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Abstract: The RNA secondary structure is like a blueprint that holds the key to unlocking the mysteries 
of RNA function and 3D structure. It serves as a crucial foundation for investigating the complex world 
of RNA, making it an indispensable component of research in this exciting field. However, 
pseudoknots cannot be accurately predicted by conventional prediction methods based on free energy 
minimization, which results in a performance bottleneck. To this end, we propose a deep learning-
based method called TransUFold to train directly on RNA data annotated with structure information. 
It employs an encoder-decoder network architecture, named Vision Transformer, to extract long-range 
interactions in RNA sequences and utilizes convolutions with lateral connections to supplement short-
range interactions. Then, a post-processing program is designed to constrain the model’s output to 
produce realistic and effective RNA secondary structures, including pseudoknots. After training 
TransUFold on benchmark datasets, we outperform other methods in test data on the same family. 
Additionally, we achieve better results on longer sequences up to 1600 nt, demonstrating the 
outstanding performance of Vision Transformer in extracting long-range interactions in RNA 
sequences. Finally, our analysis indicates that TransUFold produces effective pseudoknot structures in 
long sequences. As more high-quality RNA structures become available, deep learning-based 
prediction methods like Vision Transformer can exhibit better performance. 

Keywords: RNA secondary structure prediction; pseudoknot; Vision Transformer; Long-range 
interactions; deep learning 
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1. Introduction  

RNA plays a critical role in transferring genetic information from DNA to proteins [1], but it also 
has other functions such as enzyme activity [2] and cellular regulation [3]. To understand the function 
of RNA, it is crucial to obtain its structure. RNA structure can be divided into three levels: Primary, 
secondary and tertiary. Predicting the tertiary structure is challenging due to the involvement of 
multiple factors [4]. Experimental methods like X-ray crystallography [5] and NMR [6] are time-
consuming and expensive. Therefore, it is crucial to predict RNA secondary structure accurately. In 
order to address the demand for high-throughput data [7], computational methods for RNA secondary 
structure prediction have been created. 

It is expected to predict higher-order RNA secondary structures through the primary structure 
of RNA. The most common methods are based on thermodynamic models. These models assume 
that RNA secondary structures only contain nested base pairs and employ dynamic programming [8] 
to minimize free energy. The Nearest Neighbor Thermodynamic Model (NNTM) [9] is a state-of-
the-art technique that uses experimental parameters to describe the free energy of nearest-neighbor 
loops (Figure 1), which are then added together to represent the entire free energy of the RNA 
secondary structure. Other more efficient tools like Mfold [10], UNAfold [11], RNAfold [12], 
RNAstructure [13] and LinearFold [14] are also based on this approach. However, they cannot 
predict pseudoknots in RNA secondary structures, which are non-nested structures (Figure 2) that 
make predictions based on energy minimization an NP-complete problem [15]. The Nearest 
Neighbor Thermodynamic Model has recently been redesigned by introducing additional parameters 
such as PKNOTS [16], NUPACK [17] and VFold [18]. However, these algorithms still exhibit a time 
complexity of Oሺnସሻ  to Oሺn଺ሻ  when computing the secondary structure of an RNA molecule 
containing n bases [19,20]. There are also algorithms that mitigate the computational challenges by 
employing heuristic strategies, such as HotKnots [21] and IPKnot [22]. Although these algorithms 
are remarkably fast, they do not guarantee the quality of the predicted secondary structures [20]. As 
the number of known RNA secondary structures gradually increases, another class of machine 
learning-based methods has been proposed. ContraFold [23] and ContextFold [24] improve RNA 
secondary structure prediction accuracy by training energy parameter scores based on known 
structures. There is also a type of hybrid method that integrates thermodynamics with learning-based 
techniques, such as MXfold [25] and MXfold2 [26]. These methods can evaluate substructures not 
seen during training. However, these methods still rely on dynamic programming algorithms to 
minimize free energy and struggle to predict pseudoknot structures. 

