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Abstract: Bird sound recognition is crucial for bird protection. As bird populations have decreased 
at an alarming rate, monitoring and analyzing bird species helps us observe diversity and 
environmental adaptation. A machine learning model was used to classify bird sound signals. To 
improve the accuracy of bird sound recognition in low-cost hardware systems, a recognition method 
based on the adaptive frequency cepstrum coefficient and an improved support vector machine 
model using a hunter-prey optimizer was proposed. First, in sound-specific feature extraction, an 
adaptive factor is introduced into the extraction of the frequency cepstrum coefficients. The adaptive 
factor was used to adjust the continuity, smoothness and shape of the filters. The features in the full 
frequency band are extracted by complementing the two groups of filters. Then, the feature was used 
as the input for the following support vector machine classification model. A hunter-prey optimizer 
algorithm was used to improve the support vector machine model. The experimental results show 
that the recognition accuracy of the proposed method for five types of bird sounds is 93.45%, which 
is better than that of state-of-the-art support vector machine models. The highest recognition 
accuracy is obtained by adjusting the adaptive factor. The proposed method improved the accuracy of 
bird sound recognition. This will be helpful for bird recognition in various applications. 

Keywords: bioacoustics; bird sound recognition; audio signal processing; machine learning; support 
vector machine; adaptive frequency cepstral coefficients; hunter-prey optimizer 
 



19439 

Mathematical Biosciences and Engineering  Volume 20, Issue 11, 19438–19453. 

1. Introduction  

More than 10,000 bird species exist on Earth. Birds are one of the most important indicators of 
the state [1,2]. As bird populations have been decreasing at an alarming rate, monitoring and 
analyzing bird species help us to observe the diversity and environmental adaptation. Bird sound 
recognition is very important in bird protection. 

Recognition of bird species based on bird sounds has become an increasingly common method. 
In the field of voice recognition algorithms, the combination of simplified and effective voice 
features and high-precision recognition models is a popular research topic. Commonly used sound 
features include formant frequency, line spectrum pair, Mel-frequency cepstrum coefficient (MFCC), 
short-term energy, short-term average zero-crossing rate and amplitude. Currently, most voice 
recognition technologies are applied to music and speech, and there is little research in the field of 
bird sound recognition, which makes it very inconvenient for bird researchers working in this field. 

Birdsong classification is mainly achieved through traditional machine learning models such as 
dynamic time warping, Gaussian mixture models, hidden Markov models, support vector machines 
and random forests. Traditional machine learning methods typically require complex feature 
engineering. Recognition performance is directly related to the quality of the selected features. To 
achieve an excellent performance, the best features must be carefully selected [3,4]. 

Researchers have conducted relevant studies. The IVA-Xception model based on independent 
vector analysis and a convolutional neural network (CNN) proposed by Dai proved that the blind 
source separation method has better accuracy in identifying overlapping bird sounds [5]. Quan 
developed a transformer network for bird sound recognition [6]. Jung proposed a bird sound 
recognition model based on data preprocessing and convolutional neural network, and the overall 
performance of target bird and non-target bird sound classification reached 79.8% [7]. Xu, based on 
the dynamic time-warping template of syllable length, Mel frequency cepstrum coefficient and linear 
prediction coding coefficient, combined with time-frequency texture features, synthesized the 
decision results of different classifiers and applied them to bird sound recognition, achieving an 
accuracy rate of 92% for up to 11 categories of bird sound classification [8]. Aska used MFCC, J4.8 
and multi-layer perceptron models to classify bird sounds, among which J4.8, had the highest 
accuracy (78.40%) [9]. However, the recognition accuracy of the above methods is not high, they 
cannot adapt and they are not sufficiently simple. Furthermore, deep-learning methods cannot run in 
low-cost embedded systems. 

In view of these shortcomings, a bird sound recognition method based on the adaptive 
frequency cepstrum coefficient and an improved support vector machine (SVM) method using a 
hunter-prey optimizer (HPO) was presented. The main contributions of this study are as follows. 
First, in sound-specific feature extraction, an adaptive factor was introduced into the extraction of 
frequency cepstral coefficients instead of MFCCs. The hunter-prey optimizer algorithm was then 
used to improve the SVM model. The proposed method was experimentally evaluated, and a better 
performance was obtained. 

