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Abstract: A COVID-19 deterministic compartmental mathematical model with different types of
quarantine and isolation is proposed to investigate their role in the disease transmission dynamics.
The quarantine compartment is subdivided into short and long quarantine classes, and the isolation
compartment is subdivided into tested and non-tested home-isolated individuals and institutionally
isolated individuals. The proposed model has been fully analyzed. The analysis includes the positivity
and boundedness of solutions, calculation of the control reproduction number and its relation to all
transmission routes, existence and stability analysis of disease-free and endemic equilibrium points
and bifurcation analysis. The model parameters have been estimated using a dataset for Oman. Using
the fitted parameters, the estimated values of the control reproduction number and the contribution
of all transmission routes to the reproduction number have been calculated. Sensitivity analysis of
the control reproduction number to model parameters has also been performed. Finally, numerical
simulations to demonstrate the effect of some model parameters related to the different types of
quarantine and isolation on the disease transmission dynamics have been carried out, and the results
have been demonstrated graphically.
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1. Introduction

The COVID-19 pandemic first initiated in December 2019 in the city of Wuhan, China [1], and since
then, it has been spreading worldwide. The coronavirus disease 19 is caused by severe acute respiratory
syndrome coronavirus 2 (SARS- CoV-2) [2, 3]. On February 24, 2020, the Oman Ministry Of Health
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registered the first two COVID-19 cases for Omani women associated with travel. On January 30,
2020, the World Health Organization (WHO) declared the outbreak a public health emergency of
international concern [4]. On March 11, 2020, it characterized the outbreak as a pandemic [5].

Governments around the world regularly respond to the announcements made by the WHO, and
different medical protocols are followed depending on the epidemiological status. On the same day of
declaring COVID-19 as a pandemic, the Omani government responded and His Majesty The Sultan
issued his royal orders to set up a supreme committee for dealing with the developments resulting
from the spread of COVID-19 [6]. Since then, the Supreme Committee has made many decisions
and regulations to help monitor and protect the country’s healthcare system. As is the case in many
countries, the main methods adopted for controlling the spread of COVID-19 have been a lockdown,
quarantine, isolation and creating awareness among individuals to adopt social distancing and maintain
personal hygiene. By the end of December 2020, some types of vaccines against COVID-19 had
been approved and distributed [7]. However, authorities still recommend that people practice non-
pharmaceutical intervention strategies (such as social distancing and wearing masks) to avoid and fight
against the spread of COVID-19. The timeline chart in Figure 1 summarizes the events mentioned
above.

Figure 1. COVID-19 timeline.

Many researchers proposed mathematical models to study the effectiveness of the various
strategies and interventions in controlling the spread of COVID-19 before any effective vaccine had
been developed. Aronna, Guglielmi and Moschen [8] proposed a compartmental model for the
dynamics of COVID-19. They took into account the presence of asymptomatic infections, and also
the main policies that had been adopted by several countries to fight the disease, these being:
isolation, quarantine and testing. They modeled isolation by separating the population into two
groups: one composed of essential workers that keep working during the pandemic, and the other
group consisting of people that were recommended to stay at home. They showed that people that
remain in isolation significantly reduce their probability of contagion, so risk groups should be
recommended to maintain a low contact rate during the course of the epidemic.

Džiugys et al. [9] developed a model under quarantine conditions and methods to estimate
quarantine effectiveness. It is based on the daily growth rate of new infections. Using collected
epidemiological data of the COVID-19 pandemic, they found that the daily growth rate of new
infections has a tendency to decrease linearly when the quarantine is imposed until it reaches a
constant value.

Varghese et al. [10] formulated a deterministic compartmental model including various stages of
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infection to study the spreading of COVID-19; they estimated the model parameters by fitting the
model with the reported data in Oman. They proved the model’s steady state, stability, and final
pandemic size mathematically. In addition, they performed a sensitivity analysis to identify the key
model parameters and found that contact with symptomatic moderately infected is more significant in
spreading the disease.

For more compartmental models based on ordinary differential equations we refer the reader
to [11–17]. For example, the authors of [11] developed a mathematical model to investigate the role
of the diagnosis rate in the transmission dynamics of COVID-19 together with the combined effects of
quarantine and isolation. They concluded that quarantine and diagnosis, especially for the
presymptomatic humans, play the most crucial role in controlling the disease transmission.

The researchers in [18] found that if isolation can be implemented effectively (high efficacy and
coverage), then the quarantine of people suspected of contracting COVID-19 may not be necessary.
Many studies with mathematical models based on fractional differential equations also investigated
COVID-19 transmission dynamics. Oud et al. [19] considered a fractional model to explore the
transmission dynamics and possible control of the COVID-19 pandemic in Pakistan. Initially, they
examined a model without optimal control variables. It provided a good fit to the reported cases and
then estimated the model parameters using the non-linear least square curving fitting approach. They
further reformulated the model by adding two time-dependent control variables. They observed that
the most effective strategy to minimize the disease is the implementation of maintaining strict social
distancing and contact tracing to quarantine the exposed people. Other studies can be found in
References [20–23]. The researches in [24] found that fractional models better predict future
dynamics and give closer estimates to the real data than integer-order models.

In this paper, we propose and analyze a mathematical model to study the roles of different types of
quarantine and isolation in COVID-19 transmission dynamics. In particular, we will consider short-
and long-term quarantines and home and institutional isolations, taking Oman as a case study and
utilizing its COVID-19 data for model parameter estimations. Although the literature is rich in
compartmental models, and the effects of quarantine and isolation on COVID-19 spread are well
established, our model attempts to reflect the situation during the period of time when data were
collected for fitting. The model aims to investigate the roles of different types of quarantine and
isolation on the dynamics of COVID-19. Hence our main contribution is the inclusion of
corresponding classes of quarantine and isolation to capture the effects of the related control strategies
that were implemented by Oman’s health authorities on disease dynamics.

The paper is organized as follows. The model formulation is described in Section 2. The model
analysis includes the positivity, boundedness of the solution, control reproduction number and
existence and stability analysis of disease-free and endemic equilibrium points, which are discussed
in Sections 3 and 4. Furthermore, bifurcation analysis and sensitivity analysis are also presented. The
fitting of the model parameters and numerical analysis of the model using estimated parameters are
given in Section 5 to illustrate the effects of quarantine and isolation on the spread of the disease.
Finally, the conclusion is given in Section 6.
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2. Model formulation

The formulation of this model is based on classifying the human population N(t) according to
their health status into 11 classes. These classes are susceptible S (t), exposed E(t), asymptomatic
A(t), presymptomatic P(t), symptomatic I(t), quarantined for a short time (at home or institutionally)
QS (t), quarantined for a long time (mostly at home) QL(t), non-tested home-isolated JN(t), tested home
isolated JH(t), tested isolated at health institutions JI(t) and recovered R(t), thus,

N = S + E + A + P + I + QS + QL + JN + JH + JI + R

2.1. Model assumptions and description

Susceptible individuals, S (t), are those at risk of becoming infected. They are recruited into the
population at a constant rate Λ. They acquire COVID-19 by direct contact with asymptomatic,
presymptomatic, symptomatic, non-tested and tested home-isolated at rates of βA, βP, βI , βN and βH,
respectively. It is assumed that there is no transmission from the institutional isolation class. This
class is assumed to be completely isolated from the susceptible group.

