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Abstract: Due to the different weed characteristics in peanut fields at different weeding periods, there 
is an urgent need to study a general model of peanut and weed detection and identification applicable 
to different weeding periods in order to adapt to the development of mechanical intelligent weeding in 
fields. To this end, we propose a BEM-YOLOv7-tiny target detection model for peanuts and weeds 
identification and localization at different weeding periods to achieve mechanical intelligent weeding 
in peanut fields at different weeding periods. The ECA and MHSA modules were used to enhance the 
extraction of target features and the focus on predicted targets, respectively, the BiFPN module was 
used to enhance the feature transfer between network layers, and the SIoU loss function was used to 
increase the convergence speed and efficiency of model training and to improve the detection 
performance of the model in the field. The experimental results showed that the precision, recall, mAP 
and F1 values of the BEM-YOLOv7-tiny model were improved by 1.6%, 4.9%, 4.4% and 3.2% for weed 
targets and 1.0%, 2.4%, 2.2% and 1.7% for all targets compared with the original YOLOv7-tiny. The 
experimental results of positioning error show that the peanut positioning offset error detected by 
BEM-YOLOv7-tiny is less than 16 pixels, and the detection speed is 33.8 f/s, which meets the 
requirements of real-time seedling grass detection and positioning in the field. It provides preliminary 
technical support for intelligent mechanical weeding in peanut fields at different stages. 
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1. Introduction 

Weed competition is an important factor limiting peanut production, and studies have proven that 
weeds seriously affect the yield of peanuts, with 5 weeds per square meter in peanut fields can reduce 
peanut yield by 13.89% and 20 weeds can reduce peanut yield by up to 48.31% [1]. There are about 80 
species of weeds in Chinese peanut fields, belonging to about 30 families [2]. Field weed management 
is an important tool for superior peanut production, and weed control in peanut fields is currently 
mainly based on herbicide spraying, but it can cause irreversible farmland pollution. In compliance 
with the requirements of precision agriculture and green agricultural production advocated by the 
World Food and Agriculture Organization, providing an efficient and nondestructive peanut and weed 
identification and positioning method is a prerequisite and key to achieving precision mechanical weed 
control in order to achieve effective weed control in the field and ensure green peanut production. 

Real-time accurate identification and localization of seedling and weed plants is a prerequisite for 
automatic weeding in the field. In recent years, machine vision technology has been widely used in the 
field for plant and weed identification research due to its advantages of low cost and convenience. 
Traditional machine vision techniques mainly rely on manual extraction of important features such as 
color, texture and shape to achieve plant and weed recognition, such as Shen [3], Wang [4] and Li [5] 
for field plant and weed classification and recognition based on single features of images, and Deng et 
al. [6] for seedling and weed differentiation by multiple feature fusion. However, traditional machine 
vision techniques take a lot of time to extract important features of the target, and the selection of 
important features is also affected by human factors, which does not cope with the actual variable 
field environment. 

Deep learning automatically extracts multi-scale and multi-dimensional feature information of 
seedling and weed targets by virtue of convolutional neural networks, which solves the deficiencies in 
feature selection of traditional methods. As two commonly used deep learning techniques, image 
classification and target detection distinguish targets by autonomously learning important features, as 
Dyrmann et al. [7] and Tao et al. [8] used image classification techniques to classify different plants in 
the field, and Zong et al. [9] and Zhang et al. [10] based on second-stage target detection techniques 
Faster R-CNN model and Mask R-CNN models achieved a precision of 91.49% and 94% for field 
maize crop identification, respectively. Compared with image classification, target detection 
techniques can provide target location information by outputting detection frame coordinates, and are 
widely used in field seedling and weed identification and localization research. Xu et al. [11] and Jiang 
et al. [12] achieved the detection of seedlings and weeds in cotton and corn fields with a precision of 
more than 91% based on the second-stage target detection model, and the detection time of a single 
image was 0.26 and 0.98 s, respectively. Li et al. [13] achieved the detection of green pepper in a field 
with a precision of 96.9% based on the single-stage YOLO target detection technique, and the detection 
time of a single image was 6.2 ms. The single-stage YOLO model outperformed the second-stage 
target detection model in real-time detection and was used by Gao [14], Quan [15,16], Gao [17], 
Ahmad [18], etc. in the field seedling and weed targets detection study. Additionally, the YOLO 
network is compatible with other networks, such as Zhang et al. [19] and Wang et al. [20] to enhance 
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the detection performance of YOLOv5 model for field plants and weeds by incorporating different 
attention mechanisms. 

