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Abstract: We formulate an SEIR model for information propagation with the effect of a hot search in
complex networks. Mathematical analysis is conducted in both a homogeneous network and heteroge-
nous network. The results reveal that the dynamics are completely determined by the basic propagation
number if the effect of a hot search is absent. On the other hand, when the effect of a hot search is taken
into account, there exists no information-free equilibrium, and the information-propagating equilib-
rium is stable if the threshold is greater than 1. Numerical simulations were performed to examine the
sensitivity of the parameters to the basic propagation number and the propagable nodes. Furthermore,
the proposed model has been applied to fit the collected data for two types of information spreading
in Sina Weibo, which confirmed the validity of our model and simulated the dynamical behaviors of
information propagation.
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1. Introduction

With the rapid development of mobile smart terminals, online social networks (OSNs) have become
the main platform for Internet users to communicate with each other. The popular OSNs, such as
Facebook, Twitter and Sina Weibo, enable people to share information simultaneously with a large
number of peers and thus play an important role in information propagation. Modeling the process
of information spreading in OSNs has attracted more and more attention to understanding the way
information is disseminated and the network structures [1–6]. One of the primary means of information
dissemination in OSNs is through connections between users of the network. When original real-time
information is released on the web, it is possible that a very large number of users have the interest to
read, comment and retweet it; then, one user becomes the follower of another and, eventually, millions
of individual users can share the information.

In the new media era, a hot search that tends to focus on people’s livelihood and current affairs has
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become an important source to understand what Internet citizens are concerned about, and it serves as
another way to affect information diffusion significantly. A hot search is generally calculated according
to the real behaviors of the users in OSNs, and it a real-time list is formed based on data indicators such
as search volume, blog volume and interaction volume. Whenever a piece of information is pushed
to the hot search list, it is highlighted from a amout of network information and is more accessible to
online users within a certain period of time, which encourages people to read and forward it. From
this perspective, a mathematical model with a hot search effect may be more reasonable to reveal
the important consequences of it in the process of information propagation. To our knowledge, there
are few results related to hot searches to describe their effect on the time evolution of information
spreading. However, some other characteristics emerged in OSNs have been incorporated into models
to improve the understanding of information propagation mechanisms, such as the homepage effect
in [7] and super spreader in [8].

Due to the similarity between the way information spreads and the transmission of infectious dis-
eases, classical epidemic models have been adopted and extended to understand information propaga-
tion on social network platforms [7, 9–11]. For instance, the influence of opinions involving opinion
leaders on delayed information propagation dynamics was investigated by establishing the OD-SFI
(opinion-delay susceptible-forwarding-immunized) model [10]. In recent years, some scholars have
applied complex networks to describe the characteristics of information dissemination and refine the
establishing models. Assuming that each node has the same probability of contacting with the other
nodes, homogeneous networks have been used in some models to investigate the evolution of differ-
ent states in information dissemination. Huo et al. proposed a dynamic model of I2SR for the rumor
spreading in [12], in which the state nodes were divided into the high rate of active spreaders and the
low rate of the ones. To examine the effects of interactions between two rumors, the authors in [13]
detailed the propagating dynamics of a nine-state model in homogeneous networks under symmetric
conditions. The delays in expert intervention and government action were included in the model of
malicious news in [14], which were demonstrated to be a cause of unstable situations of the homoge-
neous social network. To address the heterogeneity in the information spreading, some studies have
focused on modeling the propagation in heterogeneous networks, which contribute to revealing the
underlying mechanisms in the spreading process [15–17] and identifying control strategies to optimize
the network performance [18, 19].

Considering the different factors that affect information dissemination, a variety of models have
been proposed to study the dynamic behaviors of the social network system. Zhu et al. investigated
the influence of a forced silence function, time delay and network topology on rumor propagation in
OSNs comprehensively [20], and they also established a susceptible-believed-denied type model for
rumor spreading with a nonlinear incidence rate and time delay in complex networks [21]. To help
with designing effective communication strategies during a public hot event, Yin et al. proposed the
cross-transmission susceptible-forwarding-immune model to describe the dynamics of co-propagation,
particularly with focus on the cross-transmission effects [22]. A multi-scale model was formulated
in [23], which explicitly modeled both the disease transmission with a saturated recovery rate and
information transmission to evaluate the effect of information transmission on dynamic properties.
These studies have characterized the information diffusion and improved the understanding of the
dynamics in time evolution.

In order to study the possible effect of a hot search list in OSNs, we developed a mathematical
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model for information propagation in complex networks to describe the spreading dynamics, which is
different from the existing models. In this model, the hot search is regarded as a propagation source
that plays a crucial role in accelerating the spreading and enlarging the influenced range. Particularly,
the parameters, including the presence rate and the effect of a hot search, have been introduced to
examine the potential impacts of it on information diffusion. The stabilities of the information-free
equilibrium and the information-propagating equilibrium were analyzed in homogeneous networks
and heterogeneous networks respectively. And, a sensitivity analysis was conducted to investigate
the correlation between the concerned parameters and the basic propagation number. In addition, two
specific datasets of information dissemination in OSNs were collected for a case study, which validates
our proposed SEIR model and illustrates the capacity of it to simulate the dynamical behaviors of
information propagation.