2. Prior knowledge 

The sound recognition method consists of two main modules: A sound-specific feature extractor 
as the front end, followed by a sound modeling technique for the generalized representation of 
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features. Bird sound recognition methods based on machine learning typically involve the extraction 
of features that are used as the input of the model in machine learning algorithms. MFCC, which 
considers perception sensitivity with respect to frequency, is the most commonly used feature for 
sound recognition. This is expected to be the best for sound recognition. 

MFCC was calculated using Mel filters. According to research on the human auditory 
mechanism, human ears have different auditory sensitivities to sound waves of different frequencies. 
A group of bandpass filters is arranged in the frequency band from low frequency to high frequency 
according to the critical bandwidth from dense to sparse to filter the input signal. The output signal 
energy of each bandpass filter is defined as the basic feature of the signal, which is used as the input 
feature of the model in machine learning algorithms. This group of band-pass filters is called the Mel 
filter, which is a triangular filter with dense low frequency and sparse high frequency, and its 
expression is as follows:  

𝐻 𝑘

⎩
⎪
⎨

⎪
⎧

0                                𝑘 𝑓1 𝑚 1

      𝑓1 𝑚 1 𝑘 𝑓1 𝑚

        𝑓1 𝑚 𝑘 𝑓1 𝑚 1

  0                               𝑘 𝑓1 𝑚 1

                 (1) 

𝑓1 𝑚 𝐹 𝐹 𝑓 𝑚                        (2) 

where m represents the filter serial number, M represents the number of filters used and H m(k) 
represents the m-th filter in the filter bank, f1 (m), f1 (m-1), f1 (m + 1) represents the center 
frequencies of the m-th, m-1st, m + 1 filters in the first filter bank, fs represents the sampling 
frequency, fh represents the highest frequency within the frequency range of the sound signal, fl 
represents the lowest frequency within the frequency range of the sound signal, 𝐹 𝑧 1127 ∗
𝑙𝑛 1 𝑧/700 , 𝐹 𝑧 700 𝑒 / 1 . 

All Mel filter forms for the bird sound signals in this study are shown in Figure 1. The sampling 
frequency was 8000 Hz, the lowest signal frequency was 0 Hz, the highest signal frequency was 4000 
Hz, the number of filters M was 24 and the number of FFT points was 1024. 

 

Figure 1. Mel filters. 
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Each filter in the filter banks is discontinuous at f1 (m); the smoothness at f1 (m) cannot be 
automatically adjusted, and the shape of the entire filter cannot be automatically adjusted, which is 
not conducive to the extraction of multiple characteristic parameters. 

3. Proposed methods 

The proposed bird sound recognition method based on the adaptive frequency cepstral 
coefficient and improved SVM method using HPO (HPO-SVM) mostly includes bird sound signal 
preprocessing, adaptive feature extraction, that is, frequency cepstrum coefficients, and bird sound 
classification using an improved SVM model. An adaptive factor was introduced into the extraction 
of the frequency cepstrum coefficients instead of the Mel frequency cepstrum coefficients. HPO 
algorithm is used to improve the SVM classification model. 

3.1. Bird sound signal preprocessing 

To ensure the effectiveness of the bird sound signal feature extraction and reduce the calculation 
of the SVM classification model, the obtained original bird sound signal was processed before 
performing the feature extraction and the following steps. Preprocessing was performed using 
signal-processing methods including slicing, windowing, denoising [10–14], discrete Fourier 
transform, power spectrum calculation, separation [15–17], etc. 