At present, the research on the application of machine vision technology in peanut fields mainly 
focuses on a certain period, such as Zhang et al. [21] realized the identification of small target weeds 
in peanut fields during the seedling stage based on the YOLOv4-tiny model, and Lin et al. [22] realized 
the counting of early peanut seedlings in the field based on YOLOv5. Aiming at the problem that there 
are many types of weeds in the field, and it is difficult to recognize the many targets for single weed 
detection, as well as the demand for multiple weeding in the field, the study proposes a BEM-
YOLOv7-tiny seedling and weed identification model, which enhances the learning ability of the 
network for extracting target features and transferring ability between different layers by introducing 
ECA module and BiFPN module, uses MHSA to enhance the focus on predicted targets at the detection 
end and uses SIoU loss function to improve the convergence speed and efficiency of the model training 
process to further enhance the network detection model performance. The model is capable of real-
time and accurate detection of peanuts and weeds at each mechanical weeding period, providing a 
general peanuts and weeds detection and identification model for mechanical weeding at each weeding 
time in peanut fields, and providing a key technology for real-time and accurate mechanical weeding 
in peanut fields. 

2. Materials and methods 

2.1. Data material 

2.1.1. Data acquisition 

 

Figure 1. Images of peanut and weeds at different periods. 
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The two peak weed emergence periods in spring-planted peanut fields are 10–15 days and 35–50 
days after sowing, which account for about 50% and 30% of weed occurrence in the whole field [23], 
respectively. Wann et al. [24] also showed in their study on organic peanut weed control methods that 
weeds in peanut fields need to be controlled several times to ensure peanut yield. For this reason, in 
this study, field data were collected for three weeding periods when mechanical weeding could be used 
in peanut fields to meet the needs of mechanical weeding operations at different weeding stages of 
peanuts in the field, with the first time image collected on day 21 after sowing (this period is the peanut 
seedling stage when weeds begin to emerge), the second time image collected on day 30 after sowing 
(this period is the peanut regrowth stage) and the third time image collected on day 40 days after sowing 
(at this time, some peanuts began to flower, for the pre-flowering period). The morphological images of 
peanuts and the three major weeds at different weeding periods are shown in Figure 1. The MV-
HS510GC camera was used to capture images vertically downward from the ground height of 40–50 cm 
according to the requirements of the mechanical weeding device, and the image size was 2056 × 2464 
pixels, and later the images were uniformly processed to 640 × 640 pixels. 

2.1.2. Data enhancement and labeling 

Table 1. Original image composition. 

Acquisition period Training and validation Testing Total 
Day 21 160 35 195 
Day 30 160 35 195 
Day 40 280 80 360 
Total 600 150 750 

Table 2. Dataset after data enhancement. 

Dataset Number 
Original images 600 
Brightness increase 300 
Brightness decrease 300 
Mean blur 300 
Gaussian blur 300 
Total 1800 

The composition of the original captured images is shown in Table 1. In order to simulate the real 
environment in the field as much as possible, the data enhancement method proposed by Liu [25] was 
used to simulate the effects of different light intensities in the field and vibrations generated by 
mechanical weeding operations in the field, respectively, and image enhancement was performed by 
brightness processing and fuzzy processing on the collected original images to ensure the 
representativeness and diversity of the sample images and to achieve the purpose of enriching the data 
set and improving the training accuracy of the model. The 600 images were expanded to 1800 images 
by image enhancement and divided into training and validation sets in the ratio of 7:3, and the 
remaining 150 images were used as test sets. The brightness adjustment factor in image enhancement 
is 1.5 and 0.5 times the original image respectively, and the kernel size used for blurring is 5 × 5. The 
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specific number of image enhancements is shown in Table 2. 
The open-source image annotation tool LabelImg was used to manually label the images by 

drawing tight external rectangular boxes around the plants to produce a dataset in txt data format, and 
the image annotation schematic is shown in Figure 2. The three annual broadleaf weed targets were 
uniformly labeled as a single class to reduce the number of weed species detected in the field by 
referring to the seedling weed detection method proposed by Alessandro et al. [26]. 