The organization of the remaining part is as follows. In Section 2, we introduce the model frame-
work. In Section 3, the model in homogeneous networks is presented and analyzed in two cases, i.e.,
with or without the hot search effect. Section 4 focuses on the dynamical behaviors of the model in
heterogeneous networks in the same two cases as in Section 3. Numerical simulations are presented in
Section 5 to describe the sensitive analysis. In Section 6, the model is demonstrated to fit two types of
datasets collected from Sina Weibo. Section 7 gives the summary and conclusions.

2. Model framework

Based on the compartmental model of the classical SEIR type, we formulate a susceptible-hesitant-
propagable-rejected model that describes the evolution of information dissemination in OSNs, such as
Weibo. All users are divided into classes of susceptible (S ), hesitant (E), propagable (I) and rejected
(R), respectively. According to the characteristics of online information propagation, the susceptible
users refer to the population that have not heard of or known about the target information. When being
informed of the related propagation through hotspots, tweets or retweets from other users, but not
retweeting or forwarding the topic promptly due to hesitation, the susceptible state shifts subsequently
to the hesitant one. Otherwise, if the susceptible have been convinced of the information and choose
to retweet it actively, then they progress to the propagable class I. In Class R, the population is in the
state of never having access to or no longer being interested in the relevant information. Let S (t), E(t),
I(t) and R(t) be the population at time t in the corresponding classes, respectively.

In OSNs, it is common for users to subscribe or unsubscribe to some topic or login or logout of a
certain application program. Consequently, we suppose that all of the new users in the network are
susceptible and the individuals in each state of the SEIR model can leave the information propagation
progress at the same rate. Let Λ be the recruitment rate into the susceptible compartment and µ be
the removal rate from the network. Different from the exposed state in disease transmission, it is
optional for the hesitant individuals in information dissemination to forward it and become propagable
subjectively, or to neglect it and transfer to the rejected compartment, proportions of which are denoted
by ε and γ1, respectively.

Considering the role of the hot search effect in spreading the information, we introduce a constant
rate p for the hot search presence for some topic information in a certain period of time, such as the
Weibo Hot Topic List, thus, 1

p denotes the average leaving time from S due to the information posted
on the hot search list. We assume that there is a proportion of q among pS that is interested in the
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information and then transfers to the hesitant class. This means that the parameter q reflects the effect
of a hot search on susceptible users. The other individuals of the proportion 1 − q show disinterest
and shift to the rejected state. Although the hot search list has an obvious impact on promoting the
propagation, it is still possible that direct contacts in OSNs induce a higher proportion of the susceptible
population to retweet some topics, since a number of individuals are more likely to trust the people they
follow on social platforms.

Figure 1. Schematic diagram of the state transitions on BA network.

The mixed group of users in online social media is considered as a complex network, where each
user can be seen as a node in the corresponding state, and their connections are represented by the
edges along which the information can spread. The topology of the network has a great influence in
the overall behavior of information spreading, and the connectivity fluctuations of the network play
a major role by enhancing the incidence of the propagation. Many complex social networks can be
classified into homogeneous networks and heterogeneous networks according to their degree distribu-
tion. Homogeneous networks are a more idealized type of network. More generally, heterogeneous
networks with a more complex topology structure are much closer to real social networks. The process
of state transitions in time steps of 0, 5, 15 and 20 is shown graphically in Figure 1, which is on a
Barabási-Albert (BA) scale-free network containing 100 nodes. At the very beginning, we place a red
node that has forwarded a message in propagable state. The susceptible, hesitant and rejected states
are denoted by nodes of blue, yellow and green respectively.
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Table 1. Definitions of parameters in SEIR model.

Parameter Description
Λ rate of recruitment into the susceptible class
µ per capital removal rate from the network
β information transmitting rate
α proportion of the incidence moving to hesitant class
ε transition rate from E to I
γ1 transition rate from E to R
γ2 transition rate from I to R
p rate of hot search presence
q the effect of hot search

Figure 2. Propagation structure diagram of SEIR model.

To clarify the transition process for the status of each user in our model, the flow diagram is il-
lustrated in Figure 2 and the definitions of those parameters are listed in Table1. All parameters are
constants and remain nonnegative.

3. Model in homogeneous networks

3.1. Model formulation

First, according to the proposed framework of information propagation in Figure 2 , we consider
the SEIR model in a homogeneous network, which is described by the mean-field theory, as follows:

dS (t)
dt = Λ − βkS (t) I (t) − µS (t) − pS (t) ,

dE(t)
dt = αβkS (t) I (t) − εE (t) − γ1E (t) − µE (t) + pqS (t) ,

dI(t)
dt = (1 − α) βkS (t) I (t) + εE (t) − γ2I (t) − µI (t) ,

dR(t)
dt = p (1 − q) S (t) + γ1E (t) + γ2I (t) − µR (t) ,

(3.1)

where k denotes the average degree of the network. The initial conditions of System (3.1) are given as