Following governmental regulations regarding travel restrictions, it is assumed that some
susceptible individuals undergo a short quarantine, QS (t), at a rate of ρS and leave the class by either
natural death, returning back to the susceptible class at a rate of λS after 14 days or by moving to long
quarantine, QL(t), at a rate of αS . Long quarantine is considered a behavioural practice adhered to by
some people due to their awareness or fear. Individuals in the long quarantine class leave by natural
death or return back to the susceptible class at a rate of λL.

All newly infected individuals enter the exposed class E(t), in which they remain non-infectious
during their latent period. After this period, they become infectious at different rates λA, λP or λI as
asymptomatic, presymptomatic or symptomatic, respectively.

Asymptomatic individuals, A(t), are infected and contagious but do not show any symptoms until
they recover. It is assumed that they leave their class by a natural death, isolation at home for non-
tested individuals at a rate of ρA, getting diagnosed and isolated at home (health institutions) at a rate
of εA(θA) or recovery at a rate of γA.

Presymptomatic infectees, P(t), currently have no symptoms but will develop symptoms after some
time. It is assumed that they leave their class due to natural death, tested positive and hence are isolated
at homes/health institutions at a rate of εP/θP or move to the infected class with symptoms at a rate of
σP when symptoms are onset. As a result of contact-tracing or human behaviour, some presymptomatic
individuals move to the non-tested home isolated class at a rate of ρP. It is assumed that there is no
disease-related death in the presymptomatic class.

Individuals in the symptomatic class, I(t), are those with mild COVID-19 symptoms but have not
been tested. It is assumed that when diagnosed or symptoms become severe, medical care is needed;
some are moved to tested home isolation at a rate of θI , and some are moved to institutional isolation
at a rate of εI , while the remaining stay in the symptomatic class until they recover at a rate of γI . No
disease-related death is assumed in this class, but natural death may occur.

Non-tested home-isolated individuals, JN(t), are those individuals with suspected infection, with or
without symptoms, who have not been tested. They come from the exposed class at a rate of ρE, from
the asymptomatic class at a rate of ρA and from the presymptomatic class at a rate of ρP. It is assumed
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that some people have COVID-19 symptoms but do not wish to obtain a diagnosis. Instead, they prefer
to isolate themselves in their home. Also, due to identification by contact tracing, some are instructed
to isolate themselves at home, and they are usually tracked by electronic track-bands to make sure that
they adhere to isolation. Another group tends to self-isolate themselves at home as human behaviour.
All of these categories are classified in the JN(t) compartment.

Depending on their symptoms or random testing, it is assumed that non-tested home isolated
individuals leave their class by transferring to tested home (institutional) isolation at a rate of εN(θN).
Some leave the class after recovery at a rate of γN or due to natural death.

The tested home-isolated infectees (JH(t)) leave their class by natural death, disease-related death
at a rate of δH, moving to institutional isolation at a rate of θH for health care after their symptoms
become more severe or recovery at a rate of γH.

It is assumed that individuals isolated at health institutions, JI(t), leave this class due to natural
death, recovery at a rate of γD, disease-related death at a rate of δD or moving to home isolation at a
rate of εD after they have received the required health care. The above description is summarized in
the flow chart in Figure 2.
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Figure 2. Flow diagram of the model (2.1) .

2.2. Model equations

Based on the above description, the proposed mathematical model is given by the following set of
differential equations:

dS
dt
= Λ −

(βAA + βPP + βI I + βH JH + βN JN) S
N − QS − QL − JI

− (µ + αL + ρS )S + λS QS + λLQL

Mathematical Biosciences and Engineering Volume 20, Issue 1, 1344–1375.



1349

Table 1. Definition of the state variables in the model (2.1).

State variable Class description State variable Class description
S (t) Susceptible QL(t) Long quarantined
E(t) Exposed, but not infectious JN(t) Non-tested home isolated
A(t) Asymptomatic JH(t) Tested home-isolated
P(t) Presymptomatic JI(t) Tested isolated at health institutions
I(t) Symptomatic R(t) Recovered
QS (t) Short quarantined N(t) Total population

dE
dt
=

(βAA + βPP + βI I + βH JH + βN JN) S
N − QS − QL − JI

− (µ + λA + λP + λI + ρE)E

dA
dt
= λAE − (µ + εA + θA + γA + ρA)A

dP
dt
= λPE − (µ + εP + σP + θP + ρP)P

dI
dt
= λIE + σPP − (µ + εI + γI + θI)I (2.1)

dQS

dt
= ρS S − (µ + λS + αS )QS

dQL

dt
= αLS + αS QS − (µ + λL)QL

dJN

dt
= ρEE + ρAA + ρPP − (µ + γN + εN + θN)JN

dJH

dt
= εAA + εPP + εI I + εN JN + εDJI − (µ + δH + γH + θH)JH

dJI

dt
= θAA + θPP + θI I + θN JN + θH JH − (µ + δD + γD + εD)JI

dR
dt
= γAA + γI I + γH JH + γDJI + γN JN − µR

where, N′(t) = Λ − δH JH(t) − δDJI(t) − µN(t). Model state variables are defined in Table 1, and the
parameters are defined in Table 2. For simplicity of the calculations, we denote the following:

η = µ + αL + ρS , ξ = µ + λS + αS ,
a = µ + λA + λP + λI + ρE, b = µ + εA + θA + γA + ρA, c = µ + εP + σP + θP + ρP,

d = µ + εI + γI + θI , e = µ + γN + εN + θN , f = µ + δH + γH + θH,

g = µ + δD + γD + εD, h = (µ + λL).
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Table 2. Parameters used in the model (2.1).

Parameter Description
Λ Recruitment rate.
µ Natural death rate of humans
βA Transmission rate from asymptomatic.
βP Transmission rate from presymptomatic.
βI Transmission rate from symptomatic.
βN Transmission rate from non-tested home isolated.
βH Transmission rate from tested home-isolated.
λS Moving rate from short quarantine to susceptible class.
λL Moving rate from long quarantine to susceptible class.
λA Rate at which exposed become asymptomatic.
λP Rate at which exposed become presymptomatic.
λI Rate at which exposed become infected with symptoms.
σP Rate at which presymptomatic develop symptoms.
εA Tested home isolation rate of asymptomatic
εP Tested home isolation rate of presymptomatic
εI Tested home isolation rate of symptomatic.
εN Diagnosed rate of non-tested home isolated.
εD Moving rate from institutional to home isolation.
αL Rate at which susceptible enters long quarantine.
αS Rate of movement from short to long quarantine.
γA Recovery rate of asymptomatic
γI Recovery rate of symptomatic.
γD Recovery rate of diagnosed institutionally isolated.
γH Recovery rate of diagnosed home isolated.
γN Recovery rate of non-tested home-isolated.
δH COVID-19 related death rate of tested home isolated.
δD COVID-19 related death rate of institutionally isolated.
ρS Rate at which susceptible enter short quarantine.
ρE Rate at which exposed enters non-tested home isolation.
ρA Rate at which asymptomatic enters non-tested home isolation.
ρP Rate at which presymptomatic enter non-tested home isolation.
θA Rate of institutional isolation of asymptomatic.
θP Rate of institutional isolation of presymptomatic.
θI Rate of institutional isolation of symptomatic.
θN Rate of institutional isolation of non-tested home-isolated.
θH Rate of institutional isolation of tested home-isolated.
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3. Positivity and boundedness

In this section, we study the positivity and boundedness of solutions of the system (2.1) subject to
the positive initial conditions

U(0) > 0 (3.1)

where

U = (S , E, A, P, I,QS ,QL, JN , JH, JI ,R)T .