 

Figure 2. Schematic diagram of target bounding box annotation. 

2.2. BEM-YOLOv7-tiny peanut and weed detection algorithm 

2.2.1. BEM-YOLOv7-tiny network structure 

 

Figure 3. BEM-YOLOv7-tiny model structure. 



19346 

Mathematical Biosciences and Engineering  Volume 20, Issue 11, 19341–19359. 

Based on YOLOv7-tiny, the study enhances the extraction of peanut and weed features in the field 
at different weeding stages by introducing an ECA attention mechanism in the convolution module 
and enhances the feature transfer and fusion using BiFPN to improve the extraction and fusion of target 
features by the network model. Then MHSA is used to enhance the attention to the predicted targets at 
the detection end to improve the detection ability at the detection end. Finally, the regression accuracy 
is improved by improving the loss function to accelerate the model convergence. The final network 
generates three detection layers of different sizes to detect peanut and weed targets, and the structure 
of the BEM-YOLOv7-tiny algorithm model is shown in Figure 3. 

2.2.2. ECA model 

ECA [27] is an extremely lightweight channel attention mechanism that adds little complexity to 
the model but enables the model to focus on more important information. ECA utilizes a local cross-
channel interaction strategy without dimensionality reduction to effectively avoid the effect of 
dimensionality reduction on the channel attention learning effect; the network performance is 
maintained through proper cross-channel interaction, and significant effect gain can be obtained by 
only a few parameter adjustments, whose network structure is shown in Figure 4. 

 

Figure 4. ECA model structure schematic. 

In the ECA module, first, the input feature map is globally averaged and pooled to transform the 
feature map from a matrix of [h,w,c] into a vector of [1,1,c], and the features of each channel are 
represented by a single value. Second, the adaptive 1D convolution kernel k is calculated based on the 
number of channels of the feature map, and the 1D convolution of size k is executed to obtain the 
weights of each channel of the feature map to achieve inter-channel information exchange. Finally, the 
normalized weights are fused with the original input features to generate a weighted feature map with 
channel attention. 

The ECA is fused into the ordinary convolutional module so that the ordinary convolutional 
module combined with ECA enhances the focus on important features of peanut and weed targets at 
different stages. By replacing the original ordinary convolution module with the convolution inserted 
into the very light ECA module, the network model can avoid the learning of non-target redundant 
features in images without decreasing the channel dimension and significantly increasing the memory 
and network depth, while effectively taking into account the important features of peanut and weed 
targets to improve the detection efficiency of the network model. 
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2.2.3. The BiFPN model 

The original YOLOv7-tiny feature fusion network uses a path aggregation feature pyramid 
(PAFPN) network, which stitches together the information passed from the top of the feature pyramid 
network (FPN) with the strong localization information tensor passed from the bottom to the top of the 
path aggregation network (PANet) to fully fuse different levels of feature information to achieve multi-
scale learning. However, tensor splicing is not comprehensive enough for the fusion of feature 
information in adjacent layers, while nearest neighbor interpolation upsampling does not take into 
account the two main goals of speed and accuracy in detection tasks, and the fusion network is prone 
to feature information loss. Unlike PAFPN bi-directional feature fusion, BiFPN has a complex bi-
directional fusion structure and adopts cross-scale connectivity to make the network feature fusion 
information richer. the structure of PANet and BiFPN network is shown in Figure 5. 

 

Figure 5. PANet and BiFPN structures. 

As can be seen from the figure, based on the PANet structure, the BiFPN structure eliminates 
nodes with only a single input and adds another edge between the input and output, which not only 
simplifies the model but also gets more features fused. BiFPN [28] uses the unique bi-directional cross-
scale connection and weighted feature fusion to achieve faster and more convenient multi-scale feature 
fusion by adding an extra for each feature layer weight value to each feature layer, allowing the network 
to learn the key features with different weight values and enabling the network to fuse features better. 
In this study, the weighted bidirectional feature pyramid is incorporated into the Neck layer feature 
information fusion tensor stitching operation to enhance the fusion of features of different sizes 
between Neck layers. 