S (0) ≥ 0, E (0) ≥ 0, I (0) ≥ 0,R (0) ≥ 0.
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For the initial conditions, there exists a unique solution for Model (3.1) by the existence and unique-
ness theory of ordinary differential equations. In addition, the solution with nonnegative initial condi-
tions is nonnegative. Indeed, dS (t)

dt |S =0 = Λ > 0, dE(t)
dt |E=0 = αβk̄S I+ pqS > 0 and the similar inequalities

hold for I and R.
Denote the total number of users as N, i.e., N (t) = S (t)+E (t)+ I (t)+R (t). Adding up all equations

in (3.1) gives
dN (t)

dt
= Λ − µN (t) ,

which implies lim
t→+∞

N (t) = Λ
µ

. Obviously,

D =

{
(S , E, I,R)

∣∣∣∣∣S , E, I,R ≥ 0, S + E + I + R ≤
Λ

µ

}
is the positively invariant domain of System (3.1).

To reveal the hot search effect on the process of information spreading, we conduct dynamic analysis
in two cases, i.e., q = 0 and q , 0.

3.2. Model without hot search effect

For the case of q = 0, System (3.1) becomes
dS (t)

dt = Λ − βkS (t) I (t) − µS (t) − pS (t) ,
dE(t)

dt = αβkS (t) I (t) − εE (t) − γ1E (t) − µE (t) ,
dI(t)

dt = (1 − α) βkS (t) I (t) + εE (t) − γ2I (t) − µI (t) ,
dR(t)

dt = pS (t) + γ1E (t) + γ2I (t) − µR (t) .

(3.2)

For an epidemic model, there is a typical threshold parameter that determines whether the infectious
disease will spread, i.e., the basic reproductive number, which gives the expected number of secondary
cases which are produced in a completely susceptible population by an infective individual in his
infectious period. Due to the similarity, such a threshold, i.e., the basic propagation number, exists in
the information propagation model, and the information spread in the network is determined by the
magnitude of this parameter.

By the next generation matrix approach [24], we can calculate the basic propagation number as

R1
0 = ρ(FV−1) =

εαβΛk+ (1−α) βΛk (ε+γ1+µ)
(ε+γ1+µ) (γ2+µ) (µ + p)

,

where ρ denotes the spectral radius of FV−1 and

F =

 0 αβΛk
µ+p

0 (1−α)βΛk
µ+p

 ,V =

(
ε + γ1 + µ 0
−ε γ2 + µ

)
.

The value of R1
0 can be seen as the sum of two separate terms representing secondary infections, which

is produced by the hesitant and propagable individuals, respectively.
It is obvious that System (3.2) has an information-free equilibrium:
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Q0 =
(

Λ
µ+p , 0, 0,

pΛ

µ(µ+p)

)
.

As for the information-propagating equilibrium Q1 = (S ∗, E∗, I∗,R∗), it exists if R1
0 > 1, where

S ∗ = Λ

βkI∗+µ+p
, E∗ =

αβkS ∗I∗

ε+γ1+µ
, I∗ = −b

a , R∗ =
pS ∗+γ1E∗+γ2I∗

µ
,

with
a = (ε + γ1 + µ) (γ2 + µ) βk > 0,
b = (ε + γ1 + µ)

[
(µ + p) (γ2 + µ) − (1 − α) βΛk

]
− Λεαβk < 0.

Theorem 3.1. For System (3.2), if R1
0 < 1, then the information-free equilibrium point Q0 is globally

asymptotically stable, and it is unstable if R1
0 > 1.

Proof. Note that the users in the state R do not appear in other states, thus, the R equation can be
neglected in the remaining analysis. We first discuss the local stability of Q0 when R1

0 < 1 and its
instability when R1

0 > 1.
The characteristic equation of System (3.2) at Q0 is

f0 (λ0) := (λ0 + µ + p)
(
a0λ

2
0 + b0λ0 + c0

)
= 0,

with
a0 = µ + p,
b0 = (µ + p) (ε + γ1 + µ) + (α − 1) βΛk + (γ2 + µ) (µ + p) ,
c0 =

[
(α − 1) βΛk + (γ2 + µ) (µ + p)

]
(ε + γ1 + µ) − εαβΛk.

It is easy to see that b0 > 0 and c0 > 0 if R1
0 < 1, then, f0 (λ0) = 0 has only roots with the negative real

part, which certifies the local stability of Q0 by the Hurwitz criterion [25]. Otherwise, if R1
0 > 1, then

c0 < 0, so Q0 is unstable.
Then, consider the Lyapunov function of the following form:

V (t) = εE (t) + (ε + γ1 + µ) I (t) .

Calculating the time derivative of V(t), along with System (3.2), gives

dV (t)
dt

∣∣∣(3.2) = (γ2 + µ) (ε + γ1 + µ)
(
R1

0 − 1
)

I (t) .

If R1
0 < 1, it follows that dV

dt ≤ 0 and the equality dV
dt = 0 holds only at Q0. According to LaSalle’s

invariance principle [26], the information-free equilibrium Q0 is globally asymptotically stable.

Theorem 3.2. If R1
0 > 1, the information-propagating equilibrium Q1 is locally stable.