Due to the rapid advancements in deep learning techniques, many previously explored topics 
have been revisited, resulting in significant breakthroughs. The accumulation of large amounts of 
RNA secondary structure data has provided favorable conditions for applying deep learning to 
predict RNA secondary structure. CDPFold [27] utilized a convolutional neural network but 
represented the resulting structure in dot-bracket notation which failed to express pseudoknot 
structures. SPOT-RNA [28] utilized ResNet [29] and bidirectional LSTM [30] while E2Efold [31] 
combined Transformer [32] with convolutional networks to design an end-to-end model that 
effectively considered the inherent constraints through unrolled algorithms. Both regarded RNA 
secondary structure prediction as binary classification and could predict pseudoknot structures. 
UFold [33] introduced a U-net architecture and represented input sequence data in an “image-like” 
format, significantly improving prediction performance. 
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Figure 1. Decomposition of an RNA secondary structure into nearest structural motifs. An 
RNA secondary structure can be decomposed into several types of nearest-neighbor loops, 
including bulge loops (e.g., bases 30–34 and 90–91), hairpin loops (e.g., bases 45–50 and 
57−64), multi-branch loops (e.g., bases 41–41, 53–54, 64−68 and 81–82), internal loops 
(e.g., bases 36–39 and 84–88), base-pair stackings (e.g., bases 34–36 and 88–90) and 
external loops (e.g., bases 94–95). This diagram was drawn using VARNA [34]. 

 

Figure 2. Examples of nested and non-nested secondary structures. The blue lines 
represent base pairing, the red circles with A represent Adenosine monophosphate, the 
yellow circles with C represent Cytidine monophosphate, the blue circles with G represent 
Guanosine monophosphate and the green circles with U represent Uridine monophosphate. 

In this work, we propose a novel method named TransUFold, which combines Vision Transformer 
with lateral connections for predicting RNA secondary structures. This method can transform one-
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dimensional RNA sequences into ‘image-like’ data with 16 channels as input. For methods using pure 
convolution, it is difficult to capture the long-range interactions and folding information in RNA 
sequences due to the limitation of the receptive field, which leads to defects in predicting long 
sequences and long-distance base pairings. We employ a Vision Transformer [35] framework based on 
the self-attention mechanism [32] to extract more comprehensive features from images. The Self-
Attention Mechanism is a crucial technique in deep learning used for processing sequence data and 
capturing internal data relationships. The core idea of this mechanism is to compute weights for each 
element in a sequence, reflecting its degree of association with other elements in the sequence. 
Specifically, it calculates these weights by comparing each element with the others and then 
normalizing the results to obtain the final weight values. This enables the model to dynamically assign 
different attention weights to each element based on the relationships between different positions, 
without the need for manually specifying weights or positions. Therefore, the advantage of the Self-
Attention Mechanism lies in its ability to capture relationships between any two positions in the input 
sequence, making it highly effective in handling long-range dependencies. The Vision Transformer 
(ViT) is a recent deep learning architecture by introducing the self-attention mechanism that has gained 
prominence in the field of computer vision. ViT aims to better understand images by allowing the 
model to capture global relationships between pixels. To encode a base of the input RNA sequence, 
the self-attention mechanism allows the model to focus directly on other bases in RNA sequence. In 
our approach, we also introduce lateral connections from a series of full convolutions to discover short-
range interactions in RNA. Convolutions excel at capturing short-range interactions. These lateral 
connections enable the decoder to compensate for potential deficiencies in short-range interactions that 
may exist in the primary encoder, which is advantageous for predicting complex pseudoknot structures. 
Due to this, our model can predict RNA secondary structures containing pseudoknots. We conducted 
a series of experiments to compare TransUFold with other state-of-the-art methods. The results showed 
that TransUFold achieved superior performance in predicting RNA secondary structures, indicating 
potential influence on advancing RNA research. 

2. Materials and methods 

2.1. Datasets 

To examine the accuracy of our approach, we conduct the experiments based on reliable RNA 
sequences and associated structural information of various families from two benchmark datasets: 
RNAStralign [36] and ArchiveII [37]. After removing redundant sequence structures, we summarize 
the datasets in Table 1. In addition to evaluating the performance of our method in cross-family 
prediction, we also employ dataset bpRNA-new from Rfam 14.2 [26,38], which includes sequences 
from 1500 new RNA families that are not present in any other datasets. The redundancy among the 
datasets RNAStralign, ArchiveII and bpRNA-new has been eliminated. 

We randomly split the dataset RNAStralign into a training set and a test set at 4:1 to evaluate the 
accuracy of our method for RNA secondary structural prediction. Furthermore, another two datasets 
ArchiveII and bpRNA-new are introduced as test sets to examine the accuracy of prediction for 
families with different distributions and other unused families during training. Then, we select 10,879 
RNAs with sequence length of 512−1600 nt in dataset RNAStralign and divide them into a training 
set and a test set in a ratio of 4:1 at random to test the performance in long sequence prediction. 
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Table 1. Dataset statistics. 