2.2.4. MHSA model 

To improve the performance of the detection head at the output side, focusing on the pre-detection 
target, the multi-head self-attentive mechanism (MHSA) in the BoT [29] module of the bottleneck 
converter is used at the output side. MHSA achieves linear dimensionality enhancement by means of 
full connectivity and implements self-attentive for four heads in parallel, each self-attentive learns 
multiple weights individually and performs matrix multiplication with the feature weights separately 
to obtain the corresponding feature output information. Finally, the result information of each head is 
stitched together to achieve multi-angle learning feature information fusion, the structure of MHSA 
module is shown in Figure 6. 
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Figure 6. Multi head self-attention mechanism. 

MHSA has the property of achieving global attention on the two-dimensional feature map, 
organically correlates the features in the two stages of network extraction and fusion, and integrates 
the information under global attention to achieve better detection results. By adding the MHSA module 
to the three-layer convolution at the detection side, the ordinary convolution is made to fuse the 
complex feature information after network extraction and fusion by virtue of the global self-attention 
property of MHSA to improve the performance at the detection side. 

2.2.5. SIoU loss function 

The original YOLOv7-tiny model uses CIoU [30] as the network localization loss function, 
defined as shown in Eq (1), with parameters α and v shown in Eqs (2) and (3). Although CIoU considers 
the overlap area, centroid distance and aspect ratio of the bounding box regression, it does not take 
into account the mismatch between the actual target and the prediction box, and reflects the relative 
ratio of image width and height, rather It does not reflect the real difference between image width and 
height respectively and their confidence levels, which leads to slow and unstable convergence. 

𝐿 1 𝐼𝑜𝑈
,

𝛼v                                          (1) 

𝛼                                                    (2) 

𝑣 𝑎𝑟𝑐 tan 𝑎𝑟𝑐 tan                                          (3) 

where, 𝜌 𝑏, 𝑏   is the penalty term, b and 𝑏   represent the centroids of B and 𝐵  , 𝜌   is the 
Euclidean distance, c is the minimum external rectangular diagonal distance of B and 𝐵 , α is the 
positive equilibrium parameter, v denotes the consistency of 𝑔𝑡  with the aspect ratio of the prediction 
frame, w and 𝑤  represent the width of B and G, h and ℎ  represent the height of B and G. 

Using SIoU [31] as the localization loss function of the network, the influence of distance, angle 
and shape cost on the model boundary regression is fully considered to make the prediction frame and 
the actual frame approach the parallel state faster, thus controlling the direction of convergence of the 
loss function. 
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The angular cost of SIoU is defined as shown in Eq (4): 

𝛬 1 2 𝑠𝑖𝑛 𝑎𝑟𝑐 sin                                      (4) 

where, 𝑧   is the height difference between the center point of the real frame and the predicted frame, 
σ is the distance between the center point of the real frame and the predicted frame. 

The distance cost of SIoU is defined as shown in Eq (5): 

∆ ∑ 1 𝑒,                                               (5) 

where, 𝜌 , 𝜌 ,γ 2 𝛬, 𝑏  and 𝑏  are the center coordinates of the 

real frame, 𝑏  and 𝑏  are the center coordinates of the predicted frame, 𝑐  and 𝑐  are the width 

and height of the smallest outer rectangle of the real frame and the predicted frame. 
The shape cost of SIoU is defined as shown in Eq (6): 

Ω ∑ 1 𝑒,                                             (6) 

where, 𝜔
,

   , 𝜔
,

  , w and h are the width and height of the predicted 

frame, 𝑤  and ℎ  are the width and height of the real frame, θ is a constant to control the degree 
of attention to shape loss. 

The SIoU, which takes into account the angle, distance and shape costs, is defined as shown in 
Eq (7). SIoU reduces the probability that the penalty term is zero to occur and makes the function 
convergence smooth. In this study, SIoU is used as a network loss function to speed up the model 
convergence, thus improving the regression accuracy and network robustness. 

𝐿 1 𝐼𝑜𝑈
∆

                                           (7) 

2.3. Evaluation indicators 

To evaluate the performance of the model, the precision rate (P) and recall rate (R) are used as 
evaluation metrics. They are defined as shown in Eqs (8) and (9). 