Proof. The Jacobi matrix of System (3.2) at Q1 is

J1 (Q1) =


−βkI∗ − µ − p 0 −βkS ∗

αβkI∗ −ε − γ1 − µ αβkS ∗

(1 − α) βkI∗ ε (1 − α) βkS ∗ − γ2 − µ

 ,
which leads to the characteristic equation

f1 (λ1) := A3λ
3
1 + A2λ

2
1 + A1λ1 + A0 = 0, (3.3)
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where
A3 = βkI∗ + µ + p,
A2 = (α − 1) βΛk +

(
βkI∗ + 3µ + p + ε + γ1 + γ2

) (
βkI∗ + µ + p

)
,

A1 =
(
βkI∗ + 2µ + p + ε + γ1

) [
(α − 1) βΛk + (γ2 + µ)

(
βkI∗ + µ + p

)]
+ (1 − α) βkI∗βΛk − εαβΛk +

(
βkI∗ + µ + p

)2
(ε + γ1 + µ) ,

A0 =
[
(α − 1) βΛk + (γ2 + µ)

(
βkI∗ + µ + p

)] (
βkI∗ + µ + p

)
(ε + γ1 + µ)

+ (1 − α) βkI∗βΛk (ε + γ1 + µ) − εαβΛk (µ + p) .

It is easy to obtain that Ai > 0 (i = 0, 1, 2, 3) and A1A2 − A0A3 > 0 when R1
0 > 1. The Hurwitz

criteria implies that the characteristic equation at Q1 only has roots with the negative real part, which
ensures the local stability of Q1.

3.3. Model with hot search effect

Note that Model (3.1) with q , 0 does not contain an information-free equilibrium and consequently
has no basic propagation number. It is observed that when the threshold R1

0 > 1, there exists an
information-propagating equilibrium for System (3.1), denoted by Q2 = (S ∗∗, E∗∗, I∗∗,R∗∗), where

S ∗∗ =
Λ

βkI∗∗ + µ + p
, E∗∗ =

αβkS ∗∗I∗∗ + pqS ∗∗

ε + γ1 + µ
,

I∗∗ =
−b +

√
b2 − 4ac

2a
, R∗∗ =

p(1 − q)S ∗∗ + γ1E∗∗ + γ2I∗∗

µ
,

with the same a and b as in Q1 and c = −Λεpq < 0. Assume α > q, which implies that direct contacts
in the network attract a higher proportion of the susceptible population to follow some information;
then, we obtain the following local stability of Q2.

Theorem 3.3. For System (3.1), if the threshold R1
0 > 1, then the information-propagating equilibrium

Q2 = (S ∗∗, E∗∗, I∗∗,R∗∗) is locally asymptotically stable.

Proof. When neglecting the R equation, the Jacobi matrix of System (3.1) at Q2 is

J2 =


−βkI∗∗ − µ − p 0 −βkS ∗∗

αβkI∗∗ + pq −ε − γ1 − µ αβkS ∗∗

(1 − α) βkI∗∗ ε (1 − α) βkS ∗∗ − γ2 − µ

 .
Then, the characteristic equation of J2 follows

f2 (λ2) := B3λ
3
2 + B2λ

2
2 + B1λ2 + B0 = 0,

where Bi can be obtained by substituting I∗∗ for I∗ in the expression of Ai(i = 3, 2, 1) in Eq (3.3), and
B0 = A0 + εβΛpqk. Notice that I∗∗ > I∗ leads to Bi > Ai for i = 0, 1, 2, 3. If α > q, it can be verified
that B1B2 − B0B3 > 0. According to the Hurwitz criteria [24], we have the local stability of Q2 when
R1

0 > 1.

The results of numerical simulation (see Figure 3) indicate that the hot search in a social network of
information propagation has an obvious effect on the evolution of state density in Model (3.1), which
is illustrated when q = 0 and q = 0.3 for the homogenous network with size N = 1000. From the
comparison, we can see that it is necessary to take the effect of a hot search into consideration in
network propagation modeling.
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Figure 3. Plots of state density with and without the hot search effect. (a): q = 0. (b):
q = 0.3.

4. Model in heterogeneous networks

4.1. Model formulation

Due to the characteristics in real world networks, specifically in OSNs, heterogeneous networks are
used to describe the pattern of information propagation more accurately. In this subsection, in order
to take into account the heterogeneity induced by the presence of nodes with different connectivity,
all users in the network are partitioned into n groups according to their connections from 1 to n, with
n being the maximum number of connectivity. Assuming that the users in the group i have the same
degree ki(i = 1, 2, . . . , n), the densities of the susceptible, hesitant, propagable and rejected nodes of
connectivity ki at time t are denoted as S ki (t) , Eki (t) , Iki (t) and Rki (t), respectively. In addition, we
assume that the recruitment rate equals the removal rate in the heterogeneous network, i.e., Λ = µ,
and that these state variables of time are connected by means of the normalization condition, S ki (t) +