TYPE RNAStralign ArchiveII 
5SrRNA 9385 1283 
16SrRNA 11,620 110 
tRNA 6443 557 
grp1 1502 98 
SRP 468 928 
tmRNA 572 462 
RNaseP 434 454 
telomerase 37 37 
23SrRNA - 35 
grp2 - 11 
ALL 30,461 3975 

2.2. Input and output representation 

RNA secondary structure prediction is the task of predicting the base pairing pattern for a given 
RNA sequence. Most methods, such as E2Efold, ATTfold [39] and MXfold2, treat the RNA sequence 

1 2(s ,s ,...s ),  s { , , , }l lS A U C G= ∈  as a simple sequence for input. However, UFold introduces a novel 

method to convert an RNA sequence into an “image”. Like UFold, our approach represents S  using 

one-hot encoding as an 4L ×  binary matrix 4{0, 1}LX ×∈  and then performs a Kronecker product 

on X with itself to transform S  into a 16 L L× ×  tensor (as shown in Figure 3). 

XXK ⊗=           (1) 

A noteworthy feature of the UFold-structure is its ability to simulate various long-distance 
interactions among nucleotides within the RNA sequence as local patterns in the image. Additionally, 
it takes every base pairing (including both canonical and non-canonical) into account by representing 

S  as a 16-channel image, where each channel represents a base pairing. In Figure 3, 16{0, 1} L LK × ×∈  

denotes a 16-channel UFold -structure image, where ( , , )K i j k  represents whether js  and ks  form 

a base pair according to the i th−  base pairing rule. The final output of our model is the secondary 

structure matrix [0, 1]L LU ×∈ , where ijU  represents whether is  and js  in S  exist a base pair. 
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Figure 3. The TransUFold input with a 16-channel image-like representation. Illustration 
of base sequence transformation into a one-hot matrix (blue arrows) and subsequent 
conversion into a “16-channel image” (rightward blue arrows). The red, blue, brown and 
green dashed lines express the vectors corresponding to the positions of the bases in the 
sequence, undergoing Matrix Product with other vectors (Adenine, Uracil, Cytosine and 
Guanine). The red, blue, brown and green matrices represent the four pairing rules 
associated with the respective bases (Adenine, Uracil, Cytosine and Guanine). 

