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Abstract: Breast cancer seriously threatens women’s physical and mental health. Mammography is 
one of the most effective methods for breast cancer diagnosis via artificial intelligence algorithms to 
identify diverse breast masses. The popular intelligent diagnosis methods require a large amount of 
breast images for training. However, collecting and labeling many breast images manually is extremely 
time consuming and inefficient. In this paper, we propose a distributed multi-latent code inversion 
enhanced Generative Adversarial Network (dm-GAN) for fast, accurate and automatic breast image 
generation. The proposed dm-GAN takes advantage of the generator and discriminator of the GAN 
framework to achieve automatic image generation. The new generator in dm-GAN adopts a multi-
latent code inverse mapping method to simplify the data fitting process of GAN generation and 
improve the accuracy of image generation, while a multi-discriminator structure is used to enhance the 
discrimination accuracy. The experimental results show that the proposed dm-GAN can automatically 
generate breast images with higher accuracy, up to a higher 1.84 dB Peak Signal-to-Noise Ratio (PSNR) 
and lower 5.61% Fréchet Inception Distance (FID), as well as 1.38x faster generation than the state-
of-the-art. 

Keywords: breast X-ray image; Generative Adversarial Network; multiple latent code inversion; 
multiple discriminators 

 



19486 

Mathematical Biosciences and Engineering  Volume 20, Issue 11, 19485–19503. 

1. Introduction  

Breast cancer is a phenomenon of uncontrolled proliferation of breast epithelial cells under the 
action of various carcinogens, and its mortality rate is up to 33% of the total cancer deaths [1]. Breast 
X-ray photography is an effective method for early breast cancer screening based on the doctor’s 
diagnosis of the different signs in the mammary X-ray image [2], where breast masses are the most 
obvious pathological signals [3,4]. Due to the advantages of the high-precision of breast X-ray images 
to improve the detection accuracy, mammography has become one of the most effective methods for 
breast diagnosis. With the increasingly widespread application of computer-aided medical diagnosis 
technology [5], breast assisted diagnosis technology based on breast X-ray images applies artificial 
intelligence algorithms to solve many problems such as mass detection, mass segmentation and mass 
classification. For example, Redmon et al. proposed a faster Region based Convolutional Neural 
Network (R-CNN) [6] to achieve tumor target area detection. Long et al. simplified the feature 
extraction part of the segmentation model based on fully convolutional networks (FCN) [7], effectively 
improving the performance of tumor segmentation. Arevalo et al. used neural networks for hierarchical 
learning of tumor features [8] to improve the accuracy of tumor classification. These artificial 
intelligence algorithms on breast X-ray images can assist the detection and diagnosis of breast 
cancer [9], simplify the diagnosis process of doctors and improve the accuracy of diagnosis.  

In order to improve the accuracy of mass detection, and segmentation, a large number of high-
precision breast image data sets are usually required as fundamental support. However, it is challenging 
to use the traditional data augmentation methods such as medical device collection because of some 
difficult problems with the long time requirements, differences in collection devices, loss of data 
information and the efforts of doctors. Therefore, achieving high-precision breast medical image 
generation can provide valid datasets for medical assisted diagnosis technology, as well as alleviates 
the pressure of modern medical image data scarcity.  

Generative Adversarial Networks (GAN) is a mainstream deep learning framework for image 
generation. GAN was first proposed by Ian Goodfellow and his team in 2014 [10]. It establishes a 
game relationship between the generator and discriminator, aiming to optimize the output of the 
generator to approximate the true data distribution. Subsequently, the enhanced GAN versions such as 
Wasserstein GAN (WGAN) could address issues of training instability and mode collapse [11]. 
Subsequently, the Conditional Generative Adversarial Networks (cGANs) allow the generator to 
generate samples based on specific conditions [12], and further expand the applications of GANs. 
Since 2017, the application of GAN in the field of medical imaging has significantly increased [13]. 
As for the breast medical imaging, GANs have also played a significant role in intelligent medical 
diagnosis. More importantly, GAN [10] and various variant GANs [14–20] have been proposed for 
medical image augmentations. These enhanced GANs try to modify the loss functions [14–16], add 
the pair training [17,18], combine GAN with deep convolution framework [19], adopt multiple GANs 
and scalable ScoreMix for different applications [20] to improve the image generation quality or 
speed, which further inspire their applications or new GANs [21–29] with the combination of these 
techniques for medical images such as bone marrow cell, brain tumors, fundus and cardiac images. 
However, the good balances of generation quality and speed in these enhanced GANs are mostly 
ignored. Meanwhile, these intelligence assisted medical imaging methods mostly focus on lung, heart, 
eyes in magnetic resonance (MRI) images and computer tomography (CT) images, and they cannot be 
directly transferred to the increasing X-ray breast images for automatic generation. Therefore, we 
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focus on how to enhance the GAN to achieve rapid automatic generation of high-precision breast 
X-ray images. 