Eki (t)+ Iki (t)+Rki (t) = 1. Based on the mean field theory, we formulate the SEIR model of information
dissemination in a heterogeneous network as follows:

dS ki (t)
dt = Λ − βkiS ki (t) Θ (t) − µS ki (t) − pS ki (t) ,

dEki (t)
dt = αβkiS ki (t) Θ (t) − εEki (t) − γ1Eki (t) − µEki (t) + pqS ki (t) ,

dIki (t)
dt = (1 − α) βkiS ki (t) Θ (t) + εEki (t) − γ2Iki (t) − µIki (t) ,

dRki (t)
dt = p (1 − q) S ki (t) + γ1Eki (t) + γ2Iki (t) − µRki (t) ,

(4.1)

with the initial conditions

S ki (0) > 0, Eki (0) ≥ 0, Iki (0) ≥ 0, Rki (0) ≥ 0

and S ki(0)+Eki(0)+ Iki(0)+Rki(0) = 1. Define Θ (t) = 1
〈k〉

n∑
i=1

ki p (ki) Iki (t), which denotes the probability

that any given node is connected to a node in the propagable state. p(ki) denotes the connectivity
distribution of a node with the degree ki and 〈k〉 =

∑
i ki p(ki) denotes the finite average degree of all

nodes in the network, which address the effects of contact heterogeneity in information spreading.
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For System (4.1), it is claimed that the solution with the above initial condition is nonnegative for
all t ≥ 0. Actually, if there exists t0 > 0 such that S ki(t0) = 0 and S ki(t) > 0 for t ∈ (0, t0), then
S ′ki

(t0) = Λ > 0, which implies that S ki(t) ≥ 0 for all t ≥ 0. By the expression of Θ (t), it is known that
if there is k∗i satisfying Ik∗i (0) > 0, then Θ (0) > 0. By the continuity of Θ (t), there exists t1 such that
Θ (t) > 0 for any t ∈ (0, t1). Then, for Eki(t), we have

Eki(t) ≥ Eki(0)e−(ε+γ1+µ)t ≥ 0

for t ∈ (0, t2). If there exists t2 > t1 such that Θ (t2) = 0 and Θ (t) > 0 for t ∈ (0, t2), then
dΘ (t)

dt

∣∣∣∣
t=t2

= 1
〈k〉

n∑
i=1

ki p (ki) [(1 − α)βkiS ki (t) Θ (t) + εEki − (γ2 + µ)Iki (t)]
∣∣∣
t=t2
≥ 0,

leading to a contradiction. Thus, Θ (t) > 0 is valid for all t > 0.
In the following, we will discuss the model in two cases of q = 0 and q , 0, respectively, as in

Section 3.2. The dynamic analysis is conducted theoretically and the effect of a hot search on the time
evolution of state variables is demonstrated numerically.

4.2. Model without hot search effect

If the hot search effect is not considered (q = 0), then System (4.1) is reduced as

dS ki (t)
dt = Λ − βkiS ki (t) Θ (t) − µS ki (t) − pS ki (t) ,

dEki (t)
dt = αβkiS ki (t) Θ (t) − εEki (t) − γ1Eki (t) − µEki (t) ,

dIki (t)
dt = (1 − α) βkiS ki (t) Θ (t) + εEki (t) − γ2Iki (t) − µIki (t) ,

dRki (t)
dt = pS ki (t) + γ1Eki (t) + γ2Iki (t) − µRki (t) .

(4.2)

By the next generation matrix approach, similar to R1
0, the basic propagation number for System

(4.2) is defined as

R2
0 =

εαβΛ+ (1−α) βΛ (ε+γ1+µ)
(ε+γ1+µ) (γ2+µ) (µ + p)

〈
k2

〉
〈k〉

,

in which the term
〈
k2

〉
=

∑
i k2

i p(ki) presents the connectivity fluctuations.
It is easy to obtain that System (4.2) always has the information-free equilibrium

G0 =
{(

S 0
k1
, E0

k1
, I0

k1
,R0

k1

)
, . . . ,

(
S 0

kn
, E0

kn
, I0

kn
,R0

kn

)}
,

where S 0
ki

= Λ
µ+p , E

0
ki

= 0, I0
ki

= 0,R0
ki

=
pΛ

µ(µ+p) for i = 1, 2, . . . , n. If R2
0 > 1, there exists an information-

propagating equilibrium

G1 =
{(

S ∗k1
, E∗k1

, I∗k1
,R∗k1

)
. . .

(
S ∗kn

, E∗kn
, I∗kn

,R∗kn

)}
,

where
S ∗ki

= Λ
βkiΘ∗+µ+p , E∗ki

=
αβkiΛΘ∗

(βkiΘ∗+µ+p)(ε+γ1+µ) ,

I∗ki
=

(1−α)βkiΛΘ∗

(βkiΘ∗+µ+p)(γ2+µ) +
εαβkiΛΘ∗

(βkiΘ∗+µ+p)(ε+γ1+µ)(γ2+µ) ,

R∗ki
=

pS ∗ki
+γ1E∗ki

+γ2I∗ki
µ

for i = 1, 2, . . . , n, with Θ∗ = 1
〈k〉

n∑
i=1

ki p (ki) I∗ki
(t). In fact, we have
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Θ∗ = 1
〈k〉

n∑
i=1

ki p (ki) [ (1−α)βki
γ2+µ

+
εαβki

(ε+γ1+µ)(γ2+µ) ]
ΛΘ∗

βkiΘ∗+µ+p ;

then, denote

F1(Θ) = 1 − 1
〈k〉

n∑
i=1

ki p (ki) [ (1−α)βki
γ2+µ

+
εαβki

(ε+γ1+µ)(γ2+µ) ]
Λ

βkiΘ∗+µ+p .