2.3. Network architecture and post-processing 

We design a brand-new encoder-decoder architecture with two encoders: a primary encoder and 
an auxiliary encoder. The primary encoder applies a vision transformer to focus on global features like 
long-range interactions from the input of RNA sequence. Specifically, our vision transformer consists 
of six Transformer Encoders, each of which undergoes a series of key steps to effectively extract 
features. First, the input features pass through a layer normalization module, which helps balance the 
distribution of features and enhances training stability. Next, a multi-head self-attention computation 
module is introduced, where 16 self-attention heads are set to capture the global contextual information 
of the input sequence. Such a design allows the network to simultaneously focus on features at different 
positions, thereby better capturing extensive semantic relationships. After the self-attention 
computation, a residual connection is established between the original input and the self-attention 
output features. This type of connection facilitates information flow and helps maintain feature stability. 
Subsequently, another layer normalization module is applied to maintain feature consistency. 
Following this, a Multi-Layer Perceptron (MLP) module is introduced for non-linear transformations 
to capture more comprehensive feature information. This MLP module comprises two linear 
transformation layers, with the first layer mapping input features to a higher-dimensional feature space. 
Subsequently, a GELU activation function is applied for non-linear transformation, further enriching 
feature representation. To prevent overfitting, a Dropout layer is introduced after the MLP. Finally, the 
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feature is mapped to the final output dimension through the second linear layer. This design not only 
allows the network to adaptively capture crucial features from the input data but also connects the 
original input of the MLP with its output through residual connections, further enhancing feature 
expressiveness. The combination of these steps enables each Transformer Encoder to efficiently extract 
information from input features and utilize it for the task at hand, thereby enhancing the network’s 
performance. To further enrich local features, we also design an auxiliary encoder consisting of a series 
of fully convolutional downsampling layers as lateral connections for the input of the decoder. The 
convolutional neural network encoder block is a crucial module designed to effectively extract features 
through a sequence of hierarchical operations. First, it comprises two stacked convolutional layers that 
utilize 3 × 3 convolutional kernels to perform convolutions on the feature maps. This aids in capturing 
local features within the image while preserving the spatial dimensions of the feature maps. After each 
convolutional layer, batch normalization is applied to normalize the distribution of features, enhancing 
model stability and training speed. Following batch normalization, the ReLU activation function is 
introduced to bring about non-linear transformations. This facilitates the model in learning richer and 
more complex feature representations to adapt to different image patterns and structures. The overall 
design of the encoder block follows the sequential arrangement of convolutional layers, batch 
normalization and activation functions, resulting in a compact and effective feature extraction process. 
The output of the convolutional neural network encoder block is supplemented by the decoder through 
lateral connections. A 2 × 2 max-pooling is applied after each encoder block to perform downsampling 
operations. By stacking four such encoder blocks, the neural network progressively extracts more 
semantically meaningful features and supplements them to the decoder. In the decoder section, 
comprised of four decoder convolution blocks, each block follows a set of key steps in its design: To 
begin with, an upsampling operation is applied to double the dimensions of the input feature map. This 
operation aids in restoring the spatial resolution of the feature map and contributes additional 
information for subsequent stages. Following this, a 3 × 3 convolutional kernel is utilized to perform 
convolutional computations on the upsampled feature map. After the convolutional operation, batch 
normalization is employed to normalize the distribution of features, thereby enhancing the model’s 
stability. Subsequently, a ReLU activation function is introduced, introducing non-linear 
transformations that enable the model to acquire more intricate and enriched feature representations, 
suited for adapting to various image patterns and structures. In summary, the decoder convolution 
block progressively transforms low-dimensional feature mappings into high-resolution outputs 
through a sequence of operations. We use the output of the primary encoder as the main input and use 
the output of the auxiliary encoder to supplement the decoder layer by layer. The network outputs an 
L L×  matrix, which is then multiplied by its transpose to make a symmetric matrix as the contact 
score matrix U   shown in Figure 4. The loss function we applied is Binary CrossEntropyLoss to 
minimize the loss between the contact score matrix U   and the true pairing matrix A   through 
training with stochastic gradient descent. Before computing the loss, the output of the last layer must 
activate with a sigmoid function to ensure that the contact score of Matrix U  is strictly positive. 

( ) xe
x −+

=
1

1σ           (2) 

( )  −−+−=
ij

ijijijij UAUAAUL )]1log()1()log([,oss       (3) 



19327 

Mathematical Biosciences and Engineering  Volume 20, Issue 11, 19320−19340. 

 

Figure 4. The overall architecture of TransUFold. The input is a 16 × L × L tensor obtained 
by transforming the original sequence, and the output is a L × L symmetric score matrix, 
which is post-processed to obtain the final secondary structure matrix. 

To ensure that the output satisfies the RNA pairing constraints, we add a post-processing network 
to filter out non-standard base pairings, resulting in the final RNA secondary structure matrix. The 
post-processing considers three hard constraints of RNA secondary structure: 

(i) Only three base pairing modes are allowed to exist: A-U, G-C [40] and U-G [41]; 

(ii) no sharp loops are allowed， 4, 0iji j U∀ − < = ; 

(iii)no overlapping pairs are allowed, 
1

, 1L
ijj

i A
=

∀ ≤ . 

We obtain a symmetric contact score matrix U in our network architecture. For constraint (i), we 
implement base pairing modes on each output sequence through a predefined L L×  matrix, where 
we fill 1 at locations satisfying A-U, G-C and U-G pairings, and 0 elsewhere. By element-wise 
multiplying this matrix by the contact score matrix U, we preserve predicted values that satisfy the 
base pairing constraints. For constraint (ii), we employ a similar approach as constraint (i). We design 
an L L×  matrix with its diagonal to 0 to indicate that a base does not pair with itself, and assign 0 to 
all entries within 3 positions away from the diagonal and 1 to all other entries. To ensure constraint (ii) 
is satisfied, we multiply (element-wise) this matrix by the contact score matrix U . For considering 
both constraints (i) and (ii), we define a nonlinear transformation Τ  used in E2Efold in Eq (4): 

( ) ( ) ( )xMUUUUU T 








)(
2
1: +=Τ        (4) 

Where   represents element-wise multiplication. The matrix M  is defined to satisfy the constraints 

(i) and (ii), that is, ( ) : 1ijM x =   if i jx x  {AU,UA}∪{GC,CG}∪{GU,UG} and 4i j− >  , and 

( ) : 0ijM x =  otherwise. The final constraint is depicted in Eq (5) to ensure each base has at most one 

pairing. reluሺUl − 1ሻ = 0, l = 1, … , L        (5) 
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where Ul represents the number of base pairings, satisfying Ul ≤ 1. We transform it into a linear 

programming problem to find the optimal scoring matrix that maximizes its similarity with ( )UΤ


. 