Theorem 1. Solutions of the model (2.1) with the initial conditions (3.1) are positive for all t ≥ 0.

Proof Consider the first equation of the model (2.1):

dS
dt
= Λ −

(βAA + βPP + βI I + βH JH + βN JN) S
N − QS − QL − JI

− ηS + λS QS + λLQL,

and rewrite the force of the infection term in the form

(βAA + βPP + βI I + βH JH + βN JN) S
N − QS − QL − JI

= βS .

Then

dS
dt
= Λ − (β + η) S + λS QS + λLQL.

Let t1 = sup (t > 0 | U(t) > 0). We have

dS
dt
+ (β + η) S = Λ + λS QS + λLQL, with the integrating factor e

∫ t
0 β(v)dv+ηt.

Therefore,
d
dt

[
e
∫ t

0 β(v)dv+ηt S
]
= e

∫ t
0 β(v)dv+ηt [Λ + λS QS + λLQL] .

Integrating both sides over (0, t1) gives

S (t1)e
∫ t1

0 β(v)dv+ηt1 − S (0) =
∫ t1

0
[Λ + λS QS + λLQL].e

∫ t
0 β(v)dv+ηtdt

S (t1) =
[
S (0) +

∫ t1

0
[Λ + λS QS + λLQL].e

∫ t
0 β(v)dv+ηtdt

]
e−

∫ t1
0 β(v)dv+ηt1 > 0.

Similarly, one can prove that the remaining components are positive at t = t1. Hence, t1 cannot be a
supremum. Therefore, all solutions remain positive for all time t ≥ 0.
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Theorem 2. All solutions S (t), E(t), A(t), P(t), I(t), QS (t), QL(t), JN(t), JH(t), JI(t) and R(t) of the
model (2.1) with the given initial conditions (3.1) are bounded.

Proof From Theorem 1, solutions of the model (2.1) with the positive initial conditions are positive
for t ≥ 0.

We have that N = S + E + A + P + I + QS + QL + JN + JH + JI + R.

Thus,
dN
dt
= Λ − δH JH(t) − δDJI(t) − µN(t) ≤ Λ − µN(t) .

Therefore, lim
t→∞

sup N(t) ≤
Λ

µ
, and hence the solutions are bounded. The feasible invariant region is

given by

Ω =

{
(S (t), E(t), A(t), P(t), I(t),QS (t),QL(t), JN(t), JH(t), JI(t),R(t)) ∈ R11

+ : N(t) ≤
Λ

µ

}
.

4. Disease free equilibrium and control reproduction number

The disease free equilibrium (DFE) of the model is given by

E0 = (S ∗, 0, 0, 0, 0,QS
∗,QL

∗, 0, 0, 0, 0) ,

where

S ∗ =
Λξ h

η ξ h − λS ρS h − αL λL ξ − λL αS ρS
,

QS
∗ =

Λ ρS h
η ξ h − λS ρS h − αL λL ξ − λL αS ρS

,

QL
∗ =

(αL ξ + αS ρS )Λ
η ξ h − λS ρS h − αL λL ξ − λL αS ρS

.

Hence

E0 =

(
S ∗, 0, 0, 0, 0,

ρS

ξ
S ∗,
αL ξ + αS ρS

h ξ
S ∗, 0, 0, 0, 0

)
.

The control reproduction number, denoted by Rc, is the number of secondary infections caused by
a single infective in a totally susceptible population with control measures in place. It is calculated by
using the next generation matrix (NGM) method [25] as follows. First, the matrix of new infection is
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found to be

F =



(βAA + βPP + βI I + βN JN + βH JH) S
X
0

0

0

0

0

0



, (4.1)

where, X = N −QS −QL − JI , and it has a Jacobian, evaluated at the DFE E0 and N∗ = S ∗ +QS
∗ +QL

∗

that is given by

F =



0 βA βP βI βN βH 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


. (4.2)

Then, the matrix of transition is given by

V =



aE

−λAE + bA

−λPE + cP

−λIE − σPP + dI

−ρEE − ρAA − ρPP + eJN

−εAA − εPP − εI I − εN JN − εDJI + f JH

−θAA − θPP − θI I − θN JN − θH JH + gJI


, (4.3)

and its Jacobian is

Mathematical Biosciences and Engineering Volume 20, Issue 1, 1344–1375.
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V =



a 0 0 0 0 0 0

−λA b 0 0 0 0 0

−λP 0 c 0 0 0 0

−λI 0 −σP d 0 0 0

−ρE −ρA −ρP 0 e 0 0

0 −εA −εP −εI −εN f −εD

0 −θA −θP −θI −θN −θH g


, (4.4)

where a, b, c, d, e and f are as defined earlier after the model equations.

Now, NGM is given by

FV−1 =



Rc a12 a13
βI

d
+
βH(εI g + εD θI H)

d m
βN

e
+
βH (εN g + εD θN)

e m
βH g

m
βH εD

m
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,

where

a12 =
βA

b
+
βNρA

b e
+
βH (εAeg + εNρAg + εDθAe + εDθNρA)

b e m
,

a13 =
βP

c
+
βIσP

c d
+
βNρP

c e
+
βH (εPdeg + εIσPeg + εNρPdg + εDθPde + εDθIσPe + εDθNρPd)

c d e m
,

m = (g f − θHεD) .

The control reproduction number is the spectral radius of the NGM, i.e., Rc = ρ(FV−1) and it is
given by

Rc = RA + RP + RI + RN + RH,

where

RA =
βAλA

a b
, RP =

βPλP

a c
, RI =

βI (cλI + σPλP)
a c d

,

RN =
βN (ρEbc + ρAλAc + ρPλPb)

a b c e
,

RH =
βH

am

[
g
(
εAλA

b
+
εPλP

c
+
εI (cλI + σPλP)

c d
+
εN (ρEbc + ρAλAc + ρPλPb)

b c e

)]
Mathematical Biosciences and Engineering Volume 20, Issue 1, 1344–1375.
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+
βH

a m

[
εD

(
θAλA

b
+
θPλP

c
+
θI (cλI + σPλP)

c d
+
θN (ρEbc + ρAλAc + ρPλPb)

b c e

)]
.

Here, RA, RP,RI ,RN , and RH represent the contribution from asymptomatic, presymptomatic,
symptomatic, non-tested home isolated and tested home isolated individuals, respectively.

Note that the reproductive number (Rc) is independent of short and long quarantines parameters. In
fact, according to the assumptions in formulating the model, short and long quarantines have no direct
impact on the control reproductive number (Rc). However, they play an essential and considerable
role in separating susceptible humans from infected individuals and reducing the contact rate between
them. Hence both types of quarantines contribute indirectly to controlling the spread of COVID-19.

4.1. Stability analysis of the disease free equilibrium

Studying the local stability of the DFE using linearization is complicated since the characteristic
equation is of order 11. Therefore, global stability is checked instead by using the Lyapunov function
method as described in [26].