𝑃 100%                                             (8) 

𝑅 100%                                             (9) 

where, TP represents the number of correctly detected targets, FP represents the number of incorrectly 
detected targets, FN represents the number of undetected targets. 

The F1 value, as a weighted summed average of precision and recall, can be used to weigh the 
model’s missed and false detection rate for peanut seedling grass targets, as defined in Eq (10). 

𝐹1                                                  (10) 
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The mean average precision (mAP) measures the overall performance of the model at different 
confidence thresholds. In this paper, we evaluate the model performance using the mean average 
precision at a threshold of 0.5, defined as shown in Eq (11). The number of parameters (Params), 
computation volume (FLOPs) and model volume (Volume) are also used to evaluate the complexity 
of the network model, and FPS (frames per second) is used to evaluate the model detection speed. 

𝑚𝐴𝑃
∑

                                               (11) 

where, N represents the number of target species in the sample. 

2.4. Model training 

The hardware and software environments for model training and testing are shown in Table 3. 
The model network image input size is 640 × 640, the initial learning rate of the training process is set 
to 0.01, the weight decay factor is 0.0005 and the training iteration is 200 times with a batch size of 16. 

Table 3. Training and test environment configuration table. 

Configuration Parameter 
Operating system Windows 10 
CPU Inter(R) Core(TM) i7-10700@2.90GHz 
GPU NVIDIA GeForce RTX 3060 12G 
Accelerate environment CUDA 
Python 3.8.5 
Pytorch 1.7.1 

3. Results 

3.1. BEM-YOLOv7-tiny model performance analysis 

 

Figure 7. Loss variation curve of YOLOv7-tiny and BEM-YOLOv7-tiny. 
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To evaluate the performance of the improved model, the training process before and after the 
model improvement is compared and analyzed in terms of training loss convergence, model 
complexity and model performance. 

The convergence curves of training loss and validation loss functions during model training are 
shown in Figure 7(a),(b), respectively. BEM-YOLOv7-tiny has faster loss convergence than YOLOv7-
tiny model, and BEM-YOLOv7-tiny has lower values of training and validation loss, which proves 
that BEM-YOLOv7-tiny has better learning ability and better model performance. 

The specific performance of the model for peanut and weed detection is shown in Table 4, the 
performance of the BEM-YOLOv7-tiny model for weed target detection was significantly improved, 
and the precision, recall, mAP and F1 values of the model for weed targets were 88.2%, 88.5%, 92.4% 
and 88.3%, respectively, which were 1.6%, 4.9%, 4.4% and 3.2% better than the original YOLOv7-
tiny, respectively. The BEM-YOLOv7-tiny network model outperforms the original YOLIv7-tiny 
model in detecting multiple weeds as a single target. For all targets, the precision, recall, mAP and F1 
values of the BEM-YOLOv7-tiny model were 93.5%, 93.9%, 96.0% and 93.7%, respectively, which 
were 1.0%, 2.4%, 2.2%, and 1.7% better than the original YOLOv7-tiny, respectively. Although the 
number of parameters of the BEM-YOLOv7-tiny model increased by 0.9M and the volume increased 
by 1.8 MB, the computational effort of the network model was reduced. 

Table 4. Model detection performance comparison results. 

Method Targets P/% R/% mAP/% F1/% Params/M FLOPs/G Volume/MB

YOLOv7-tiny 
ALL 92.5 91.5 93.8 92.0    
Peanuts 98.4 99.3 99.6 98.8 6.0 13.2 12.3 
Weeds 86.6 83.6 88.0 85.1    

BEM-
YOLOv7-tiny 

ALL 93.5 93.9 96.0 93.7    
Peanuts 98.9 99.2 99.6 99.0 6.9 12.9 14.1 
Weeds 88.2 88.5 92.4 88.3    

In summary, the BEM-YOLOv7-tiny network model had better performance for peanut and weed 
detection in peanut fields. Compared with the YOLOv7-tiny network model, although the number of 
parameters and model volume of the network increased, BEM-YOLOv7-tiny had higher mAP and F1 
values, indicating that the network model had a lower possibility of missing and false detection of 
targets, and better detection of peanut and weed targets. 