( ) ,,,
2
1max tosubjectUUsULLRU


 ρ−Τ−×∈ 𝑼𝒍 ≤ 1     (6) 

where s  represents a threshold such that ijU s>  indicates a pairing existing between base i  and 

base j , otherwise not. The similarity between the scoring matrix and ( )UΤ


 is represented by their 

inner product, with 1L  regularization penalty term to control the sparsity of the output matrix through 
hyperparameters. For this single-constraint optimization problem, it can be solved using the method 

of Lagrange multipliers. Finally, the optimal matrix *U  with the highest similarity to ( )UΤ


 is our 

final RNA secondary structure prediction matrix. 

( ) ( ) UUlreluUsULLRU


 ρλλ −−−Τ−×∈≥ 1,,

2
1maxmin 0     (7) 

2.4. Evaluation 

Our experiments are executed on a computer with 64-bit AMD EPYC 7551P processor, Nvidia 
RTX A4000-16G graphics card, 36 GB RAM and Ubuntu Operating System. Our model is trained 
for 100 epochs on dataset RNAStralign and the best model is selected through the validation set as our 
final model. To better evaluate the predicted RNA secondary structure by TransUFold, we apply three 
evaluation metrics: Precision, Recall and F1 score, shown in Eqs (8)−(10). The definitions of TP, FN, 
TN and FP are demonstrated in Table 2. TP represents the correctly predicted base pairs. FN represents 
incorrectly predicted actual base pairs. TN represents correctly predicted non-base pair positions. FP 
represents incorrectly predicted base pairs that actually do not exist. 

Table 2. Specific representations of each parameter in performance metrics. 

Predict True 
P N 

P TP FP 
N FN TN 

FPTP
TPPrecision
+

=          (8) 

FNTP
TPRecall
+

=          (9) 
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recallprecision
recallprecisionF

+
××= 21         (10) 

3. Results 

We evaluate the performance of our model on two benchmark datasets (RNAStralign and 
ArchiveII) and a cross-family dataset (bpRNA-new). Due to differences in length distributions (as 
shown in Figure 5), padding the input according to maximum sequence lengths would greatly 
increase the sparsity of the input matrix and training complexity. Therefore, we select non-redundant 
RNA sequences with lengths less than 512 nt from the dataset RNAStralign for one model and others 
for another model. We train the model using the Adam optimizer for 100 epochs with a learning rate 
of 0.001. The same settings are applied to other learning-based methods. 

Specifically, to simulate real-world scenarios for short RNA sequences, two different scenarios are 
designed to predict new RNA sequence structures for known and unknown families, respectively. For 
the former scenario, we evaluate the accuracy of the trained model directly based on dataset ArchiveII 
with different data distributions from dataset RNAStralign. To assess our model in the latter scenario, we 
introduce dataset bpRNA-new, which contains families that are not included in other datasets. 
Additionally, we evaluate TransUFold’s performance on long RNA sequences from dataset RNAStralign 
that range in length from 512 to 1600 nt. Finally, to verify whether TransUFold truly generates 
pseudoknots, we analyze the results of the RNA sequence structures with pseudoknots in the test set. 

 

Figure 5. The length distribution of sequences in dataset RNAStralign (left) and Archive 
II (right) for each family. 

3.1. The performance for predicting secondary structure of short sequences on RNAStralign 

In this section of the experiment, we present the results of TransUFold on dataset RNAStralign 
and compare them with other state-of-the-art methods, including thermodynamic-based methods such 
as RNAfold, RNAstructure and LinearFold, machine learning-based methods such as CONTRAfold 
and ContextFold, hybrid machine learning and thermodynamic-based methods MXfold and MXfold2, 
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and recently developed deep learning methods E2Efold, ATTfold and UFold.  
The experimental results are presented in Table 3 and Figure 6. We find that the conventional 

thermodynamic-based methods yield F1 scores ranging from 0.671 to 0.719. In contrast, machine 
learning-based methods CONTRAfold and ContextFold achieve better performance, with F1 scores 
of 0.726 and 0.904, respectively. Hybrid machine learning and thermodynamic-based methods MXfold 
and MXfold2 also performs better than pure thermodynamic-based methods, with F1 score of 0.764 
and 0.835, respectively. All mentioned deep learning-based methods obtain F1 scores exceeding 0.8. 
The F1 scores of E2Efold, ATTfold and UFold are 0.840, 0.813 and 0.945, respectively. Our 
TransUFold reaches the highest F1 score 0.951, which also outperforms other methods on the Recall 
and Precision indicators.  