Set
f (x, y) := (F − V)x − F (x, y) +V(x, y), (4.5)

where F , F, V, and V as previously defined in (4.1), (4.2), (4.3) and (4.4), respectively,
xT = [E A P I JN JH JI] ∈ R7

+ is the disease compartment, and
yT = [S QS QL R] ∈ R4

+ is the non-disease compartment.
Then, the disease compartment can be written as x′ = (F − V)x − f (x, y) with f (0, y) = 0.
Let wT ≥ 0 be the left eigenvector of the non-negative matrix V−1F corresponding to the eigenvalue

Rc. The vector is found to be wT = [0 wA wP wI wN wH 0], where all of the entries are
non-negative.

The following theorem provides a general method to construct a Lyapunov function for the system
(2.1).

Theorem 4.1. [26] Let F, V and f (x, y) be as defined above. If f (x, y) ≥ 0 in Ω ⊂ R11
+ , F ≥ 0, V−1 ≥ 0

and Rc ≤ 1, then the function Q = wT V−1x is a Lyapunov function for the model (2.1) on Ω.

Proof We need to prove that the system has a Lyapunov function Q and that Q′ ≤ 0 on Ω ⊂ R11
+ .

We have

(F − V)x =



−aE + βAA + βPP + βI I + βN JN + βH JH

λAE − bA

λPE − cP

λIE + σPP − dI

ρEE + ρAA + ρPP − eJN

εAA + εPP + εI I + εN JN − f JH + εDJI

θAA + θPP + θI I + θN JN + θH JH − gJI


.

Evaluating f (x, y) =(F − V)x − F (x, y) +V(x, y), as given in (4.5), yields
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f (x, y) =



(βAA + βPP + βI I + βN JN + βH JH)
(
1 −

S
N − QS − QL − JI

)
0

0

0

0

0

0



.

Now, one can show that 1 −
S

N − QS − QL − JI
≥ 0 as follows:

N ≥ QS + QL + JI + S ,

N − QS − QL − JI ≥ S ,

1 ≥
S

N − QS − QL − JI
,

1 −
S

N − QS − QL − JI
≥ 0.

Therefore, f (x, y) ≥ 0.

Differentiating the Lyapunov function gives

Q′ = wT V−1x′(t),
= wT V−1(F − V)x − wT V−1 f (x, y),
= wT (V−1F)x − wT (V−1V)x − wT V−1 f (x, y),
= (Rc − 1)wT x − wT V−1 f (x, y),
≤ 0 whenever Rc ≤ 1,

since wT ≥ 0, V−1 ≥ 0 and f (x, y) ≥ 0.Hence Q is a Lyapunov function for the model (2.1) onΩ ⊂ R11
+ ;

thus, the DFE is asymptotically stable.
Furthermore, Q′ = 0 only at the DFE (E0). Hence the largest invariant set contained in the set Ω

is reduced to the DFE. Since we are in a compact positively invariant set, by the LaSalle’s invariance
principle [27], the DFE is globally asymptotically stable in Ω.

4.2. Existence of endemic equilibrium

In this section, we investigate the existence of an endemic equilibrium by putting the right-hand
side of the system (2.1) equal to zero and solving the equations simultaneously. We get

Â =
λA

b
Ê, P̂ =

λP

c
Ê, Î =

(cλI + σPλP)
cd

Ê,

Q̂S =
ρS

ξ
Ŝ , Q̂L =

αLξ + αSρS

hξ
Ŝ ,
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ĴN =
(ρEbc + ρAλAc + ρPλPb)

bce
Ê,

ĴH =
1
f

[
Nε +

εD ( f Mθ + θHNε)
m

]
Ê,

ĴI =
( f Mθ + θHNε)

m
Ê,

R̂ =
1
µ

[
Z +
γH

f
Nε +

(
γHεD

f
+ γD

)
( f Mθ + θHNε)

m

]
Ê,

where

Z =
γAλA

b
+
γI (cλI + σPλP)

cd
+
γN (ρEbc + ρAλAc + ρPλPb)

bce
,

Mθ =
(
θAλA

b
+
θPλP

c
+
θI (cλI + σPλP)

cd
+
θN (ρEbc + ρAλAc + ρPλPb)

bce

)
,

Nε =
(
εAλA

b
+
εPλP

c
+
εI (cλI + σPλP)

cd
+
εN (ρEbc + ρAλAc + ρPλPb)

bce

)
Note that N′(t) = Λ− δH JH(t)− δDJI(t)− µN(t). Therefore, the equilibrium state N′(t) = 0 implies that

N̂(t) =
1
µ

(
Λ − δH ĴH(t) − δD ĴI(t)

)
.

To find a relation between Ŝ and Ê, the first two equations of the model can be written as follows:

Λ −
aRcµ

Λ −
T
m

Ê − µa2Ŝ
ÊŜ = a1Ŝ , (4.6)

aRcµ

Λ −
T
m

Ê − µa2Ŝ
ÊŜ = aÊ, (4.7)

where

a1 =
ηξh − hλSρS − λL (αLξ + αSρS )

ξh
, a2 =

(
ρS

ξ
+

(αLξ + αSρS )
ξh

)
,

T = MθcM + NεcN ,

cM = δHεD + f (µ + δD) , cN = δHg + θH (µ + δD) .

Solving Eq (4.6) for Ê gives

Ê =

(
Λ − a1Ŝ

) (
Λ − µa2Ŝ

)
(
Λ − a1Ŝ

) T
m
+ aRcµŜ

. (4.8)
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Solving Eq (4.7) also for Ê gives

Ê =

[
Λ − µ (Rc + a2) Ŝ

]
m

T
. (4.9)

Solving Eqs (4.8) and (4.9) together gives

Ŝ =
Λ (T − a m)

a1 T − a µ m(Rc + a2)
. (4.10)

Substituting the expression of Ŝ from (4.10) into (4.9) gives

Ê =
m Λ

[
µ (Rc + a2) − a1

]
a m µ (Rc + a2) − a1 T

. (4.11)

Note that a1 = µ (a2 + 1); therefore, Ŝ and Ê can be written in the form

Ŝ =
(Λ/µ) (a m − T )

a m(Rc + a2) − (a2 + 1) T
(4.12)

Ê =
m Λ (Rc − 1)

a m (Rc + a2) − (a2 + 1) T
. (4.13)

Note that the expressions a, m, a2 and T are positive. One can also show that (a m − T ) is
positive. Now, we check the signs of both Ê and Ŝ for the following cases:

(I) Rc > 1: the denominators of Ê and Ŝ can be shown to be positive as follows:

a m (Rc + a2) − (a2 + 1) T > a m (1 + a2) − (a2 + 1) T = (1 + a2) (a m − T ) > 0.

Clearly, both of the expressions of Ê and Ŝ are positive, resulting in an endemic equilibrium
Ee =

(
Ŝ , Ê, Â, P̂, Î, Q̂S , Q̂L, ĴN , ĴH, ĴI , R̂

)
.

(II) Rc = 1: one can easily verify that the expressions (4.12) and (4.13) are reduced to the DFE (E0)
since a m (Rc + a2) − (a2 + 1) T > 0.

(III) Rc < 1: Ŝ and Ê are always of different signs as it is clear from the expressions (4.12) and (4.13).
Therefore, there is no endemic equilibrium.