3.2. Performance comparison of improved methods 

In order to verify the effectiveness of the improved method on weed detection performance, the 
effects of different improved modules on the performance of YOLOv7-tiny network were compared 
and tested, and the evaluation indexes of the weed targets were compared and analyzed in order to 
better show the magnitude of the improvement in network performance, and the test results are shown 
in Table 5. 

After enhancing the feature extraction ability of the network using the ECA attention mechanism, 
the mAP and F1 values of the model for the weed target improved by 0.4% and 0.7%, respectively, 
compared with the original network, indicating the better extraction ability of the ECA attention 
mechanism for the important features of the weed target. The mAP was improved by 0.6% when using 
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BiFPN to enhance feature transfer fusion in different layers of the Neck part of the network, indicating 
the effectiveness of BiFPN in enhancing the feature transfer fusion ability. When the detection side of 
the network was enhanced using the MHSA module to focus on the predicted targets, although the 
network detection precision was reduced, the recall and mAP were substantially improved, reducing 
the network’s missed detection of weed targets and demonstrating the enhanced capability of the 
MHSA module for the network. The overall performance of the network model was further improved 
by using the SIoU loss function instead of the original network model loss function. Overall, the BEM-
YOLOv7-tiny network model co-stacked by the improved method works best, and it has been 
improved in all indexes relative to the original algorithm, and the network model stability performance 
is better. 

Table 5. Influence of different improved modules on YOLOv7-tiny network. 

Method P/% R/% mAP/% F1/% 

YOLOv7-tiny 86.6 83.6 88.0 85.1 
YOLOv7-tiny+ECA 87.6 84.1 88.4 85.8 

YOLOv7-tiny+ECA+BiFPN 88.3 84.8 90.0 86.5 

YOLOv7-tiny+ECA+BiFPN+MHSA 88.0 85.9 91.0 86.9 

YOLOv7-
tiny+ECA+BiFPN+MHSA+SIoU (BEM-
YOLOv7-tiny) 

88.2 88.5 92.4 88.3 

3.3. Performance comparison of different attention mechanisms 

To further verify the advantages of introducing the ECA attention mechanism in the network 
model, the ECA attention mechanism in the BEM-YOLOv7-tiny model network was replaced with the 
CBAM attention and SE attention mechanisms respectively for comparison experiments, and the 
experimental results are shown in Table 6. 

Table 6. Performance comparison of different attention models. 

Model P/% R/% mAP/% F1/% FLOPs/G Volume/MB 

Base-CBAM 92.3 92.5 95.5 92.4 13.0 14.2 
Base-SE 93.7 90.1 93.9 91.9 13.0 14.2 

BEM-YOLOv7-tiny 93.5 92.5 95.5 93.7 12.9 14.1 

The CBAM network uses global maximum pooling to introduce location information in the 
channel information to enhance the attention of the network to two different channels, and although 
the mAP value is the same as joining the ECA network, it focuses more on the local information of the 
target, the F1 value is lower than the ECA model, and the network has a high possibility of missed 
detection and false detection. the SE network uses the fully connected approach to achieve the 
information exchange between channels, and the dimensionality reduction adopted leads to the target 
features are lost, and although the recognition precision is higher than that of ECA network, its recall 
rate is low, the possibility of network miss detection is high and the mAP is lower than that of ECA 
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network. The computational volume and model volume of CBAM and SE network models are higher 
than those of BEM-YOLOv7-tiny. So ECA network is better than other attention modules in this model 
and more suitable for the peanut and weed detection model. 

3.4. Performance comparison of different deep learning models 

To verify the superiority of the proposed algorithm for peanut and weed detection performance, 
it is compared with Faster R-CNN, YOLOv4-tiny and YOLOv5s classical target detection models, 
where Faster R-CNN uses ResNet50 network. The experimental results are shown in Figure 8. 

 

Figure 8. Performance comparison results of different target detection networks. 

From the comparison results, it is clear that the BEM-YOLOv7-tiny network model has the best 
evaluation indexes among all models. Because the dataset classified the three weed targets into a single 
class, the Faster R-CNN did not build the image feature fusion pyramid, which was not sensitive to the 
detection of weed targets, and the detection effect was low, with mAP of 83.1% and F1 of only 74.5%, 
the model was easy to miss and misdetect, and the overall performance was lower than the above 
YOLO series network models. the BEM-YOLOv7-tiny model was slightly lower than the YOLOv4-
tiny network in terms of Although the detection speed is slightly lower than that of the YOLOv4-tiny 
network, its comprehensive performance is the best and mAP of the model is 12.5% and 4.1% higher 
than that of the YOLOv4-tiny and YOLOv5s models, respectively. 