To evaluate experimental results and verify the effectiveness of X-ray images generators, we 
select universal and applicable metrics as more significant. Peak signal-to-noise ratio (PSNR) [30] is 
an objective metric for image quality evaluation. Based on the square of the difference between two 
images, sum and average to obtain the mean square error. Then, the mean square error is used to obtain 
the corresponding PSNR. The larger the value of the PSNR, the closer the generated image is to the 
original image. Fréchet inception distance (FID) [31] uses an inception network to extract features 
from samples, obtaining the feature spaces of the generated and real samples, and modeling the feature 
spaces. The diversity score of the image is represented by calculating the distance between the 
corresponding feature spaces. Therefore, considering the difficulties in obtaining medical images and 
the need for a large number of datasets when combined with artificial intelligence algorithms in the 
field of medical images, we propose an enhanced GAN, which can accurately and quickly capture 
multiple tumor information of different sizes and shapes in breast images. The main contributions include:  

 We design a fast and accurate framework dm-GAN for automatic breast image generation. The 
proposed novel dm-GAN model takes advantages of a multi-latent code inversion generator 
and a multi-discriminator to improve the speed and accuracy of breast image automatic 
generation. 

 We implement the breast image generator dm-GAN on the open-source Digital Database for 
Screening Mammography (DDSM) dataset to verify its effectiveness. 

 We prove that our proposed dm-GAN can automatically generate breast images with higher 
accuracy (up to 1.84 dB higher PSNR and 5.61% lower FID) and 1.84x faster via the 
qualitative and quantitative results comparison. 

The paper is organized as follows: Section 1 gives the brief introduction while Section 2 depicts 
the related work. Section 3 details the proposed method of dm-GAN. Section 4 shows the 
comprehensive results and analysis. The conclusion is summarized in Section 5.  

2. Related work 

GANs have dominated in the field of automatic image generation and augmentation in the past 
few years. Various GANs have been designed to further improve the image quality or generation speed 
since GAN was first proposed to generate images through adversarial learning between the generator 
and the discriminator. In order to achieve higher accuracy in generating images, people have attempted 
to optimize the loss function. Nowozin et al. proposed an F-GAN [12] framework for calculating f-
divergence, Mao et al. proposed an LSGAN framework for calculating least squares loss [15], and 
Martin Arjovsky proposed a WGAN framework with Wasserstein distance between two distributions 
as a loss function [11]. EID-GAN designs a new penalty function to handle the imbalanced data 
augmentation [16]. Conditional generation is handled by paired data. In order to achieve control of the 
GAN generated results, Isola et al. proposed the pix2pix framework [18], but it requires paired training 
data. Therefore, Zhu et al. imitated the generator and discriminator structure of pix2pix and proposed 
the cycleGAN architecture [17]. Multiple GANs or combined GAN with existing work are considered 
for higher speed. Two GANs are used to learn the mapping from the source domain to the target domain 
and from the target domain to the source domain, which can effectively avoid the data pair limits of 
the pix2pix framework. The dual GAN structure requires more parameters and thus make the training 
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unstable. To solve the problem of training stability, Chintala et al. proposed a deep convolution 
framework DCGAN [19] that combines CNN and GAN to improve the stability of model training. To 
reduce overfitting issues during the training process, the ScoreMix method effectively increases the 
diversity of data and reduces the overfitting problem using the convex combinations of the real 
samples [20]. Based on the excellent performance of a series of GAN variants in the field of image 
generation, various GANs have also been used in the medical field for automatic generation [13] and 
segmentation to solve practical problems such as highly uneven distribution of medical data and 
difficulty in assisting doctors in obtaining better diagnosis.  

Breast X-ray images can visually present the internal structure of breast tissue, and determine 
whether a lump is benign or malignant by observing the shape, size and smoothness of the shaded 
areas in the image. In order to improve the discrimination ability of suspected tumors, the breast X-
ray image enhancement algorithm [17] does not to change the relative brightness between the breast 
image background and suspected disease areas. By enhancing the brightness of the edge areas and 
performing routine histogram equalization processing, it ensures that most of the collected grayscale 
values belong to medium to low grayscale areas, thereby enhancing the contrast between the breast 
background and suspected disease areas. In order to achieve automatic classification and labeling of 
suspected disease areas in breast X-ray images, Radford et al. [19] establish a generative adversarial 
network structure based on weak supervised learning for suspected disease areas in pathological 
images, and screens pathological images with labeled data as a training set. Then, by training the 
discriminant network structure, relevant features that can distinguish between real data and generated 
data are extracted to achieve classification and labeling.  