4.3. Bifurcation analysis

This section uses the center manifold theorem, as described in [28], to check if any type of
bifurcation exists.

To apply the theorem, we rewrite the system (2.1) in the following formulation:

dx1

dt
= Λ −

(βAx3 + βPx4 + ϕx5 + βN x8 + βH x9) x1

N − x6 − x7 − x10
− η x1 + λS x6 + λLx7
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dx2

dt
=

(βAx3 + βPx4 + βI x5 + βN x8 + βH x9) x1

N − x6 − x7 − x10
− a x2

dx3

dt
= λAx2 − b x3

dx4

dt
= λPx2 − c x4

dx5

dt
= λI x2 + σP x4 − d x5 (4.14)

dx6

dt
= ρS x1 − ξ x6

dx7

dt
= αL x1 + αS x6 − h x7

dx8

dt
= ρE x2 + ρA x3 + ρP x4 − e x8

dx9

dt
= A x3 + εP x4 + εI x5 + εN x8 + εD x10 − f x9

dx10

dt
= θA x3 + θP x4 + θI x5 + θN x8 + θH x9 − g x10

dx11

dt
= γA x3 + γI x5 + γN x8 + γH x9 + γD x10 − µ x11.

Take βI = ϕ to be the bifurcation parameter and β∗I = ϕ
∗ to be the corresponding bifurcation value

at Rc = 1. Then, Rc can be written as

Rc =
ϕ (cλI + σPλP)

a c d
+ K,

where K = RA + RP + RN + RH.

At Rc = 1, the bifurcation value is

ϕ∗ =
a c d (1 − K)
(cλI + σPλP)

. (4.15)
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System (4.14) has the following Jacobian at the DFE E0 and βI = ϕ
∗:

J(E0)|ϕ∗=



−η 0 −βA −βP −ϕ
∗ λS λL −βN −βH 0 0

0 −a βA βP ϕ∗ 0 0 βN βH 0 0

0 λA −b 0 0 0 0 0 0 0 0

0 λP 0 −c 0 0 0 0 0 0 0

0 λI 0 σP −d 0 0 0 0 0 0

ρS 0 0 0 0 −ξ 0 0 0 0 0

αL 0 0 0 0 αS −h 0 0 0 0

0 ρE ρA ρP 0 0 0 −e 0 0 0

0 0 εA εP εI 0 0 εN − f εD 0

0 0 θA θP θI 0 0 θN θH −g 0

0 0 γA 0 γI 0 0 γN γH γD −µ


One can prove that the constant term of the characteristic equation of the above matrix is zero.

Therefore, at least one of the eigenvalues is zero. The right and left eigenvectors (w and v,
respectively) corresponding to the simple eigenvalue 0 are:

w = [w1 w2 ... w11]T , and v = [v1 v2 ... v11]T ,

where,

w1 =
hξ a

hρSλS + λL (αLξ + αSρS ) − hξ η
,

w2 = 1,

w3 =
λA

b
,

w4 =
λP

c
,

w5 =
cλI + σPλP

dc
,

w6 =
aρS h

hρSλS + λL (αLξ + αSρS ) − hξ η
,

w7 =
a (αLξ + αSρS )

hρSλS + λL (αLξ + αSρS ) − hξ η
,
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w8 =
ρEbc + ρAλAc + ρPλPb

ecb
,

w9 =
aRH

βH
,

w10 =
1
g

(
θAλA

b
+
θPλP

c
+
θI (cλI + σPλP)

dc
+
θN (ρEbc + ρAλAc + ρPλPb)

ecb
+
θHaRH

βH

)
,

w11 =
1
µ

(
γAλA

b
+
γI (cλI + σPλP)

dc
+
γN (ρEbc + ρAλAc + ρPλPb)

ecb
+
γHaRH

βH

)

+
γD

µ g

(
θAλA

b
+
θPλP

c
+
θI (cλI + σPλP)

dc
+
θN (ρEbc + ρAλAc + ρPλPb)

ecb
+
θHaRH

βH

)
,

and

v1 = 0,

v2 =
m
βHg
,

v3 =
1
b

[
βAm
βHg
+
ρA

e

(
βNm
βHg
+ εN +

θNεD

g

)
+ εA +

θAεD

g

]
,

v4 =
1
c

[
βPm
βHg
+
σP

d

(
ϕ∗m
βHg
+ εI +

θIεD

g

)
+
ρP

e

(
βNm
βHg
+ εN +

θNεD

g

)
+ εP +

θPεD

g

]
,

w5 =
1
d

(
ϕ∗m
βHg
+ εI +

θIεD

g

)
,

v6 = 0,
v7 = 0,

v8 =
1
e

(
βNm
βHg
+ εN +

θNεD

g

)
,

v9 = 1,

v10 =
εD

g
,

v11 = 0.

We compute the following second-order derivatives:

∂2fi

∂x j∂xk
and

∂2fi

∂x j∂ϕ
, i, j, k = 1, 2, · · · 11,

where fi, i = 1, 2, · · · 9 denotes the right-hand side of the equation number i of the system (4.15).
Then, we have the following second-order derivatives:

Mathematical Biosciences and Engineering Volume 20, Issue 1, 1344–1375.