As shown in Figure 9, a comparison of the test results of three high-performance network models, 
YOLOv5s, YOLOv7-tiny and BEM-YOLOv7-tiny, is shown, where the blue boxes are the missed 
detection targets. In the early image detection in the field with small weed targets, the YOLOv5s 
network is not sensitive to small target weeds in the image, resulting in a large number of small target 
weed misses, YOLOv7-tiny misses three targets and BEM-YOLOv7-tiny also misses one target. For 
the obvious case of weed targets, all three networks had good recognition of the targets, but the 
YOLOv5s and YOLOv7-tiny networks were insensitive to weeds with partial features at the edges. It 
indicates that BEM-YOLOv7-tiny has better recognition of weeds in peanut fields. 



19354 

Mathematical Biosciences and Engineering  Volume 20, Issue 11, 19341–19359. 

 

Figure 9. Effect of recognition under different models. 

3.5. Analysis of positioning results 

 

Figure 10. Inter-plant weeding diagram, where: 1. weeding knife tip inter-plant weeding 
movement track, 2. weeding knife tip avoiding seedling weeding movement track, 3. 
peanut plant, 4. weeding knife (avoiding seedling weeding state), 5. weeding knife (inter-
plant weeding state), 6. detection frame, 7. detection frame positioning center, 8. weeding 
knife rotation center. 

In this study, borrowing from the method proposed by Pérez-Ruíz et al. [32] combining center 
positioning and hoe control for inter-plant weed removal in field crops, which requires precise 
extraction of crop center location information, peanut inter-plant weeding showed the working 
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principle as shown in Figure 10. Unlike lettuce [19], cotton [33] and other crops with prominent targets 
in the canopy as plant location points, the main branches in the canopy images of peanuts late in growth 
are difficult to detect due to occlusion, so the method of detecting frame center positioning is used to 
determine the coordinates of peanut plant location. The results of peanut detection frame center 
positioning in the test set of 150 images were compared with the actual root positioning coordinates to 
evaluate the accuracy of the model by detecting frame center positioning. 

As shown in Figure 10, Y is the forward direction of the weeder operation, and the movement of 
the weeding knife in X and Y directions is controlled by rotation to achieve peanut inter-plant weeding 
and seedling avoidance weeding. Thus, the positioning error is decomposed by X and Y directions, 
and the offset error d and offset error rate E are proposed to describe the detection frame center 
positioning effect. d indicates the pixel error between the detection frame center positioning 
coordinates and the actual root system coordinates of the peanut in X and Y directions, and E 
indicates the ratio of offset error to the detection frame size in the same direction, which is calculated 
as in Eqs (12) and (13). 

𝑑 |𝑥 𝑥 |  or  𝑑 |𝑦 𝑦 |                                         (12) 

𝐸
∆

100%  or  𝐸
∆

100%                                      (13) 

where, (𝑥  , 𝑦  ) represents the actual positioning coordinates of the peanut, (𝑥  , 𝑦  ) represents the 
positioning coordinates of the inspection center, ∆𝑋  and ∆𝑌  represent the dimensions of the 
inspection frame in the X and Y directions. 

The offset error and offset error rate results of peanut detection frame center positioning at 
different stages in the test set are shown in Table 7. The results show that the offset error of detecting 
frame center positioning in different weeding stages of peanut is less than 16 pixels, and the average 
offset error rate is less than 7%, i.e., the offset error of peanut detecting frame center positioning is less 
than 7% of peanut detecting frame size, which meets the requirement of accurate positioning based on 
peanut canopy detecting frame center to achieve weeding and peanut avoidance. 

Table 7. Error test results. 

