, the exosomes partially reduce the effectiveness
of the Imatinib drug in tumor growth reduction. These quantitative results align with the qualitative
observations made by Zhang et al. [12]. Exosomes found in the tumor microenvironment appear to play
a role in facilitating intercellular communication of cancer-related signals.

The conclusions obtained are limited to the xenograft protocol studied. It is worth mentioning that
the study of tumors is a complicated phenomenon involving biochemical signals, among other processes
that are not addressed in this work.
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Appendix

In this Appendix, the convergence criteria of the sigmoidal growth models are discussed. The chains
of model parameters show good mixing and the R̂ values indicate the convergence of the chains, as
shown in Figures A1 to A8.
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A1. Markov chains and parameter density for K562 tumorigenic cell growth

Figure A1. Traces and densities for the Gompertz model. Gelman-Rubin diagnostic: R̂σ = 1.0,
R̂r = 1.0 and R̂K = 1.0. All R̂ are less than 1.2 [18].

Figure A2. Traces and densities for the logistc growth model. Gelman-Rubin diagnostic:
R̂σ = 1.0, R̂r = 1.0 and R̂K = 1.0. All R̂ are less than 1.2 [18].
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A2. Markov chains and parameter density for K562 tumorigenic cell growth with IM

Figure A3. Traces and densities for the Gompertz model with inhibition. Gelman-Rubin
diagnosis: R̂σ = 1.01, R̂r = 1.00, R̂K = 1.00, R̂i1 = 1.03 and R̂i2 = 1.04. All R̂ are less than
1.2 [18].
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Figure A4. Traces and densities for the logistic model with inhibition. Gelman-Rubin
diagnostic: R̂σ = 1.00, R̂r = 1.00, R̂K = 1.00, R̂i1 = 1.00 and R̂i2 = 1.01. All R̂ are less than
1.2 [18].
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A3. Markov chains and parameter density for K562 tumorigenic cell growth with exosomes

Figure A5. Traces and densities for the Gompertz model with stimulus. Gelman-Rubin
diagnostic: R̂σ = 1.00, R̂r = 1.00, R̂K = 1.01, R̂e1 = 1.01 and R̂e2 = 1.00. All R̂ are less than
1.2 [18].
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Figure A6. Traces and densities for the logistic growth model with stimulus. Gelman-Rubin
diagnostic: R̂σ = 1.00, R̂r = 1.00, R̂K = 1.01, R̂e1 = 1.00 and R̂e2 = 1.01. All R̂ are less than
1.2 [18].
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A4. Markov chains and parameter density for K562 tumorigenic cell growth with exosomes

Figure A7. Traces and densities for the Gompertz model with inhibition. Gelman-Rubin
diagnostic: R̂σ = 1.00, R̂r = 1.00, R̂K = 1.00, R̂i1 = 1.00 and R̂i2 = 1.00. All R̂ are less than
1.2 [18].
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Figure A8. Traces and densities for the logistic model with inhibition. Gelman-Rubin
diagnostic: R̂σ = 1.00, R̂r = 1.00, R̂K = 1.00, R̂i1 = 1.00 and R̂i2 = 1.00. All R̂ are less than
1.2 [18].
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