1362

∂2f1

∂x2∂x9
=
βH

S ∗
,

∂2f1

∂x2∂x8
=
βN

S ∗
,

∂2f1

∂x2∂x5
=
ϕ

S ∗
,

∂2f1

∂x2∂x4
=
βP

S ∗
,

∂2f1

∂x2∂x3
=
βA

S ∗
,

∂2f1

∂x3∂x11
=
βA

S ∗
,

∂2f1

∂x3∂x9
=
βA + βH

S ∗
,

∂2f1

∂x3∂x8
=
βA + βN

S ∗
,

∂2f1

∂x3∂x5
=
βA + ϕ

S ∗
,

∂2f1

∂x3∂x4
=
βA + βP

S ∗
,

d2f1

dx3
2 =

2βA

S ∗
,

∂2f1

∂x4∂x11
=
βP

S ∗
,

∂2f1

∂x4∂x9
=
βP + βH

S ∗
,

∂2f1

∂x4∂x8
=
βP + βN

S ∗
,

∂2f1

∂x4∂x5
=
βP + ϕ

S ∗
,

d2f1

dx4
2 =

2βP

S ∗
,

∂2f1

∂x5∂x11
=
ϕ

S ∗
,

∂2f1

∂x5∂x9
=
ϕ + βH

S ∗
,

∂2f1

∂x5∂x8
=
ϕ + βN

S ∗
,

d2f1

dx5
2 =

2ϕ
S ∗

,

∂2f1

∂x8∂x11
=
βN

S ∗
,

∂2f1

∂x8∂x9
=
βN + βH

S ∗
,

d2f1

dx8
2 =

2βN

S ∗
,

∂2f1

∂x9∂x11
=
βH

S ∗
,

d2f1

dx9
2 =

2βH

S ∗
,

∂2f2

∂x2∂x9
=
−βH

S ∗
,

∂2f2

∂x2∂x8
=
−βN

S ∗
,

∂2f2

∂x2∂x5
=
−ϕ

S ∗
,

∂2f2

∂x2∂x4
=
−βP

S ∗
,

∂2f2

∂x2∂x3
=
−βA

S ∗
,

∂2f2

∂x3∂x11
=
−βA

S ∗
,

∂2f2

∂x3∂x9
=
−βA − βH

S ∗
,

∂2f2

∂x3∂x8
=
−βA − βN

S ∗
,

∂2f2

∂x3∂x5
=
−βA − ϕ

S ∗
,

∂2f2

∂x3∂x4
=
−βA − βP

S ∗
,

d2f2

dx3
2 =
−2βA

S ∗
,

∂2f2

∂x4∂x11
=
−βP

S ∗
,

∂2f2

∂x4∂x9
=
−βP − βH

S ∗
,

∂2f2

∂x4∂x8
=
−βP − βN

S ∗
,

∂2f2

∂x4∂x5
=
−βP − ϕ

S ∗
,

d2f2

dx4
2 =
−2βP

S ∗
,

∂2f2

∂x5∂x11
=
−ϕ

S ∗
,

∂2f2

∂x5∂x9
=
−ϕ − βH

S ∗
,

∂2f2

∂x5∂x8
=
−ϕ − βN

S ∗
,

d2f2

dx5
2 =
−2ϕ
S ∗

,

∂2f2

∂x8∂x11
=
−βN

S ∗
,

∂2f2

∂x8∂x9
=
−βN − βH

S ∗
,

d2f2

dx8
2 =
−2βN

S ∗
,

∂2f2

∂x9∂x11
=
−βH

S ∗
,

d2f2

dx9
2 =
−2βH

S ∗
,
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∂2f1

∂x5∂ϕ
= −1,

∂2f2

∂x5∂ϕ
= 1.

The rest of the second-order derivatives are all zero.
Calculating the coefficients ã and b̃ as defined in Theorem 4.1 [28] by Castillo Chavez and Song

gives

ã =
n∑

k,i, j=1

vk wi w j
∂2fk

∂xi∂x j
(ϕ∗, E0)

= −
v2w2

S ∗
(βHw9 + βNw8 + ϕw5 + βPw4 + βAw3)

−
v2w3

S ∗
[
βAw11 + (βA + βH)w9 + (βA + βN)w8 + (βA + ϕ)w5 + (βA + βP)w4 + 2βAw3

]
−

v2w4

S ∗
[
βPw11 + (βP + βH)w9 + (βP + βN)w8 + (βP + ϕ)w5 + 2βPw4

]
−

v2w5

S ∗
[
ϕw11 + (ϕ + βH)w9 + (ϕ + βN)w8 + 2ϕw5

]
−

v2w8

S ∗
[
βNw11 + (βN + βH)w9 + 2βNw8

]
−

v2w9βH

S ∗
(w11 + 2w9).

b̃ =
n∑

k,i=1

vk wi
∂2fk

∂xi∂ϕ
(ϕ∗, E0)

=v1w5
∂2f1

∂x5∂ϕ
+ v2w5

∂2f2

∂x5∂ϕ
,

=
m (cλI + σP)

cd βHg
.

Obviously, ã < 0 and b̃ > 0. Therefore, the system has a forward transcritical bifurcation.
Remark: Since the system has a forward transcritical bifurcation, the endemic equilibrium is locally
stable when Rc > 1 and unstable when Rc < 1.

Numerical simulation of the model (2.1) using the fitted parameters also illustrated that the system
undergoes transcritical bifurcation. The MatCont package [29] was used to study the model’s
behaviour using the transmission rate from symptomatic individuals βI as the bifurcation parameter.
Figure 3 shows how the stability of the equilibrium state changes as βI varies. It is clear that before
the bifurcation point (where β∗I ≈ 0.287 and Rc = 1), the DFE is stable, and then the stability state
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bifurcates to the endemic equilibrium branch after the bifurcation parameter passes the bifurcation
point β∗I . This indicates that for a high transmission rate βI > β

∗
I , the disease will persists in the

population.

Figure 3. Bifurcation diagram of the system (2.1). The blue lines represent the stable
states of the equilibrium points (DFE and endemic equilibrium (EE)), whereas the red line
represents the unstable state of the equilibrium point (DFE). βI is taken to be the bifurcation
parameter, and the rest of the parameters were fixed at their estimated values as given in
Table 3. At β∗I ≈ 0.28707, the system’s stability switches from the DFE to the EE.

It is worth noticing that the expression derived for the bifurcation point in (4.15) matches exactly
with its numerical value (β∗I ≈ 0.28707) when calculated using the fixed and fitted parameters.

5. Fitting of model parameters and numerical results

5.1. Fitting of model parameters

The proposed model (2.1) incorporates 36 parameters; some of them are available in literature and
the remaining will be estimated using the daily reported cases for Oman. Data were collected for the
period from August 4, 2020, to October 31, 2020 [30]. This period of time has been chosen for fitting
because no vaccine was introduced at that time, so the effects of quarantine and isolation, in Oman,
are better investigated. We employed the non-linear least square curve fitting approach [31] to fit the
model to cumulative cases of the 89 days by using the Matlab optimization function fminsearchbnd.
To improve the fitting and get the best of it, we set the initial guess as found in the literature for
those parameters that are already available in references, as shown in Table 3. We also set lower and
upper bounds for each parameter depending on the estimation of some biological and precautionary
measures criteria. The fixed parameters shown in Table 3 are based on Oman population statistics and
a previous study [10] about COVID-19 in Oman. The remaining 24 parameters were fitted and are
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listed in Table 3. The best fit curve of the model to the reported data is shown in Figure 4.

(a) Cumulative cases (b) Daily cases

Figure 4. Model fitting using cumulative cases in Oman from August 4 to October 31, 2020.
(a) Model’s fitted cumulative cases (blue line) vs confirmed cumulative cases (red circles).
(b) Model’s daily prediction (black dotted line) vs confirmed daily cases (red circles).

The graphs in Figure 5 represent the predicted situation of the pandemic for months following the
three months used to estimate the parameters. Figure 5(a) shows a good prediction until the end of
December 2020. However, the forecast is not fine when using more following months, as shown in
Figure 5(b). This is because a new wave of the disease began at the end of December 2020.

(a) Two months prediction (b) Four months prediction

Figure 5. Model prediction vs daily reported cases in Oman. The green dotted curves
represent the period used in fitting (August 4 to October 31, 2020). The blue dotted curves
represent the model prediction for the (a) two following months and the (b) four following
months .
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Table 3. Fitted values for the parameters in the model (2.1).

Parameter Fitted value initial guess reference Parameter Fitted value initial guess reference
βA 0.0015 [17] εN 0.0869 [17]
βP 0.7883 estimated εD 0.1446 estimated
βI 0.4269 [17] αL 0.2422 estimated
βN 0.0032 [17] αS 0.0933 estimated
βH 0.0027 [17] ρS 0.4973 estimated
λS 0.4947 estimated ρE 0.1995 [17]
λL 0.0167 estimated ρA 0.3986 estimated
λP 0.3671 estimated ρP 0.1918 estimated
λI 0.0933 [32] θA 0.1549 estimated
εA 0.0154 estimated θI 0.0157 [33]
εP 0.014 estimated θN 0.0269 [17]
εI 0.2546 [33] δH 0.0007 [34]

Parameter fixed value reference Parameter fixed value reference
µ 0.0000334 = 1/(82 ∗ 365) γD 0.0155 [10]

Λ = µ N 150 calculated γH 0.028 [10]
λA 0.048 [10] γN 0.081 [10]
σP 0.57 [10] δD 0.00999 [10]
γA 0.043 [10] θP 0.00842 [10]
γI 0.081 [10] θH 0.0267 [10]

Using the fitted parameters, the approximate value of the reproduction number is Rc ≈ 1.202 and
the contribution from each transmission route is presented in the table below

Table 4. Transmission routes’ contribution to Rc.

asymptomatic presymptomatic symptomatic non-tested isolated tested isolated
RA RP RI RN RH

0.00017 0.52123 0.61809 0.00743 0.05553

The significant contribution to disease transmission comes from symptomatic and presymptomatic
classes. These results agree with the findings in the review studies [35, 36] and the references therein.