For the automatic generation of breast X-ray images, Madani et al. applied the DCGAN 
architecture with relatively stable training to chest X-ray image synthesis [24], mitigating the problem 
of pattern collapse during GAN training and improving the quality of image generation. GAN and 
related variants also contribute to the automatic generation of medical images in other formats such as 
CT images and MR images. Nie et al. used a novel GAN framework to synthesize CT medical images 
from MR medical images through the method of context awareness [21]. Wolterink et al. [22] applied 
the simple pix2pix framework into CT image noise reduction. Jiang et al. [23] used the cycleGAN 
composed of two original GANs to generate lung CT images and MR images. Hu et al. [25] used 
Wasserstein distance as the loss function of the WGAN framework for cell-level medical image 
generation and achieved good results in the task of bone marrow cell classification. AsynDGAN 
modified the discriminator structure and used the multi-discriminator framework to generate brain 
tumor images for accurate brain tumor segmentation [26]. 3D brain magnetic resonance imaging is 
augmented by deep convolutional refined auto-encoding alpha GAN to generate more realistic 
samples [27]. A novel framework for generating an ICGA (Indocyanine Green Angiography) from a 
fundus image using GAN is proposed to examine eye diseases [28]. We also finish an adversarial semi-
supervised learning framework for cardiac image segmentation [29]. 

However, these related works on GANs are relatively mature for the generation of MR medical 
images and CT medical images, but there are less works on the generation of X-ray images, mostly 
focusing on the segmentation and classification of breast pathology images. Inspired by these efforts 
to improve the accuracy or speed of image enhancement, we have designed and implemented a fast, 
accurate and automatic breast X-ray image generation method, dm-GAN. Based on the traditional 
GAN network structure, the design generator adopts a multi latent code inverse mapping structure, 
learning the target image inverse mapping to multiple hidden code distributions in the latent space, and 
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transmitting the effective information provided by the hidden code during the generation process. At 
the same time, a multi-discriminator structure is designed to effectively alleviate the pattern collapse 
problem of multiple samples mapping to the same distribution caused by a single discriminant loss, 
significantly improving the quality of generated images. In addition, asynchronous data parallelism is 
adopted during the training process to train multiple discriminators in dm-GAN, which accelerate the 
generation procedure. 

3. Proposed method dm-GAN 

3.1. dm-GAN framework  

The proposed dm-GAN is a distributed multi-latent code inverse mapping generation framework, 
which can generate high-precision breast X-ray images quickly and automatically as Figure 1 shows. 

 

Figure 1. The overall framework of dm-GAN. G1 represents the inverse mapping process, 
input real image x, noise z and use of G1 network for inversion. G2 learns the image data 
distribution corresponding to the latent code to generate breast images. Multiple 
discriminators include {D1, D2,...Dn} while the discriminator learns the different 
information between the real images and synthetic images from G2. 

Based on GAN, dm-GAN adds a multi-latent code inversion method to the generative network 
so that the generated multiple latent codes can carry more breast image information. Through G2 fitting 
the real image data distribution corresponding to the multi-latent code in G1, dm-GAN can effectively 
capture feature details in the breast image. Unlike the discriminator of traditional GAN using single-
layer features to express image information, the proposed dm-GAN model adopts a multi-discriminator 
structure including {D1, D2,…Dn}. Each discriminator first accesses its own data and judges the 
authenticity of the input image. Then the average loss of multiple discriminators is fed back to the 
generator, which can effectively prevent the generated images from tending to the same distribution.  

3.2. Multi-latent code inversion-based generator 

The generator in dm-GAN includes G1 inversion and G2 generator, as is shown in Figure 2. G1 
adopts a multi-latent code inverse mapping method. The multi-latent code inverse was proposed in 
mGAN prior model [32], which uses a pre-trained GAN model to inversely map a given image back 
to the latent space for multiple latent codes. The previous inverse mapping methods focus on 
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optimizing the latent code from the perspective of gradient descent [33–35], and learning other 
encoders to map from the image space back to the latent space [36]. Unlike the single-latent code, 
multi-latent codes can inversely map more complete feature information into the image. Therefore, G1 
adopts the multi-latent code inversion, and the combined latent code after inversion of each picture is 
the input of the sub-generator G2. 

 

Figure 2. The generators in dm-GAN. The left is the overall generator structure of dm-
GAN, while the middle is the G1 inversion, and the right one is the G2 generator. G1 
inversion builds the intermediate feature space F (), set the index l for performing feature 
synthesis, and introduce adaptive channel importance coefficients ሼ𝜕௡ሽ௡ୀଵ

ே  for input 
variables ሼ𝑧௡ሽ௡ୀଵ

ே  as weighted and finally output ∑ 𝐹𝑛
𝑙 ⋅ 𝛼𝑛

𝑁
𝑛ൌ1 . G2 generator can further 

use the output of G1 as the input of G2, construct two convolutional layers with a step size 
of 2, then increase the number of residual blocks in the middle layer, and finally 
generate the image 𝐺ሺ𝑧ሻ through three layers of convolution (including two layers of 
transposed convolution). 