Because the bird sound signal is generated by the vibration of the vocal organ, and the vibration 
speed of the vocal organ is slow, the sound signal can be considered stable in a short time [18]. After 
slicing, processing each piece of signal is equivalent to processing continuous signals with a fixed 
length, which reduces the influence of nonstationary time variation on the final extracted features. A 
segment of the original bird sound signal was divided into pieces with a fixed value (typically 25 ms 
in this study), and the data of the first 5 ms of each piece coincided with the data of the last 5 ms of 
the previous piece. Suppose that a section of the original bird sound signal is divided into voi pieces, 
each piece of the signal contains N data and each piece of sound signal is weighted as follows 

𝑑 𝑛 𝑑 𝑛 0.97𝑑 𝑛 1                           (3) 

where, 0 ≤ n ≤ N-1, 𝑑 𝑛  represents the nth data of the sound signal of the film (n = 0, 1, 2, ..., 
N-1), 𝑑 𝑛  is the nth data of the enhanced sound signal, and n is the serial number of the data. 

Because the bird sound signal is divided into pieces, there is discontinuous data between two 
adjacent pieces. Therefore, each piece of data was windowed to make the bird sound signal after the 
division more continuous. A sound signal is usually added using a Hamming window. The expression 
of the hamming window, w(n), is 

𝑤 𝑛 0.54 0.46 𝑐𝑜𝑠                          (4) 

where, 0 ≤ n ≤ N-1. 
Multiplying each piece of data and the data corresponding to the serial number of the Hamming 

window function yields the windowed bird sound signal, d, 

𝑑 𝑛 𝑑 𝑛 𝑤 𝑛                               (5) 
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where 0 ≤ n ≤ N-1 and 𝑑 𝑛  represents the n-th data of bird sound signal d after windowed. 
To convert the signal from the time domain to the frequency domain, a discrete Fourier 

transform was performed on d, 

𝐷 𝑘 ∑ 𝑑 𝑛 𝑒                           (6) 

where, 0 ≤ n ≤ N-1, 0 ≤ k ≤ N-1, i is an imaginary unit, 𝑖 √ 1, d (n) is the n-th data of the sound 

signal after windowed and D (k) is the k-th data of the spectrum of the sound signal [19]. 
Calculate the power spectrum P of each piece sound signal according to its sound signal 

spectrum D. The power spectrum P was calculated using the following formula: 

𝑃 𝑘 |𝐷 𝑘 |                                (7) 

where P (k) represents the k-th data in the power spectrum of the sound signal, 0 ≤ k ≤ N-1. 

3.2. Adaptive frequency cepstrum coefficient extraction 

Feature extraction transforms the original sound signal into a compact and effective 
representation that is more discriminative than the original sound signal. A typical acoustical feature 
in sound recognition is the frequency cestrum coefficient, such as the MFCC. To overcome the 
shortcomings of the MFCC mentioned above, an adaptive factor was introduced into the extraction 
of the frequency cepstrum coefficients instead of MFCCs. The extraction process for the adaptive 
frequency cepstrum coefficients is shown in Figure 2. The bird sound data used in this study were 
obtained from the bird sound database of the ornithology laboratory of Cornell University. 

Slicing and 
windowing

Two sets of adaptive 
filters

FFT

Two sets of frequency 
coefficients

Adaptive frequency 
coefficient

Power 
spectrum

A sound signal

discrete cosine 
transform  

Figure 2. Adaptive frequency coefficient extraction. 

For each piece of the preprocessed bird sound signal, two sets of adaptive frequency filter banks 
were used to filter the power spectrum of the bird sound signal, and the adaptive frequency cestrum 
coefficients of the filtered signal were extracted separately. Subsequently, the two sets of adaptive 
frequency cestrum coefficients were combined as the feature input of the SVM model [20,21]. 

The first set of adaptive filters, 𝐻1 𝑘 , is, 

𝐻1 𝑘

⎩
⎪
⎨

⎪
⎧

0                                                              𝑘 𝑓1 𝑚 1

𝑠𝑖𝑛       𝑓1 𝑚 1 𝑘 𝑓1 𝑚

𝑠𝑖𝑛    𝑓1 𝑚 𝑘 𝑓1 𝑚 1

  0                                                                  𝑘 𝑓1 𝑚 1

        (8) 
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where 𝛼 is an adaptive factor of the filter and 0 ≤ 𝛼. In the process of feature extraction, the 
continuity of each filter in the filter bank at f1 (m), smoothness at f1 (m) and shape of the entire filter 
can be adjusted by changing the value of this factor, which is conducive to the extraction of multiple 
feature parameters. 𝐻1 𝑘  represents the m-th filter in the first filter bank. Figures 3–8 shows 
filters with different 𝛼 values. 𝛼 determines the shape of the filter. When it is necessary to extract 
frequency cepstrum coefficients from sound signals with information features concentrated at several 
frequency points, we increase 𝛼. When it is necessary to extract frequency cepstrum coefficients 
from sound signals with evenly distributed information features, we simply reduce 𝛼. 