5.2. Sensitivity analysis

This section is devoted to the use of sensitivity analysis to study the influence of different models’
parameters on the spread of COVID-19. The sensitivity index (ΥRc

φ ) was measured when varying the

reproduction number (Rc) with respect to the models’ parameters by using the formula: ΥRc
φ =

∂Rc

∂φ

φ

Rc
.

The results are presented in Figure 6 and Table 5. Note that these results are based on using the set
of estimated parameters in Table 3 as the baseline.
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Figure 6. Sensitivity analysis chart of Rc to the estimated parameters. The closer the bar is to
1 (or –1), the more sensitive Rc is to an increase (or decrease) in the corresponding parameter.

Table 5. Sensitivity analysis of the model (2.1).

Parameter (φ) Υ
Rc
φ Parameter (φ) Υ

Rc
φ Parameter (φ) Υ

Rc
φ

βA 0.00014 δD –0.00225 γH –0.03949
βP 0.43347 σP –0.21114 γD –0.00349
βI 0.51403 εA 0.00003 θA 0.0001
βN 0.00618 εP –0.01439 θP –0.00871
βH 0.04618 εI –0.3665 θI –0.02283
λA –0.06424 εN 0.00329 θN 0.00037
λP 0.32307 εD 0.00575 θH –0.00565
λI 0.00828 γA –0.00025 ρE –0.26707
µ –0.00019 γI –0.12464 ρA –0.00001
δH –0.00099 γN –0.00984 ρP –0.19920

It is clear that the transmission rate from symptomatic individuals (βI) has the most impact on
disease spreading, followed by the transmission rate from presymptomatic (βP), then the rate at which
exposed become presymptomatic (λP). Higher rates of λP indicate that it takes a shorter time for
exposed ones to be infectious as preysmyptomatic, leading to higher transmission. On the other hand,
the rate at which symptomatics are tested and moved to home isolation (εI) has the best influence on
reducing the spread of disease, followed by the rate at which the exposed are home-isolated without
testing (ρE) due to identification by contact tracing or behavioral self-isolation. In addition, the rate at
which the presymptomatic class develops symptoms (σP) has a good influence on reducing the spread.
The shorter it takes them to become symptomatic, the better it is to recognize them and control the
spread. These findings can help policymakers in taking necessary action to prevent the disease from
wide-spreading, keeping in mind the limitation of the study.
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5.3. Numerical simulation

This section presents some numerical solutions for the model (2.1) based on the fitted parameters
and ODE MATLAB solver ode45. The focus will be on the effects of different parameters on the model
dynamics.

(a) Effect of βA (b) Effect of βP (c) Effect of βI

(d) Effect of βN (e) Effect of βH

Figure 7. Effects of transmission rates from: (a) asymptomatic, (b) presymptomatic, (c)
symptomatic, (d) non-tested home-isolated and (d) institutionally isolated individuals on
disease dynamics.

In all graphs below, the black curve represents the fitted curve, while the others are used to
illustrate the dynamics when a specific parameter is varied or controlled. The peaks of symptomatic
and presymptomatic cases of the fitted curves are 1200 and 545 cases, respectively, in all graphs.

As shown in Figure 7, the transmission rates from presymptomatic (βP) and symptomatic (βI)
classes have the most considerable impact on spreading the disease, while the transmission rates from
asymptomatic (βA) and non-tested home isolated (βN) have the least impact. The transmission rate
from the tested home isolated group (βH) has a moderate effect.

To compare the strength of transmission from different groups, we take, for example,
Figure 7(a),(b), which show the effects of the transmission rates from asymptomatic and
presymptomatic, respectively. Increasing or decreasing the transmission rate from asymptomatic (βA)
by a factor of 5 has a negligible effect on the number of infected cases. On the other hand, increasing
or decreasing the transmission rate from presymptomatic people (βP) by a significantly smaller factor
of 1.1 dramatically impacts the number of infected cases. This effect is clear from the curves in
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Figure 7(b), where disease prevalence increases significantly with a slight increase in βP. The
behaviour mentioned above for βP applies to the transmission rate from the symptomatic group (βI)
when it is varied by a factor of 1.05, as shown in Figure 7(c). Figure 7(d),(e) illustrates the dynamics
when varying the transmission rates from non-tested and tested home isolated groups, respectively, by
a factor of 2.

It is interesting to note that controlling the transmission rates from classes of strong influence can
flatten the curve of infection, but the time it takes to reach the peak remains almost the same.

These simulations can hint at concentrating efforts to limit the disease spread by controlling the
parameters of high impacts. In this current case, it is helpful to identify presymptomatic individuals by
contact tracing and increasing testing intensity.

(a) Effect of ρS (b) Effect of αL (c) Effect of λS

(d) Effect of λL (e) Effect of αS

Figure 8. Effects of short and long quarantine on the disease spread. Each graph represents
the effects of: (a) short quarantine, (b) long quarantine, (c) leaving short quarantine, (d)
leaving long quarantine and (e) moving from short to long quarantine.

Figure 8 shows the effects of short and long quarantines on disease dynamics. Although both types
of quarantine have no direct influence on the reproductive number, they still considerably impact the
disease transmission dynamics. As the more susceptible are quarantined for a short or long time (at
rates ρS and αL), the better it is for controlling the spread, and the peak of the infection curve will
decrease. This behavior is clear from Figure 8(a) and (b). On the other hand, when more people
leave their short or long quarantines (at rates λS and λL) return to the susceptible class, more infections
occur, and the peak becomes higher, as shown in Figure 8(c) and (d). The current simulation shows
that moving from short to long quarantine helps with reducing the infection when the rate of moving
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(αS ) increases, as one can conclude from Figure 8(e).
The curves in all of the graphs are plotted when each parameter is changed by a factor of 1.5. Long

quarantine has more influence on the spread of the disease, as it can be seen from Figure 8(b),(d).
Note that quarantine helps to lessen the number of infections and flatten the curve, though it speeds

up the occurrence of the peak of infection.
The acts of instituting full or partial lockdown policies from time to time and putting a significant

portion of communities under quarantine can mitigate disease spreading.
Figure 9 shows the effects of isolating symptomatic infectees institutionally or at home on disease

spreading. It is clear from the graphs that increasing the isolation rates helps with reducing the intensity
of infection and flattening the curve. From Figure 9(b), varying the rate of tested home isolation (εI)
by a factor of 1.2 has a great influence on the disease the dynamics compared to dynamics resulting
from varying the rate of institutional isolation (θI) by the same factor as shown in Figure 9(a).