The G2 generator adopts the deep residual network [36]. First, the G2 generator constructs two 
convolutional layers with a step length of 2, then increases the number of residual blocks in the middle 
layer, and finally passes through three convolution layers (including two transposed convolution layers) 
to generate images. In a word, the proposed dm-GAN model can learn the joint distribution from 
different datasets belonging to different medical entities, and achieve high-precision breast image 
generation through the sub-generator G1 and the sub-generator G2. 
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3.3. Discriminator architecture 

 

Figure 3. The discriminator structure of dm-GAN. 𝑥𝑖௦ଵ represents the real image of 𝑥௜ 
in the 𝑠ଵ subset, 𝑥𝑗௦௠ represents the real image of 𝑥௝ in the 𝑠௠ subset, G(z) represents 
the false data generated by the generator after inverse learning x and 𝐷ଵ/𝐷ே represents 
one of the N discriminators, which determines x and G(z) and generates loss values G_loss, 
D_loss. 

To accelerate the generation speed with guaranteed accuracy, multiple discriminators are used in 
the proposed dm-GAN as shown in Figure 3. The discriminator in GANs could characterize the 
differences between the generated image and the real image, which affects the accuracy of identifying 
true and false samples [37]. The proposed dm-GAN uses multiple discriminators, which is inspired by 
the idea of multiple discriminators in AsynDGAN [26]. The multiple discriminators in the dm-GAN 
network are composed of multiple independent PatchGAN discriminators. Each discriminator includes 
multiple convolutional layers. The discriminator judges the generated breast images and the real 
images by learning the feature distribution in the sub-dataset, and outputs an N-dimensional matrix. 
Each value in the matrix corresponds to a fixed-size block in the original image [38]. It is assumed that 
the pixels of each small block are independent [39] in the Markov random field. The quantized output 
of the true and false values of small blocks helps to capture the high-frequency details in the breast 
image, and can process images with any size. 

The dm-GAN discriminator adopts asynchronous training and makes good use of the data parallel 
mode for training. Each discriminator accesses the real data stored in its own node and the data 
generated by the generator and provides a sub-dataset as conditional input. The data generated by the 
generator is determined by multiple discriminators to determine the probability of belonging to the 
associated real sub-dataset. 
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3.4. Objective function of dm-GAN 

In the proposed dm-GAN model, G1 uses a pre-trained model to reverse map the target image to 
the latent space, and generates multiple latent codes that can fit the data distribution of different regions 
of the target image. G1 optimizes the adaptive channel importance and multi-latent code by calculating 
the reconstruction loss between the generated image and the original image. The multi-latent code 
generated by G1 is used as the input of G2 to build the mapping relationship (G ()) between the multi-
latent code with real data distribution to generate images. Then the real image x, the generated image 
G (x) and the real data y in each subset are used as the input of the discriminator. Multiple independent 
discriminators learn the characteristics of the real data y in each subset to judge the probability that the 
input image belongs to the subset. 

According to the analysis of the input and output of the generator as well as the discriminator in 
dm-GAN, it is concluded that the real data x in any subset obeys a mixed distribution as follows: 

𝑠ሺ𝑥ሻ ൌ ∑ π௝𝑠௝௝∈ሾேሿ ሺ𝑥ሻ        (1) 

The discriminator Dj corresponding to each sub-dataset receives the data generated by the 
previous sub-set sj(x) and the real data in the sub-dataset sj(x). Therefore, Dj loss is only related to sj(x), 
and we return the losses generated by N discriminators and feedback to the generator in Eq (2): 

min
ீ

𝑚𝑎𝑥
஽భ:஽ಿ

𝑉ሺ𝐷ଵ:ே, 𝐺ሻ ൌ ∑ 𝜋௝ ቄ𝐸௫~௦ೕሺ௫ሻ𝐸௬~௣೏ೌ೟ೌ൫𝑦ห𝑥൯ൣ𝑙𝑜𝑔 𝐷௝ ሺ𝑦|𝑥ሻ൧ቅ    ൅𝐸
௬
∧

~௣௬
∧

ሺ௬
∧

|௫ሻ௝∈ሾேሿ ሾ𝑙𝑜𝑔ሺ 1 െ

𝐷௝ሺ𝑦
∧

|𝑥ሻሻሿ (2) 

The objective function can be understood as a problem of maximizing and minimizing the optimal 
solution. The real data x obeys the mixed distribution sj(x), the conditional input y means that the real 
data Pdata is divided into N sub-datasets, D1:N includes D1, D2…DN, all the N independent discriminators, 
where each sub-discriminator Dj performs data on the data generated by the generator and the real data. 
The discriminator produces a discriminant loss logDj(y|x), while the discriminant loss propagates back 
to the generator to produce a generator loss log(1-Dj(y|x)). Nash balance is achieved by optimizing the 
generator and discriminator losses. 