Table 3. Results on RNAStralign test set. 

Method Precision Recall F1 
TransUFold 0.959 0.944 0.951 
UFold 0.956 0.936 0.945 
MXfold2 0.851 0.827 0.835 
ATTfold 0.808 0.824 0.813 
E2Efold 0.827 0.863 0.840 
MXfold 0.809 0.734 0.764 
ContextFold 0.927 0.887 0.904 
CONTRAfold 0.745 0.718 0.726 
LinearFold 0.781 0.685 0.719 
RNAstructure 0.699 0.645 0.665 
RNAfold 0.697 0.656 0.671 

 

Figure 6. Violin plot visualization of F1 value of RNA secondary structure predictions 
methods on dataset RNAStralign.  
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3.2. The performance of RNA secondary structures prediction for known families 

In this section, we compare our TransUFold to the methods mentioned above on dataset ArchiveII 
with different distributions of the same families and illustrate the results in Table 4 and Figure 7. The 
experiments show similar results that the F1 scores of traditional thermodynamic-based methods ranged 
from 0.623 to 0.646. Although the majority of machine learning-based and deep learning-based methods 
obtain better performance, E2Efold and ATTfold achieving F1 scores of just 0.552 and 0.524, 
respectively, lower than the performance of traditional thermodynamic-based methods. The probability 
distributions of F1 scores for E2Efold and ATTfold display significant polarization in Fig. 7, which can 
explain the fact that they are unable to forecast RNA secondary structures accurately when the RNA 
secondary structure homology is low. Our proposed TransUFold still achieves the best results, with F1 
score of 0.866. 

Table 2. The performance of methods on ArchiveII. 

Method Precision Recall F1 
TransUFold 0.886 0.854 0.866 
UFold 0.879 0.833 0.853 
MXfold2 0.807 0.767 0.781 
ATTfold 0.515 0.548 0.524 
E2Efold 0.547 0.583 0.552 
MXfold 0.670  0.764 0.707 
ContextFold 0.874 0.821 0.842 
CONTRAfold 0.698 0.654 0.668 
LinearFold 0.730  0.604 0.646 
RNAstructure 0.662 0.602 0.623 
RNAfold 0.663 0.614 0.631 

 

Figure 7. Violin plot visualization of F1 value of 11 RNA secondary structure predictions 
methods on dataset ArchiveII. 
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3.3. The predicted accuracy of RNA secondary structures for unknown families 

Since dataset bpRNA-new consists of 1500 families of sequence structures that are not present 
in any other datasets, we utilize it to demonstrate the performance of TransUFold for unknown 
families, shown in Table 5 and Figure 8. Traditional thermodynamic methods achieve the similar 
accuracy, but the performance of machine learning-based methods and deep learning methods all 
decrease. The F1 score of the hybrid method MXfold reaches 0.663, showing the best performance. 
Unfortunately, the performance of all deep learning methods has significantly declined. This indicates 
that solely relying on deep learning methods cannot predict RNA secondary structures accurately 
when no prior knowledge is provided in the training process. E2Efold and ATTfold only have F1 
scores of 0.051 and 0.059, respectively, which are too low to predict RNA secondary structures in 
unknown families. In comparison to other deep learning techniques, our TransUFold achieves an F1 
score of 0.421, demonstrating relatively better performance. 

Table 5. Results on bpRNA-new test set. 