Policymakers can utilize such observations, keeping in mind the limitation of the study, by
enhancing home isolation over institutional isolation, where the latter is more costly and less effective.
One may wonder how institutional isolation is less effective than home isolation, given that the first is
more systematic and organized in a way that contact between isolated individuals is not likely to
happen. The answer is that the number of isolations (whether at hospitals or other isolation centers) is
limited and very small compared to the number at homes. Therefore, putting more effort into
controlling and regulating home isolation is more economical and will help reduce infected cases.

(a) Effect of θI (b) Effect of εI

Figure 9. Effects of isolating symptomatic individuals. Each graph shows the expected
effects when testing symptomatic individuals and isolating them at (a) a health institution, or
(b) at home.

Figure 10 illustrates the effects of isolating presymptomatic individuals on disease transmission
dynamics. It can be concluded from the graphs that increasing the rates of isolation of presymptomatic
individuals results in decreasing the overall infected cases. However, the presymptomatic group’s
challenge lies in the difficulty of identifying them, since they do not show any symptoms. Thus,
increasing the intensity of random testing and contact tracing and promoting self-isolation are essential
to control the spread from this group.

When comparing the three types of isolation, note that changing the rate of non-tested home
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isolation (ρP) by a relatively small factor of 1.1, as shown in Figure 10(a), results in a considerable
variations in the number of infections. On the other side, to get a comparable effect for the rates of
institutional isolation (θP) and tested home isolation (εP), it is required to vary them by a higher factor
of 2 as shown in Figure 10(b),(c). Hence, it is very crucial to deal with the presymptomatic group who
are not identified through random testing. This mainly depends on human behaviour, so raising
people’s awareness on taking precautions and isolating themselves once there is a suspection of
infection will definitely help containing the disease.

(a) Effect of ρP (b) Effect of θP (c) Effect of εP

Figure 10. Effects of isolating presymptomatic individuals on disease spread. Each graph
displays the expected dynamics for isolating presymptomatic individuals (a) at home without
testing, (b) at health institutions or (c) at home if tested positive.

(a) Effect of ρE on symptomatic (b) Effect of ρE on presymptomatic

Figure 11. Effects of isolating exposed individuals on the disease spread. Each graph shows
the expected effects when home-isolating exposed non-tested individuals on the number of
(a) symptomatic and (b) presymptomatic infections.

Figure 11 demonstrates the effects of isolating exposed individuals at home without testing on the
number of symptomatic (Figure 11(a)) and presymptomatic (Figure 11(b)) cases. The isolation of
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exposed individuals could be due to contact tracing, travel regulations or a human behavior in response
to awareness programs. The impact of varying the isolation rate ρE by a factor of 1.2 can be clearly
seen in Figure 11, where the isolation rate is altered only by a factor of 1.2, but the variation in the
maximum numbers of infections for both symptomatic and presymptomatic individuals is significant.
Therefore, employing programs targeted to enhance human behavior toward dealing with the pandemic
and utilizing technology for contact tracing will help control the fast spread of the disease.

6. Conclusions

A mathematical model for COVID-19 with different types of quarantine and isolation has been
proposed, namely, short- and long-term quarantine, home isolation with or without testing and
institutional isolation. The model has been fully analyzed to study the effects of the different types of
quarantine and isolation on the disease transmission dynamics. The positivity and boundedness of
solutions to the proposed model have been discussed. Model parameters were estimated by using the
Oman dataset, and the best fit curve of the model to the reported data was illustrated graphically. The
control reproduction number, Rc, was calculated using the NGM method and expressed as a sum of
terms representing the contribution from all transmission routes. Using the obtained parameter values,
the control reproduction number was estimated to be Rc = 1.202, with major contributions coming
from symptomatic and presymptomatic transmissions. Sensitivity analysis for Rc (to model
parameters) was carried out, and it was found that the symptomatic transmission rate, βI , has the
strongest positive impact on Rc, followed by the presymptomatic transmission rate, βP. On the other
hand, the home isolation rate for tested symptomatic individuals, εI , was found to have the strongest
negative impact on Rc, followed by the home isolation rate for exposed individuals, ρE. The global
asymptotic stability of the DFE was shown by using an appropriate Lyapunov function together with
LaSalle’s invariance principle whenever Rc ≤ 1. The endemic equilibrium was found to exist if
Rc > 1, and its local stability was deduced from the bifurcation analysis, since the system was found
to have a forward transcritical bifurcation as a result of using the center manifold theorem and taking
βI to be the bifurcation parameter. The bifurcation results have been demonstrated graphically as well.
Finally, the effects of some model parameters related to the different types of quarantine and isolation
on the disease transmission dynamics were investigated numerically, and the results have been
demonstrated graphically. The numerical results show that quarantine reduces the number of infected
individuals and flattens the curve of infections, i.e., slowing the spread of the disease, with long
quarantine having more impact on the disease transmission dynamics than short quarantine. Out of all
of the different types of isolation, home isolation for tested symptomatic, non-tested exposed and
non-tested presymptomatic individuals has the most significant impact on the disease transmission
dynamics. These results agree very well with the obtained sensitivity results. Hence, adopting
regulations for home quarantine and isolation and enhancing the culture of self-isolation through
awareness programs are essential in controlling the spread of COVID-19.

This paper provides a deep insight into COVID-19 dynamics when many types of quarantine and
isolations are employed. Vaccination can play an important role in controlling transmission and,
accordingly, impacts the regulations of quarantine and isolation. However, it is not considered in this
study. We will discuss this in future work.

Mathematical Biosciences and Engineering Volume 20, Issue 1, 1344–1375.



1373

Conflict of interest

The authors declare that there is no conflict of interest.

References

1. Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, et al., Early transmission dynamics in
Wuhan, China, of novel coronavirus–infected pneumonia, N. Engl. J. Med., 382 (2020), 1199–
1207. https://doi.org/ 10.1056/NEJMoa2001316

2. R. Dutta, L. Buragohain, P. Borah, Analysis of codon usage of severe acute respiratory
syndrome corona virus 2 (SARS-CoV-2) and its adaptability in dog, Virus Res., 288 (2020), 1–
9. https://doi.org/10.1016/j.virusres.2020.198113

3. Y. C. Cao, Q. X. Deng, S. X. Dai, Remdesivir for severe acute respiratory syndrome coronavirus
2 causing COVID-19: An evaluation of the evidence, Travel Med. Infect. Dis., 35 (2020), 1–6.
https://doi.org/10.1016/j.tmaid.2020.101647

4. World Health Organization, COVID 19 Public Health Emergency of International Concern
(PHEIC). Global research and innovation forum: towards a research roadmap, 2020.

5. World Health Organization, Coronavirus Disease (COVID-19), 2021. Available from:
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports.

6. Oman Observer, Coronavirus, 2021. Available from: https://www.omanobserver.om/article/15089/
CORONAVIRUS/ hm-issues-orders-to-set-up-committee-on-COVID-19.

7. S. Kashte, A. Gulbake, S. F. El-Amin III, A. Gupta, COVID-19 vaccines: rapid
development, implications, challenges and future prospects, Human cell, 34 (2021), 711–733.
https://doi.org/10.1007/s13577-021-00512-4

8. M. S. Aronna, R. Guglielmi, L. M. Moschen, A model for COVID-19 with
isolation, quarantine and testing as control measures, Epidemics, 34 (2021), 100437.
https://doi.org/10.1016/j.epidem.2021.100437
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