3.5. dm-GAN algorithm 

The proposed dm-GAN adopts an alternate training method to continuously optimize the 
parameters of the generator and discriminator models, as Algorithm 1 depicts, so that the final model 
can generate high-precision breast images very well.  

As is shown in Algorithm 1 of our proposed dm-GAN, the line 1 to line 4 give the input of the 
generator and initialize the parameters. By extracting m sample image datasets X as the input of the 
generator and initializing N latent codes and weight factors, G1 completes the inversion of m sample 
images to obtain the corresponding combined latent code, and uses them as the input of the G2 network. 
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Algorithm 1 Training of dm-GAN 
Input: Real image of breast lesions with mass, calcification and so on. 
Output: Generated high-precision breast images 

1) Extract m samples X=ሼ𝐱𝟏
𝐣 , . . . , 𝐱𝐦

𝐣 ሽ from the mixed distribution sj(x) as the input of the 

generator; 
2) Initialize N latent codes 𝒛𝟏, 𝒛𝟐, … , 𝒛𝑵, where different latent code captures the features 

𝑭𝟏
𝒍 , 𝑭𝟐

𝒍 , … , 𝑭𝑵
𝒍  of the middle layer of m sample images and initialize the weight factors 

𝜶𝟏, 𝜶𝟐, … , 𝜶𝑵; 

3) ∑ ሼ𝑭𝒏
ሺ𝒍ሻሽ𝒊,𝒋,𝒄 ൈ ሼ𝜶𝒏ሽ𝒄

𝑵
𝒏ୀ𝟏  ;   // Adaptive weighted fusion of middle layer features to 

maintain semantic consistency 
4) ∑ 𝑭𝒏

𝒍 ⊙ 𝜶𝒏
𝑵
𝒏ୀ𝟏 ; // Use the obtained multiple sets of hidden codes as input to G2 

5) Set up N discriminators and start training the dm-GAN network model; 
6) for epoch in numbers: 
7) for k in epoch_D: 
8) for Dj in D[N]: 

9) m samples X=ሼ𝐱𝟏
𝐣 , . . . , 𝐱𝐦

𝐣 ሽ corresponding latent code as the input of G2 

10) Select m real data Y=ሼ𝐲𝟏
𝐣 , . . . , 𝐲𝐦

𝐣 ሽ including X as the input of the Dj 

11) G generates m sample data as the input of the discriminator Dj 
12) Use stochastic gradient ascent to update each discriminator Dj: 

𝜵𝜽𝑫𝒋

𝟏
𝒎

෍ሾ𝒍𝒐𝒈𝑫𝒋ሺ𝒚𝒊
𝒋ሻ ൅ 𝒍𝒐𝒈ሺ𝟏 െ 𝑫𝒋ሺ𝑮ሺ𝒚′𝒊

𝒋ሻሻሿ

𝒎

𝒊ୀ𝟏

 

13) end for Dj; // End training discriminator Dj 
14) end for D; // End training discriminator D 
15) for Dj in D[N]:  
16) Backpropagate D_loss generated by Dj to the generator G 
17) end for Dj; // End the loop for backpropagation of each discrimination loss to G 
18) Use stochastic gradient descent to update the discriminator G: 

𝜵𝜽𝑮

𝟏
𝑵𝒎

෍ ෍ 𝒍𝒐𝒈ሺ𝟏 െ 𝑫𝒋ሺ𝑮ሺ𝒚′𝒊
𝒋ሻ

𝒎

𝒊ୀ𝟏

𝑵

𝒋ୀ𝟏

 

19) end for nums; // End the training and iterate a total of nums epochs 

Then, line 5 to line 18 aims at training dm-GAN. For each epoch to train the discriminator, the 
fixed generator does not perform back propagation. A real image dataset Y including X is established 
for each discriminator, where Y includes m real images. The real images Y and m images are generated 
by the generator and are the input to each discriminator. The discriminator makes the decision of the 
generated image and the real image based on the conditions and feeds back the discriminatory loss to 
each discriminator. And then it updates the parameters of each discriminator through random gradient 
rise. Once the first round of training is completed for all discriminators, then the average of the multiple 
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discriminative losses and their back propagation to each node of the generator is calculated. The 
parameters of the generator are updated through random gradient descent.  