Method Precision Recall F1 
TransUFold 0.437 0.428 0.421 
UFold 0.453 0.413 0.423 
MXfold2 0.621 0.718 0.654 
ATTfold 0.054 0.069 0.059 
E2Efold 0.074 0.061 0.051 
MXfold 0.638 0.717 0.663 
ContextFold 0.596 0.636 0.603 
CONTRAfold 0.620  0.736 0.661 
LinearFold 0.686 0.646 0.633 
RNAstructure 0.579 0.718 0.630  
RNAfold 0.592 0.720  0.640  

 

Figure 8. Violin plot visualization of F1 value of RNA secondary structure predictions 
methods on dataset bpRNA-new. 
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3.4. The performance for predicting secondary structures of long RNA sequences 

In RNA secondary structure prediction, the lengths of RNA sequences can vary greatly. To 
accommodate deep learning methods, sequences must be padded to a uniform length, which not only 
increases training complexity but also adds too much meaningless information to short sequences, 
potentially reducing prediction accuracy. Therefore, most deep learning methods do not support long 
sequence prediction. For example, ATTfold models only RNA sequences with less than 512 nt. 
However, RNA sequences with longer lengths are equally important, so we evaluate the secondary 
structures of RNA sequences up to 1600 nt. In the experimental results, F1, Precision and Recall 
score 0.954, 0.932 and 0.978, respectively. Notably, compared with sequences shorter than 512 nt in 
the dataset RNAStralign, we even achieve better performance on long sequences. This is because the 
self-attention mechanism in Transformer provides long-range interactions for long RNA sequences. 

3.5. Pseudoknot prediction analysis 

In this section, we evaluate whether our model produces real and effective pseudoknots on the 
dataset RNAStralign. There exists a total of 3894 sequences less than 512 nt in the test set. After 
filtering of pseudoknots, 478 sequences with pseudoknots exist. We then access the performance of 
various methods (ProbKnot, E2Efold, Attfold, UFold and TransUFold) for generating pseudoknots on 
these sequences. We preserve all the bases that form pseudoknots in these sequences and only analyze 
the performance indicators of these bases’ prediction, shown in Table 6. Our proposed TransUFold 
outperforms other methods in terms of F1 score, Precision and Recall. 

Finally, we analyze TransUFold’s performance on long sequences with pseudoknots between 512 
and 1600 nt in length. We discover that 2131 of 2178 sequences in the test set contain pseudoknots, 
which means almost all long sequences contain pseudoknots. Therefore, the accuracy of pseudoknot 
prediction is crucial for predicting the secondary structures of long sequences. Our analysis of the 2131 
sequences’ base pairs directly involved in constructing pseudoknots yields F1, Precision and Recall 
of 0.960, 0.942 and 0.996, respectively. The training set containing a sufficient number of sequences 
with pseudoknots accounts for the greater accuracy compared to short sequences. 

Table 6. Evaluation of base pairs involved in pseudoknot formation. 

Method Precision Recall F1 
TransUFold 0.455 0.952 0.560 
UFold 0.434 0.938 0.551 
E2Efold 0.200 0.657 0.267 
Attfold 0.067 0.387 0.103 
ProbKnot 0.140 0.814 0.172 

3.6. Ablation study 

To validate the effectiveness of the Vision Transformer-based encoder we employed, we 
conducted an ablation experiment in which we removed the Vision Transformer module (TransUFold-
WVT) and compared it with TransUFold. This experiment helps us assess the contribution of the 
Vision Transformer to the system’s performance. The experimental results are presented in Table 7 and 
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Figure 9. TransUFold achieved superior results with an F1 score of 0.952. As the sequence length 
increased, the advantage of TransUFold became more noticeable, indicating that the attention-based 
Vision Transformer is more effective in handling long-range interactions between bases. 

Table 7. Ablation study on VIT (RNAStralign testing set). 

Method Precision Recall F1 
TransUFold 0.949 0.956 0.952 
TransUFold-WoVT 0.935 0.941 0.937 

 

Figure 9. Analyzing F1 scores based on sequence length. 

3.7. Visualization 

In this section, we compare the visualized output RNAs of TransUFold to MXfold2, E2Efold, 
ATTfold, UFold, Contextfold and RNA structure methods. We convert the predicted RNA secondary 
structure matrix into a bpseq format and visualize RNA sequence P00855 (Figure 10) from dataset 
RNAStralign and 5s_Methanosarcina-acetivorans-2 (Figure 11) from dataset ArchiveII using VARNA, 
a visualization tool of RNA sequences. In both examples, TransUFold produces results that are most 
similar to the actual RNA secondary structure. Finally, we also visualize an 872-length RNA sequence 
in Figure 12, which is recorded in dataset RNAStralign as AY807427. TransUFold also yields high 
similarity to the actual structure on longer sequences. 
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Figure 10. Visualization of RNA secondary structure prediction for P00855 in dataset RNAStralign. 