 

Figure 3. Filters when α = 0. 

 

Figure 4. Filters when α = 3. 

 

Figure 5. Filters when α = 6. 
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Figure 6. Filters when α = 12. 

 

Figure 7. Filters when α = 24. 

 

Figure 8. Filters when α = 48. 

The power spectrum of the bird sound signal is filtered using the first set of filter banks. The 
filtered signal S1 is obtained 

𝑆1 𝑚 ∑ 𝑃 𝑘 𝐻1 𝑘         (9) 

where 0 ≤ m ≤ M and S1 (m) is the m-th data of the filtered signal S1. 
The adaptive frequency cestrum coefficient C1 of the filtered signal S1 is extracted using the 

following formula (discrete cosine transform), 
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𝐶1 𝑛 ∑ 𝑙𝑛 𝑆1 𝑚 𝑐𝑜𝑠       (10) 

where n = 0, 1, 2... L < M, L denotes the order. Specifically, the 2nd to 13th coefficients of C1 are 
retained, while the remaining coefficients are discarded. This is because the discarded 
coefficients represent swift changes in filter bank coefficients, which are insignificant for 
automatic sound recognition. 

The second set of adaptive filters, 𝐻2 𝑘 , is, 

𝐻2 𝑘

⎩
⎪
⎨

⎪
⎧

0                                                              𝑘 𝑓2 𝑚 1

𝑠𝑖𝑛       𝑓2 𝑚 1 𝑘 𝑓2 𝑚

𝑠𝑖𝑛    𝑓2 𝑚 𝑘 𝑓2 𝑚 1

  0                                                                 𝑘 𝑓2 𝑚 1

   (11) 

𝑓2 𝑚 𝐹𝐹 𝐹𝐹 𝑓 𝑚       (12) 

where 0 ≤ 𝛼 ≤1，𝐻2 𝑘  represents the m-th filter in the second filter bank, f2 (m), f2 (m - 1), f2 
(m + 1) represents the center frequency of the m-th, m-1st, m + 1 filters in the second filter bank, 
𝐹𝐹 𝑧 2195 2595 ∗ 𝑙𝑜𝑔 1 4031 𝑧 /700 , 𝐹𝐹 𝑧 700 10 / 1 . 

The second set of adaptive filters reverses the low and high frequency bands of the first set of 
adaptive filters, that is, the filters are sparse in low frequency bank and dense in high frequency bank. 

The power spectrum of the bird sound signal was filtered using the second set of filter banks. 
The filtered signal S2 is obtained. 

𝑆2 𝑚 ∑ 𝑃 𝑘 𝐻2 𝑘         (13) 

where 0 ≤ m ≤ M, S2 (m) is the m-th data of the filtered signal S2. 
The adaptive frequency cestrum coefficient C2 of the filtered signal S2 is extracted using the 

following formula, 

𝐶2 𝑛 ∑ 𝑙𝑛 𝑆2 𝑚 𝑐𝑜𝑠       (14) 

where n = 0, 1, 2... L < M. 
The joint adaptive cepstrum coefficient of the sound signal segment of this spice is [C1, C2]. 
A section of the bird sound signal can be divided into voi slices, and we can then obtain the 

adaptive cepstrum coefficients of voi, that is, a characteristic parameter matrix of voi × 2 L. To 
reduce the longitudinal dimensions of the feature parameters, the feature parameters must be 
compressed longitudinally. Common compression methods include expectation variance, standard 
deviation and median methods. In this study, the median method was used, and a set of vectors of 
adaptive cepstrum coefficients was obtained from a section of the bird sound signal, reducing the 
complexity of the feature parameters. 
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3.3. Improved SVM using HPO 

After the adaptive cepstrum coefficients are extracted, the HPO-SVM method is used to 
recognize the bird sound. 