Similarly, the generator and the discriminator continue to update the parameters and optimize the 
network until all epochs finish in line 19. This section provides a detailed description of dm-GAN 
algorithm from five parts: the framework, generator structure, discriminator structure, loss function 
and pseudo code. Among them, the generator uses a multi hidden code inverse mapping structure to 
more effectively capture the feature details of critical regions in breast images. The multi discriminator 
structure can avoid the generation of images tending to the same distribution due to single 
discrimination loss. At the same time, it can protect the privacy of medical data well. In summary, 
these techniques further demonstrate the feasibility of dm-GAN for fast, accurate and automatic 
generation of breast X-ray images. 

4. Results and analysis  

4.1. Experiments configuration 

The open-source dataset DDSM [40] is used in these experiments. DDSM includes breast 
molybdenum target image information of approximately 2500 women from 1988 to 1999, including 
10,480 images [41]. These images cover a large number of diverse cases. Therefore, DDSM dataset is 
often used for breast image research. The cases involved in the dataset are mainly divided into four 
groups: Normal, Benign, Benign without Callback and Cancer, which represent images of normal, 
benign, or malignant lesions. This paper mainly focuses on the generation of breast tumor images, so 
that we select 210 breast lesion images from the Cancer category molybdenum target images and 
convert them into PNG image format. These images displaying features of lumps or calcifications are 
selected as the initial input dataset. 

Then, the initial dataset is preprocessed as Figure 4 shows. First is to remove redundant 
background from the original image, and the second step is to randomly crop the image multiple times 
while keeping the breast intact. The size is set to 256 × 256, and the contrast-restricted adaptive 
histogram equalization method is used to perform noise reduction to obtain image enhancement data. 
The dataset is divided into two groups: training dataset (170 cases) and test dataset (40 cases). And 
then the training set is classified into 10 subsets on average according to the size of the breasts, and is 
processed as a subset of the 10 discriminators. 

 

(a)              (b)                (c)                (d) 

Figure 4. Preprocessing of four different breast lesion images via removing redundant 
background and cropping the images multiple time.  
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The generators and discriminators are configured in the proposed dm-GAN. G1 adopts 
mGANprior_bridge to pretrain the model and refers to network structure Pix2pix [18] to build our dm-
GAN. dm-GAN includes multiple convolutional layers and outputs an N-dimensional matrix. Each 
value in the matrix represents a receptive field in the original image, which corresponds to a fixed size 
block in the original image. Assuming that each small pixel is independent, Markov random fields are 
used to quantify the true and false values of different small blocks in the image, which can effectively 
capture some high-frequency and detailed features in breast images. Compared to the discriminator of 
a full image input, the size of the tumor is reduced in dimensionality and requires fewer parameters, 
which can process images with variable size. Multiple discriminators are designed to generate 
adversarial network structures. the training dataset is divided into 10 subsets, which is the number of 
discriminators set to 10. The real image is input to the training set, the number of latent codes is set to 20 
and the number of medial feature layers to 8. G2 is an encoder-decoder network, including two 
convolutions for image downsampling, two transposed convolutions and nine residual blocks. The 
generator will learn a joint distribution from different data sets belonging to different discriminators 
to generate a 256 × 256 breast image. The discriminator structure is the same as PatchGAN proposed 
in the Pix2pix model, and the block size is fixed at 70 × 70. In the experiment, the Adam optimizer 
uses a small batch stochastic gradient descent algorithm to optimize the loss function, the momentum 
parameter is β1 = 0.5, β2 = 0.999, and the learning rate is 0.0002. The discriminator and generator of 
dm-GAN are trained by confronting each other. Each discriminator accesses the data stored in each 
node to distinguish between the generated data and the real data. The generator is a joint learning from 
different sub-datasets. Thus, the loss value of each discriminator is updated and passed to the generator 
for further calculating the loss to achieve the objective function optimization. 

Once the dm-GAN framework and related parameters are decided, the model is trained and 
generates breast images. To verify the effectiveness of our proposed dm-GAN, the latest generation 
methods are chosen as the baselines: CycleGAN[17], DCGAN[19], mGANprior serials[24] (including 
four mGANprior variants: mGANprior_person, mGANprior_cat, mGANprior_bird and 
mGANprior_bridge for different scenarios). 

4.2. Qualitative results and analysis 

dm-GAN combines the multi-latent code inversion method with the traditional GAN generator 
structure, and adopts the dropout method to avoid over-fitting, which helps to improve the accuracy 
and diversity of generated breast images. Therefore, the qualitative analysis of the diversity and 
accuracy of the experimental results is listed to verify the effectiveness of proposed dm-GAN over the 
state-of-the-art in Figure 5.  