 

Figure 11. Visualization of RNA secondary structure prediction for 5s_Methanosarcina -
acetivorans-2 in dataset ArchiveII. 

 

Figure 12. Visualization of RNA secondary structure prediction for AY807427 in dataset 
RNAStralign, with a sequence length of 872. 
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4. Discussion 

In our experiment, dataset RNAStralign is used to train the proposed model TransUFold, and F1 
score is applied as the main performance metric during testing. TransUFold performs 20−30% more 
accurately than thermodynamic methods. TransUFold achieves 5% to 20% improvement when 
comparing with other machine learning methods. Our TransUFold performs up to 10% better than 
other cutting-edge deep learning methods. We also design experiments for different scenarios. For 
instance, when predicting the structure of newly discovered RNA sequences belonging to known 
families in dataset ArchiveII, TransUFold outperforms the other methods. When predicting the 
structures of RNA sequences from previously unknown families in dataset bpRNA-new, TransUFold’s 
performance decreases by over 20% compared to traditional thermodynamic methods. However, 
TransUFold performs relatively better in terms of accuracy (F1 = 0.4), compared with other deep 
learning methods like E2Efold and ATTfold with F1 scores less than 0.1. When predicting longer RNA 
sequences up to 1600 nt, TransUFold performs well, since the primary encoder can capture long-range 
interactions in RNA sequences. The F1 score is 0.954 for sequences longer than 512 nt, which is higher 
than the performance for short sequences. Finally, we verify the practicability of pseudoknots prediction. 
In short sequences, our method achieves the best performance, but it is still challenging to predict 
pseudoknots precisely. In long sequences up to 1600 nt, the prediction of TransUFold for pseudoknots 
achieves the same performance as predicting other base pairs and can generate effective pseudoknots. 

Our TransUFold achieves superior performance compared to previous methods due to its distinctive 
network architecture. We employ an image-like input transformed from the original RNA sequence 
instead of the raw sequence used by the majority of methods. The advantage of this approach is that all 
base pairing patterns are explicitly represented in the image-like input, allowing the proposed model to 
select all potential base pairing rules that can contribute to the construction of RNA secondary structure. 
For the output of RNA secondary structure prediction, traditional methods and other deep learning 
methods utilize dot-bracket notation to represent RNA secondary structures without pseudoknots, which 
cannot accurately reflect the genuine activity of RNA. In contrast, our TransUFold method outputs a 2D 
base pairing matrix after complying with realistic rules through post-processing, which easily conveys 
the structure of pseudoknots. Furthermore, in our proposed model, Vision Transformer is applied as the 
primary encoder to capture long-range interactions in RNA sequences, and convolutions with lateral 
connections are introduced as the auxiliary encoder for extracting the extra short-range interactions to 
the decoder. This network architecture that combines local and global features is particularly effective 
for predicting RNA secondary structures. However, TransUFold does have some limitations like other 
deep learning-based methods. The prediction performance decreases significantly in the absence of 
enough available known structures, as demonstrated in our experiment’s second scenario. Fortunately, 
high-throughput methods for determining RNA structures have begun to emerge [42,43]. With a large 
number of available structures, TransUFold’s performance can be further improved. 

In the future, we consider combining deep learning with meta-learning to achieve adaptive learning 
and generalization capabilities. Environmental conditions, such as temperature, ion concentration and 
pH value, also have an impact on RNA secondary structure in actual studies. It is meaningful to take this 
information into account to make deep learning tools more useful in practical applications. It is important 
to note that the constraint “no sharp loops are allowed” in our model is indeed a simplified description 
and does not consider structures like bulges and internal loops. We plan to design another classifier to 
loosen this constraint later. Overall, we demonstrate the outstanding potential of deep learning methods 
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to address the challenge of RNA secondary structure prediction. Our proposed network architecture that 
utilizes a Vision Transformer fused with an auxiliary encoder with lateral convolutions provides a 
solution for capturing both long-range and short-range interactions within RNA sequences and 
outperforms other state-of-the-art methods in RNA structure prediction. Without prior knowledge of 
RNA sequences within the same family, it is difficult for deep learning methods to make accurate 
predictions. However, along with the development of technologies for RNA structure detection, the 
performance of deep learning methods like TransUFold can be further enhanced. The implemented code 
and experimental dataset are available online at https://github.com/traveltheroad/TransUFold.  
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