3.3.1. SVM 

SVM is a powerful supervised machine-learning method used for linear or nonlinear 
classification and regression. It is efficient in a variety of applications owing to its ability to manage 
high-dimensional data and nonlinear relationships. The principle is to project a linear indivisible 
object into a high-dimensional space to find a hyperplane that can separate objects of different 
categories. The hyperplane is the decision boundary used to separate the data points of the different 
classes in a feature space. The dimensions of the hyperplane depended on the number of features. 
The hyperplane is, 

𝑦 𝑥 𝝎 𝒙 𝑏         (15) 

where  𝝎 is the normal vector to the hyperplane, i.e., the direction perpendicular to the hyperplane. 
B represents the offset of the hyperplane from the origin along the normal vector 𝝎. x is the adaptive 
cepstrum coefficients vector of any sound piece. 

In actual classification, the data are in a non-ideal state, and there are classification errors near 
the hyperplane. Therefore, the relaxation variable ζ and the loss value C were introduced. After 
introducing the two parameters, the classification function is as follows: 

𝑚𝑖𝑛 ||𝜔|| 𝐶 ∑ 𝜁

𝑠. 𝑡. 𝑦 𝜔 𝑥 𝑏 1 𝜁 , 𝑖 1,2. . . 𝑛
𝜁 0, 𝑖 1,2. . . 𝑛

      (16) 

The hyperplane solution is transformed into the optimization solution of the dual problem, that 
is, the maximum of the pair. 

𝑚𝑎𝑥 𝐿 𝛼 ∑ 𝛼 ∑ 𝛼 𝛼 𝑦 𝑦 𝑥 𝑥,

𝑠. 𝑡. 𝛼 0, 𝑖 1,2, . . . 𝑛 ∑ 𝛼 𝑦 0
      (17) 

where αi is the Lagrange multiplier associated with the ith sound piece and αj is the Lagrange 
multiplier associated with the jth sound piece. xi is the adaptive cepstrum coefficient vector of the ith 
sound piece. xj is the adaptive cepstrum coefficients vector of the jth sound piece. yi is the 
classification result of the ith sound piece. yj is the classification result of the jth sound piece. 

To classify and identify linear indivisible objects, kernel functions must be introduced to project 
data objects to higher dimensions. The common kernel functions are sigmoid, linear, polynomial and 
Gaussian kernels. In this paper, the Gaussian kernel is used as an example and its expression is, 

𝑇 𝑥 , 𝑥 𝑒
|| ||

        (18) 

where σ is a kernel parameter. 
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The hyperplane expression is the expressed as 

𝑦 𝑥 ∑ 𝑎 𝑦 𝑇 𝑥 , 𝑥 𝑏       (19) 

where Q is the amount of data. 

3.3.2. HPO 

In an SVM, the kernel parameter is the most important parameter, and intelligent algorithms [22–25] 
may be used to optimize the kernel parameter. To determine the optimal kernel parameter, the HPO 
algorithm was used for searching, as shown in Figure 9. The HPO algorithm is inspired by hunters’ 
and preys’ behaviors, such as tigers and rabbits. By constantly updating the positions of the hunters, 
the optimal positions are obtained and the optimal parameters are obtained. The algorithm exhibited 
a high convergence and accuracy. The optimization process is as following: 

Generate initial 
position

Hunter position 
iteration

Prey position iteration

Whether iteration is 
less than maxi

Generate optimal 
position

Generate optimal 
kernel parameters

yes

no

 

Figure 9. HPO algorithm. 

1) Initialize population number P1, maximum iteration number maxi, the upper and lower bounds of 
the target space. Set the initial positions of hunters and preys according to the following formula, 

𝛾 𝑟𝑎𝑛𝑑 1, g ∗ 𝑢𝑏 𝑙𝑏 𝑙𝑏                     (20) 

Here, 𝛾  is the initial position of the hunters and preys, lb is the minimum value of the target space, 
ub is the maximum value of the target space, g is the number of variables and rand (1, g) generates a 
row of random number matrices between 0 and 1 of g columns. 