It follows that

F1(1) = 1 − 1
〈k〉

n∑
i=1

ki p (ki)
Λ[(ε+γ1+µ)−α(γ1+µ)]

(ε+γ1+µ)(γ2+µ)
βki

βkiΘ∗+µ+p > 0,

F1(0) = 1 − 1
〈k〉

n∑
i=1

ki p (ki) [ 1−α
γ2+µ

+ εα
(ε+γ1+µ)(γ2+µ) ]

Λβki
µ+p = 1 − R2

0,

and

F′1(Θ) = 1
〈k〉

n∑
i=1

ki p (ki) [ (1−α)βki
γ2+µ

+
εαβki

(ε+γ1+µ)(γ2+µ) ]
Λβki

(βkiΘ∗+µ+p)2 > 0.

When the basic propagation number R2
0 > 1, from above, it can be seen that there is only one positive

Θ∗ such that F1(Θ∗) = 0. Consequently, there exists a unique information-propagating equilibrium G1.
In the following, we discuss the stability of the equilibria by the Hurwitz criteria; it is necessary to

utilize the Jacobi matrix at the equilibria, which is a 3n × 3n order matrix when the recovery state is
not considered.

Theorem 4.1. If R2
0 < 1, then the information-free equilibrium G0 of System (4.2) is globally asymp-

totically stable, and it is unstable when R2
0 > 1.

Proof. We will first establish the local stability of G0 by using the Hurwitz criterion and then the global
stability by using the Lyapunov function.

Let A11 = −(µ+ p), A22 = −(ε+ γ1 + µ), A33 = −(γ2 + µ) and Bi j = −
βkiS 0

ki
〈k〉 k j p(k j); then, we consider

the following matrix J̃0 =
(
mi j

)
3n×3n at the component(

S 0
k1
, E0

k1
, I0

k1
, · · · , S 0

kn
, E0

kn
, I0

kn

)
of G0 for ki = 1, 2, · · · , n:

J̃0 =



A11 · · · 0 0 · · · 0 B11 · · · B1n

0 · · · 0 0 · · · 0 B21 · · · B2n
...

...
...

...
...

...
...

...
...

0 · · · A11 0 · · · 0 Bn1 · · · Bnn

0 · · · 0 A22 · · · 0 −αB11 · · · −αB1n

0 · · · 0 0 · · · 0 −αB21 · · · −αB2n
...

...
...

...
...

...
...

...
...

0 · · · 0 0 · · · A22 −αBn1 · · · −αBnn

0 · · · 0 ε · · · 0 A33 − (1 − α)B11 · · · −(1 − α)B1n

0 · · · 0 0 · · · 0 −(1 − α)B21 · · · −(1 − α)B2n
...

...
...

...
...

...
...

...
...

0 · · · 0 0 · · · ε −(1 − α)Bn1 · · · A33 − (1 − α)Bnn



.

Then the characteristic equation of J̃0 has the following form:
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g (λ) := (λ + µ + p)n P2n(λ) = 0,

with P2n(λ) being a characteristic polynomial of degree 2n that corresponds to the following matrix
J̃1 =

(
m̃i j

)
2n×2n:

J̃1 =



A22 0 · · · 0 −αB11 · · · −αB1n

0 A22 · · · 0 −αB21 · · · −αB2n
...

...
...

...
...

...
...

0 0 · · · A22 −αBn1 · · · −αBnn

ε 0 · · · 0 A33 − (1 − α)B11 · · · −(1 − α)B1n

0 ε · · · 0 −(1 − α)B21 · · · −(1 − α)B2n
...

...
...

...
...

...
...

0 0 · · · ε −(1 − α)Bn1 · · · A33 − (1 − α)Bnn


.

Noting that S 0
k1

= S 0
k2

= . . . = S 0
kn

, and then making a similar transformation on J̃1 leads to the
following upper triangular matrix J̃2, which has the same eigenvalues as J̃1:

J̃2 =



m̃11 0 · · · 0 −αB11 −αB12 · · · −αB1n

0 A22 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

...

0 0 · · · A22 0 0 · · · 0
0 0 · · · 0 A33 0 · · · 0
0 0 · · · 0 0 A33 · · · 0
...

...
...

...
...

...
...

...

0 0 · · · 0 0 · · · 0 A33


,

with m̃11 = A22 −
(1−α)(ε+γ1+µ)+αε

A33

n∑
i=1

Bii. Therefore, the characteristic equation of J̃2 has the eigenvalue

A22 with multiplicity n− 1, the eigenvalue A33 with multiplicity n and a single eigenvalue m̃11. In order
to show the sign of m̃11, it can be further expressed as

m̃11 = −(ε + γ1 + µ) +
βS 0

ki
γ2+µ

〈k2〉
〈k〉

(
(1 − α)(ε + γ1 + µ) + αε

)
= (ε + γ1 + µ)(R2

0 − 1).