The outline of the breast lesion image generated by the dm-GAN model in Figure 5(h) is relatively 
clear and recognizable. More importantly, the shape, size of the mass and area of the calcification 
image are nearly same as the original images in Figure 5(a).  

As for the breast lesion images generated by CycleGAN, there are no related areas, such as the 
contour or size and shape of the mass, the edge of the calcified area is blurred and the calcified tissue 
is almost invisible in Figure 5(b). In the breast lesion image generated by DCGAN, the basic attributes 
such as the contour and size of the tumor can be distinguished and the calcification area is relatively 
complete in Figure 5(c). However, the shape of the tumor and the generation of calcified tissue are not 
clear. Therefore, dm-GAN generates better breast images than CycleGAN and DCGAN. 
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(a) Five original breast images with different shape, size, masses 

 
(b) Five images generated by CycleGAN 

 

(c) Five images generated by DCGAN 

 

(d) Five images generated by proposed mGANprior_person 

 

(e) Five images generated by proposed mGANprior_cat 

 

(f) Five images generated by proposed mGANprior_bird 

 

(g) Five images generated by proposed mGANprior_bridge 

 

(h) Five images generated by proposed dm-GAN 

Figure 5. Comparison of dm-GAN generation results with existing work. 
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The serial models of mGANprior are reproduced to generate breast images in Figure 5(d)–(g). 
The shape, size, contour, calcified area and calcified tissue of the tumor from mGANprior are better 
than DCGAN and CycleGAN. As for mass images, the mGANprior_bridge model generates the best 
image quality. The mGANprior_bridge model easily captures the line features in the image, so that the 
latent code representing the information of the contour of the mass is larger, thus the output image 
seems to be the same in size and the contour is clearer. Considering the calcified images, 
mGANprior_cat and mGANprior_bird are slightly better than the mGANprior_bridge. Because the 
calcified part of the image is larger in area and overlaps with the breast tissue, mGANprior_cat and 
mGANprior_bird, which are used to capture hair details, can also get good results. It is noted that the 
different mGAN models have their own advantages in different scenarios. Compared with the proposed 
dm-GAN, mGANprior_bridge, mGANprior_cat and mGANprior_bird models generate clear size and 
shape of the tumor in the tumor image, as well as the size and shape of the calcification area. 

Through the comprehensive comparison, it is found that the diversity of breast images generated 
by dm-GAN model performs better. The detailed quantitative results are described in Subsection 4.3. 

4.3. Quantitative results and analysis 

PSNR and FID are used to evaluate various GANs. The higher PSNR, the higher image quality. To 
compute the value of PSNR in Eq (3), it is necessary to prepare mean square error (MSE) in Eq (4) [42]. 

𝑃𝑆𝑁𝑅 ൌ 10 ൈ 𝑙𝑜𝑔ଵ଴ሺெ஺௑಺
మ

ெௌா
ሻ        (3) 

𝑀𝑆𝐸 ൌ ଵ

௠௡
ൈ ∑ ∑ ሾ𝐼ሺ𝑖, 𝑗ሻ െ 𝐾ሺ𝑖, 𝑗ሻሿଶ௡ିଵ

௝ୀ଴
௠ିଵ
௜ୀ଴       (4) 

I is the original 𝑚 ൈ 𝑛 image and K is the generated image. In this paper, m and n are both 256. 
MSE is the mean square error. 𝑀𝐴𝑋ூ

ଶ is the maximum pixel value and determined by the bit-width 
used to express pixels. For example, if 8 bits are used to express pixels, its maximum value is 255 
(computed by 28-1). 

Instead, the smaller the FID value is, the closer the two Gaussian distributions are, and the 
sharpness of the generated image is higher and the diversity is richer. It is calculated by Eq (5) [31]. 

𝐹𝐼𝐷 ൌ ||𝑢௥െ𝑢௚||ଶ ൅ 𝑇௥ሺ∑௥ ൅ ∑௚ െ 2 ൈ ሺ∑௥∑௚ሻଵ/ଶሻ     (5) 

where 𝑢௥ denotes the features mean of original image and 𝑢௚ is that of generated image. ∑௥ and 
∑௚ represent the covariance matrix of the original image and generated image, respectively. FID can 
reflect the mean and variance of the generated image and the target image, and can be calculated by 
the distance between the two images corresponding to the Gaussian distribution. 