2) Update positons by 

𝛾 , 𝛾 , 0.5 2𝐶𝑍𝑤𝑧 , 𝛾 , 2 1 𝐶 𝑍𝑢 𝑗 𝛾 ,            (21) 

where 𝛾 ,  is the position of the jth hunter in the i + 1 iteration, 𝛾 ,  is the position of the jth 
hunter in the ith iteration, 𝑤𝑧 ,  is the jth prey position in the ith iteration, Z is the adaptive 

parameter, 𝑍 𝑅 ⊗ IDX 𝑅⃗ ⊗ ~IDX . 𝑅  is a random number in [0, 1], 𝑅⃗ is a random 

vector in [0, 1], IDX is the index value of the vector 𝑅⃗ satisfying the condition (P2=0), P2 is the 

index value of 𝑅⃗ ＜ C, 𝑅⃗ is a random vector in [0, 1] and C is a balance parameter, 𝐶 1

𝑖 .
, 𝑢 𝑗  is the average of the positions, 𝑢 𝑗 ∑ 𝛾 , . 
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3) The fitness of the positions is calculated according to the following formula, 

𝑠ℎ𝑓 𝛾 , 𝑐𝑢𝑟 ,                            (22) 

𝑠ℎ𝑓 𝛾 , 𝑐𝑢𝑟 ,                           (23) 

where 𝑠ℎ𝑓 𝛾 ,  represents the fitness of the position 𝛾 , , 𝑠ℎ𝑓 𝛾 ,  represents the fitness of the 

position 𝛾 , , 𝑐𝑢𝑟 ,  is the number of bird species recognition results that are the same as the 
actual results using a kernel function with 𝛾 ,  as the kernel parameter, 𝑐𝑢𝑟 ,  is the number of 
bird species recognition results that are the same as the actual results using a kernel function with 
𝛾 ,  as the kernel parameter.  

4) Update the prey’s position, 𝑤𝑧 , , based on fitness, 

𝑤𝑧 ,
𝛾 ,      𝑠ℎ𝑓 𝛾 , 𝑠ℎ𝑓 𝛾 ,

𝑤𝑧 ,                                  𝑜𝑡ℎ𝑒𝑟𝑠
                    (24) 

Determine whether the iteration number i is less than maxi. If yes, return to Step 2). If no, 
𝛾 ,  is set as the optimal kernel parameter. 

4. Results and discussion 

The whole flowchart of the HPO-SVM method is shown in Figure 10. Five types of bird sounds 
containing wind, rain and other field noises were randomly selected from the Xeno-canto database. 
This database contains recordings of wildlife sounds worldwide. The five birds are purple water fowl, 
cuckoo, black breasted sparrow, common kingfisher and rosefinch. Other audio signals without 
target bird sounds were also available in advance. Each type consists of 400 segments. In the 
experiment, 60% was randomly selected from each type of bird sound as the training set, 20% as the test 
set and the remaining 20% as the evaluation set. The training set was used to train the model, the test set 
was used to optimize the model and the evaluation set was used to evaluate the recognition accuracy. 

Building a bird song 
dataset

data processing

Training Set

Test Set

characteristic 
parameter

Establish SVM model

Optimize model 
parameters

Training model

characteristic 
parameter

evaluation model

Training completed 
model

Output identification 
results

Set to be identified

Get LW-SVM model

 

Figure 10. Method flowchart. 
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In the experiments, the kernel parameter is set between 0.01 and 100. The optimal kernel 
parameter with HPO algorithm is 2 when 𝛼 is between 1 and 15. The loss value is 10. 

Table 1 shows the recognition accuracy results of the SVM and HPO-SVM models for the five 
types of bird sounds. The HPO-SVM model improved the recognition accuracy. The results show that 
the recognition accuracy using the HPO-SVM model is improved by 2.79%, 4.10%, 4.92%, 5.25% 
and 6.18%, respectively, compared to those using the SVM model. The average recognition 
accuracy using the HPO-SVM model was improved by 4.65% compared to that using the SVM 
model. The HPO-SVM model has higher recognition accuracy than the SVM model. This implies 
that the HPO-SVM model is more impressive that the SVM model. 