Weeding stage Offset error/pixel Offset error rate/% 
Day 21 9.61 5.44 
Day 30 15.96 6.96 
Day 40 10.05 3.82 

4. Discussion 

In this study, a BEM-YOLOv7-tiny network monitoring model was proposed for peanut and 
weed identification at different weed control periods in a field environment. The training precision, 
recall, mAP and F1 values of this model were 93.5%, 93.9%, 96.0% and 93.7%, respectively, which 
were 1.0%, 2.4%, 2.2% and 1.7% better than the original YOLOv7-tiny network. The precision, recall, 
mAP and F1 values of the improved model for weeds were 88.2%, 88.5%, 92.4% and 88.3%, 
respectively, which were improved by 1.6%, 4.9%, 4.4% and 3.2%, respectively. The improved 
BEM-YOLOv7-tiny network had better performance in peanut and weed detection in fields, 
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especially for multiple weeds as single target detection. Compared with the Faster R-CNN, 
YOLOv4-tiny and YOLOv5s deep learning models, the mAP values of BME-YOLOv7-tiny were 
improved by 12.9%, 12.5% and 4.1%, respectively, and showed good performance in peanut field 
targets recognition. 

Although the BEM-YOLOv7-tiny model has a better recognition effect on peanut and weed, the 
detection performance is improved and the model computation is reduced a little, but the model size 
is increased by 1.8 MB to the original YOLOv7-tiny. Facing the problem of small memory space for 
smart equipment, future considerations to reduce the complexity of the model under the premise of 
ensuring the model detection effect, such as Liu et al. [34] by introducing ShuffleNet v1 network to 
lighten the backbone of the model and introduce a lightweight GSConV convolution module, and Li 
et al. [35] used Ghost Bottleneck structure to achieve a lighter network model and used DW 
convolution to replace part of the standard convolution to reduce the number of operations, both of 
which improved the model detection effect while reducing the number of parameters and computation. 
Arunabha et al. [36] reduced the computational complexity while efficiently detecting multi-scale 
objects by adding additional feature fusion layers and Swin-Transformer predictor heads to the 
YOLOv5 network. Future research can further consider model lightweighting while ensuring the 
model detection effect to reduce the requirement of intelligent embedding equipment. 

The BEM-YOLOv7-tiny model detected field weeds with different characteristics of three 
weeding stages in peanut fields as a single target with good results, indicating the feasibility of the 
multi-category target combination training detection method, and the detection model can be applied 
to different weeding stages of peanut. However, there are many kinds of weeds in peanut field, BEM-
YOLOv7-tiny only trained on three annual broadleaf weeds and more kinds of weeds are considered 
to be trained in the future. Additionally, BEM-YOLOv7-tiny was trained only on a single variety of 
peanuts, data collection should be performed on different varieties of peanuts to enhance the 
adaptability of the vision system in the peanut field. Promote the application of intelligent equipment 
in peanut fields. 

5. Conclusions 

In this paper, a BEM-YOLOv7-tiny model is proposed for the detection of peanut and weed at 
different weeding stages. ECA is proved to be the best attention mechanism among SE, CBAM and 
ECA to pay more attention to the target. BiFPN module enhances the feature transfer between different 
network layers, and MHSA module enhances the attention to the predicted target at the detection end, 
which improves the performance of the network for the detection of peanut and weed plants in the field. 
The SIoU loss function is used to improve the model training convergence speed and efficiency. 

The precision, recall, mAP and F1 values of the BEM-YOLOv7-tiny model were 93.5%, 93.9%, 
96.0% and 93.7%, respectively, which were 1.0%, 2.4%, 2.2% and 1.7% higher than those of the 
original YOLOv7-tiny model, and the precision, recall, mAp and F1 values for weed detection 
were 1.6%, 4.9%, 4.4% and 3.2% higher than those of the original YOLOv7-tiny model. Compared 
to other mainstream detection models, the mAP of the BEM-YOLOv7-tiny model was 12.9%, 12.5% 
and 4.1% higher than that of the Faster R-CNN, YOLOv4-tiny and YOLOv5, respectively, the network 
model performed better. 

The experimental results of the positioning error show that BEM-YOLOv7-tiny has less than 16 
pixels positioning offset error for the center of the peanut detection frame in different periods, and the 
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detection speed is 33.8 f/s, which meets the demand of real-time detection and positioning of seedlings and 
grasses. Moreover, the computational volume of the model is 12.9 G, and the volume is only 14.1 MB, 
which is relatively small in terms of computation and memory requirements for hardware devices, and 
can be realized for the deployment and application of intelligent hardware devices. 
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