According to the qualitative analysis of various GANs in the shape, size, contour, calcified area 
of generated images and calcified tissue properties of the tumor, dm-GAN and mGANprior models 
are better than CycleGAN and DCGAN. Therefore, the similarity between the generated image and 
the original image is analyzed by calculating the PSNR value of the dm-GAN generated image and the 
PSNR value of the image generated by the different mGANprior models in Table 1. To verify the 
effectiveness of dm-GAN from the perspective of PSNR, five images are selected and their PSNR 
values are averaged to compare with various mGANprior models. The PSNR value of the proposed 
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dm-GAN model achieves 1.31 to 1.84 dB higher than mGANprior models, so that it can generate better 
quality breast lesion images. 

Table 1. PSNR comparison between mGANprior models and dm-GAN. 

Models img1 img2 img3 img4 img5 average 

mGANprior_person [24] 36.60 36.00 37.78 33.58 36.42 36.08 

mGANprior_cat [24] 38.19 36.69 37.57 35.73 35.69 36.77 

mGANprior_bird [24] 37.11 34.82 36.93 32.90 37.08 35.77 

mGANprior_bridge [24] 38.24 37.02 38.50 35.70 37.03 37.30 

Proposed dm-GAN 39.53 38.97 39.79 36.51 38.24 38.61 

The FID score of the image generated by dm-GAN is the lowest at 28.43, up to a 57.49% 
decrease over CycleGAN in Table 2. Similar to the PSNR results comparison, dm-GAN performs better 
and has 5.61% lower FID than mGANprior_bridge. The results indicate that the multi-discriminator 
structure captures the characteristics of the real data in each node and then judges the input image well. 
The loss values of multiple independent discriminators are averaged and passed to the generator, and 
the generator learns the mean difference between the image generated after the last iteration and the 
original image, and the parameters are adjusted and optimized, which can achieve high-precision and 
diverse breast image generation. dm-GAN alleviates the over-fitting problem by randomly ignoring 
some neurons during forward propagation in G2 and avoiding all image features at once. If a multi-
discriminator structure is set up, over-fitting caused by training small datasets can be effectively 
addressed by an asynchronous training method.  

Table 2. FID comparison between various models. 

Models FID Decrease% 

mGANprior_bridge [24] 31.56 51.08% 

DCGAN [19] 35.89 44.37% 

CycleGAN [17] 64.52 0 

Our proposed dm-GAN 28.43 57.49% 

At the same time, since each discriminator in dm-GAN can only access the data in its own node, 
it can effectively protect the privacy of medical data.  
The GAN-based deep learning methods are used to generate breast images, and their image generation 
time can effectively explain the generation speed. Here the generation time comparison of different 
models is listed in Table 3 to illustrate the performance of the dm-GAN model. It can be seen from the 
table that the image generation time of the mGANprior_bridge model is the longest, up to 110 hours 
for 100 epochs, which takes about 1.1 hours for each epoch. DCGAN and CycleGAN are different 
from the traditional GAN structures, and the time to complete the generation of 210 images for 100 
epoches is about 1/4 of the mGANprior model, only around 30 hours. The proposed dm-GAN model 
combines the multi-latent code inverse mapping method and the multi-discriminator structure to 
tradeoff the accuracy and speed well. It can achieve a 1.38x speedup over the mGANprior model. 
Therefore, it can be concluded that the dm-GAN model helps to improve the accuracy and diversity of 
mammary X-ray images, and improves the generation efficiency as well. 
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Table 3. Generation time comparison of models. 

Models Time (hours) Speedup 

mGANprior_bridge [24] 110 1 

DCGAN [19] 25 4.4 

CycleGAN [17] 30 3.67 

Our proposed dm-GAN 80 1.38 

It is noted that the proposed dm-GAN is very useful not only for breast X-ray images, but also 
suitable for other kinds of images, such as optical coherence tomography (OCT) [43,44]. Therefore, 
we plan to further apply this novel dm-GAN to generate OCT images and assist retinitis pigmentosa 
diagnosis generation.  

5. Conclusions 

We propose a fast, accurate and automatic beast image generator, dm-GAN, using distributed 
multi-latent code inverse mapping. On one hand, the dm-GAN generator adopts the multi-latent code 
inverse mapping method to improve the learning ability of fitting the real data distribution to generate 
high-precision breast images. On the other hand, the dm-GAN discriminator includes ten distributed 
discriminators, which independently access the data in their respective nodes and generate multiple 
discriminative losses, so that it can learn more accurate breast feature information and quickly improve 
the accuracy of the generated image. The comprehensive experiments demonstrate that dm-GAN can 
achieve up to 1.84 dB higher PSNR, 5.61% higher FID, and a 1.38x speedup compared to the latest 
mGANprior. However, our proposed dm-GAN has some limitations such as the loss of information in 
the breast tissue during the inverse mapping process, while the large number of model parameters 
requires extra training time and cost. In future work, we will continue to optimize the breast image 
generation method dm-GAN and combine it with effective segmentation and classification for real 
intelligent diagnosis in hospitals. 
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