Table 2 shows the recognition accuracy results of the five types of bird sounds obtained by 
combining the adaptive cepstrum coefficients in this study with the HPO-SVM model. Figure 11 
shows a line chart based on Table 2. It can be seen more clearly that the highest recognition accuracy 
of different bird sounds is located in different adaptive coefficients; that is, the optimal adaptive 
coefficients of different birds are also different. The highest recognition accuracy of the HPO-SVM 
model for the five types of bird sounds was 95.80%, and the lowest recognition accuracy was 88.43% 
when α was between 0 and 15. 

Table 1. Results of two models. 

Method 
Bird species 

SVM HPO-SVM 𝛼 

Pukeko 86.025 88.425 1 
Cuckoo 89.125 92.775 2 
Passer hispaniolensis 89.475 93.875 12 
Home rosefinch 90.025 94.750 1 
Alcedo atthis 90.225 95.800 13 

Table 2. Results of 5 types of birds at different 𝛼 (%). 

𝛼 Pukeko Cuckoo Passer hispaniolensis Home rosefinch Alcedo atthis 
0 88.425 88.025 89.075 94.750 89.850 
1 88.425 90.125 89.100 94.750 89.875 
2 88.450 92.775 89.125 93.525 89.875 
3 89.550 91.025 89.300 92.400 90.025 
4 89.925 90.525 89.300 91.225 90.025 
5 90.725 89.725 89.375 91.125 90.025 
6 88.525 89.575 89.525 91.100 90.025 
7 87.625 89.325 89.675 90.075 91.325 
8 86.325 89.325 90.675 90.075 91.725 
9 86.325 89.250 91.250 90.025 92.225 
10 86.325 89.125 92.800 89.925 92.225 
11 86.325 89.125 93.675 89.875 93.775 
12 86.325 89.025 93.875 89.625 94.025 
13 86.300 89.025 93.775 89.375 95.800 
14 86.025 88.725 93.750 89.025 95.125 
15 85.725 88.725 93.725 88.125 95.125 
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Figure 11. Comparative results of 5 kinds of birds at different 𝛼. 

The running times of the SVM and HPO-SVM models were compared. In the experiments, the 
running time of the SVM model was 0.1493 ms, and that of the HPO-SVM model was 0.1584 ms. 
Because the HPO-SVM model must update the network parameters, it requires a little bit more time 
than the SVM model. However, in terms of recognition accuracy, this model was more impressive 
than the SVM model. 

The memory capacities of the SVM and HPO-SVM models were compared. In the experiments, 
the memory capacity of the SVM model was 1668.5 MB and the memory capacity of the HPO-SVM 
model was 1667.8 MB. This requires less memory than the SVM model. 

To evaluate the performance, the average recognition accuracy of the HPO-SVM model was 
compared with those of other state-of-the-art models, as shown in Table 3. They are the transfer 
learning (TL) [26], IVA-Xception [5] and J4.8 + MFCC [9] models. As shown in the table, they were 
inferior to those of the HPO-SVM model. The average recognition accuracy of the HPO-SVM model 
was improved by more than 0.59% compared to that of the TL model. The average recognition 
accuracy of the HPO-SVM model was improved by more than 17.1% compared to that of the J4.8 + 
MFCC model. The average recognition accuracy of the HPO-SVM model was improved by more 
than 19.2% compared to that of the J4.8 + MFCC model. 

Table 3. Comparative results of different methods. 

Model Accuracy (%)
HPO-SVM 93.45
TL [26] 92.90
IVA-Xception [5] 79.80
J4.8 + MFCC [9] 78.40

5. Conclusions 

A high-accuracy method for bird sound recognition was developed in this study, which includes 
the extraction of adaptive cepstrum coefficients and the construction of the HPO-SVM model. In the 
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process of adaptive cepstrum coefficient extraction, the filters can be adjusted using the adaptive 
factor of the filter. A hunter-prey optimizer algorithm was used to improve the support vector 
machine model. The highest recognition accuracy is obtained by adjusting the adaptive factor. In 
future work, the recognition accuracy may be further improved by combining other feature 
parameters, and our developed algorithms [27–30] may also be used for adaptive factor optimization. 
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