If R2
0 < 1, then all eigenvalues of J̃0 are negative, which ensures the local stability of G0. Otherwise, if

R2
0 > 1, there exists an eigenvalue with a positive real part, which implies that G0 is unstable.

Then,we consider a Lyapunov function of the following form:

V (t) =

n∑
i=1

[εEki (t) + (ε + γ1 + µ) Iki (t)].
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Calculating the derivative of V(t) along System (4.2) gives

dV (t)
dt

=
n∑

i=1
ε
[(
αβS ki (t) Θ(t) − (ε + γ1 + µ)Eki (t)

)
+ (ε + γ1 + µ)

(
(1 − α) βkiS ki (t) Θ(t) + εEki (t) − (γ2 + µ)Iki (t)

)]
≤

(
εα + (ε + γ1 + µ)(1 − α)

) βΛ

µ+p
〈k2〉
〈k〉

n∑
i=1

Iki − (ε + γ1 + µ)(γ2 + µ)
n∑

i=1
Iki

≤ (γ2 + µ) (ε + γ1 + µ)
(
R2

0 − 1
) n∑

i=1
Iki .

If R2
0 < 1, then we can see that dV(t)

dt ≤ 0, and it can be verified that the largest invariant set where
dV(t)

dt = 0 is the singleton {G0}. By the LaSalle invariance principle, the theorem is proved.
Remark. In Model (4.1), the parameter p is the presence rate of the hot search. If there is no such

source emerging in the process of information spreading, i.e., p = 0, then by the method in [27, 28],
the information-propagating equilibrium G1 is globally asymptotically stable when R2

0 > 1.

4.3. Model with hot search effect

Similarly, suppose α > q in the case of q , 0. For System (4.1), due to the hot search effect, there
exists no information-free equilibrium. However, there exists the information-propagating equilibrium

G2 =
{(

S ∗∗k1
, E∗∗k1

, I∗∗k1
,R∗∗k1

)
. . .

(
S ∗∗kn

, E∗∗kn
, I∗∗kn

,R∗∗kn

)}
,

where
S ∗∗ki

= Λ
βkiΘ∗∗+µ+p , E∗∗ki

=
Λ(αβkiΘ

∗∗+pq)
(ε+γ1+µ)(βkiΘ∗∗+µ+p) ,

I∗∗ki
=

(1−α)ΛβkiΘ
∗∗

(γ2+µ)(βkiΘ∗∗+µ+p) +
εΛ(αβkiΘ

∗∗+pq)
(ε+γ1+µ)(γ2+µ)(βkiΘ∗∗+µ+p) ,

R∗∗ki
=

p(1−q)S ∗∗ki
+γ1E∗∗ki

+γ2I∗∗ki
µ

,

for i = 1, 2, . . . , n, and the unique Θ∗∗ satisfying

Θ∗∗ = 1
〈k〉

n∑
i=1

ki p (ki)
[

(1−α)ΛβkiΘ
∗∗

(γ2+µ)(βkiΘ∗∗+µ+p) +
εΛ(αβkiΘ

∗∗+pq)
(ε+γ1+µ)(γ2+µ)(βkiΘ∗∗+µ+p)

]
.

In fact, let

F2(Θ) = Θ − 1
〈k〉

n∑
i=1

ki p (ki)
[

(1−α)ΛβkiΘ
∗∗

(γ2+µ)(βkiΘ∗∗+µ+p) +
εΛ(αβkiΘ

∗∗+pq)
(ε+γ1+µ)(γ2+µ)(βkiΘ∗∗+µ+p)

]
;

then, the positive equilibrium Θ∗∗ is given by F2(Θ∗∗) = 0. We have that

limΘ→0+ F2(Θ) = −
εΛpq

(ε+γ1+µ)(γ2+µ)(µ+p) < 0,

limΘ→1 F2(Θ) = 1 − 1
〈k〉

n∑
i=1

ki p (ki)
εΛ(βki+pq)+βkiΛ(1−α)(γ1+µ+ε)

(ε+γ1+µ)(γ2+µ)(βki+µ+p) > 0.

Now, we examine the derivative of F2(Θ); then,

F′2(Θ) = 1 + 1
γ2+µ

1
〈k〉

n∑
i=1

ki p (ki)
[

(1−α)βkiΛ(µ+p)
(βkiΘ∗∗+µ+p)2 + εΛ

ε+γ1+µ

αβki(µ+p)−βki pq
(βkiΘ∗∗+µ+p)2

]
> 1,

implying that the function F2(Θ) is strictly increasing. Therefore, there is only one positive Θ∗∗ such
that F2(Θ∗∗) = 0, and the existence and uniqueness of the positive equilibrium G2 follows. We have
the following result.
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Figure 4. Plots of state density with q = 0 in four networks.

Theorem 4.2. For System (4.1), there exists a unique information-propagating equilibrium G2.

The numerical investigations in Figures 4 and 5, performed on the four networks (regular network,
Watts-Strogatz (WS) network, Erdös-Rényi (ER) network and BA network) with size N = 1000, con-
firm the theoretical analysis about the influence of q on the evolution of state density in Model (4.1).
In the figures, with the other parameters taken as the same values, the state variables are depicted when
q is fixed to 0 and 0.65, respectively, From Figure 4, it can be seen that the curves of the propagable
density I(t) is always lower than that of the rejected density R(t) when q = 0. However, in the case of
q = 0.65, the curves of I(t) are obviously higher than those of R(t) in the initial time steps, and then
they decline gradually to be lower than the density of R(t), as shown in Figure 5. In addition, it can
be observed that the density of I(t) in Figure 4 is lower than that in Figure 5 at the same time steps,
although it is not particularly obvious. Therefore, the comparison results in the fact that the hot search
effect is not ignorable in the progress of information propagation.

5. Numerical simulations

In this section, we describe the numerical simulations of Models (3.1) and (4.1) to examine the sen-
sitivity analysis, which demonstrate the effects of some parameters on the basic propagation number,
as well as the density of propagable nodes, allowing us to improve the understanding of information
spreading.

For convenience, in the following simulations, let K be the average degree k̄ in the homogeneous
network, as well as 〈k

2〉
〈k〉 in the heterogeneous network. First, we consider the SEIR model on the regular
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Figure 5. Plots of state density with q = 0.65 in four networks.

network and the ER network in the absence of the hot search effect (q = 0). In this scenario, there exists
a basic propagation number R0 (denoting R1

0 and R2
0). To explore the sensitivity of parameter variations

on R0 due to the uncertainty in estimating the input parameter, the partial rank correlation coefficients
(PRCCs) was calculated based on the Latin hypercube sampling scheme.

Figure 6. Sensitivity analysis of PRCCs for input parameters and R0 (outcome variable).
.

For our performance, the sample size was taken as n = 2000 and seven parameters were chosen
as the input variables. The values of the PRCCs were calculated for each of the seven parameters,
as shown in Figure 6, which can be used to observe the contribution made by each input parameter
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Table 2. PRCC values for input parameters and R0.

Input parameters
The basic propagation number R0

PRCC p-value
β 0.3757 0
α -0.1253 0
ε 0.0615 0.0059
K 0.6898 0
γ1 -0.1087 0
γ2 -0.3300 0
p -0.3716 0

to the variability of R0. The positive or negative value corresponding to each parameter reveals the
correlation that is generally evaluated as being important, moderate or not significantly different from
zero. In Table 2, the specific values of the PRCCs and p-values are presented, noting that p-values
are regarded as zero when smaller than 0.0001. If we consider that absolute values of PRCCs that are
greater than 0.4 indicate an important correlation between the input parameters and R0, the values in
(0.2, 0.4) are moderate correlations and the values in (0, 0.2) are not significantly different from zero,
it can be seen that K (PRCC=0.6898) has an important impact on R0, and β, γ2 and p have a moderate
impact, with the PRCC values being 0.3757, -0.3300 and -0.3716 respectively. Compared with them,
the remaining parameters affect R0 slightly.

We focus on the sensitive parameters to examine the variation in R0 due to the change of the con-
cerned parameters. In Figure 7, the contour plots on the regular network and ER network are presented
in terms of parameter pairs (β,p) and (β,γ2) respectively. For comparison, the degree in the regular
network is taken as 〈k〉 = 4 and 〈k〉 ≈ 4 in the ER network, so that 〈k

2〉
〈k〉 ≈ 7.03 when

〈
k2

〉
≈ 28.1327.

The effects of β and p are shown in the first row in Figure 7. It can be seen that the basic propagation
number R0 is less than 1 only when β is approximately in the interval of [0, 0.4] in the regular network,
compared with the interval of [0, 0.2] in the ER network. In particular, if β = 0.2 and p = 0.6, then
R0 is less than 1 in the regular network; however, it is greater than 1 in the ER network. In addition,
for a fixed p and varying β, the basic propagation number R0 experiences more variation in its value
in the ER network than in the regular network. For the pair (β,γ2), the contour plot in the second row
presents the numerical result similar to that for the parameter pair (β,p).

If the hot search effect is taken into account, it is previously referred that there exists no information-
free equilibrium in this case and R0 is only a critical parameter related to the stability of the
information-propagating equilibrium. To further analyze the impact of different connectivity K on
the information propagation process, we consider the model on four networks with size N = 1000 and
connectivity ranging from 4 to 16. The profile for the propagable population is depicted in Figure 8.
From the curves, we can see that, starting on nodes with different connectivity K, the higher the con-
nectivity, the higher the peak of the density I(t), resulting in a higher number of propagable individuals
in information spreading. On the contrary, the classes of nodes with few connections have a relatively
small density at its peak and a slight shift of the peak time, which suggests that a lower prevalence in
information propagation can be achieved by managing the connected nodes to some extent.

For OSNs, the hot search list can serve as a source of hot information that is more easily accessible
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Figure 7. Contour plots of the basic propagation number on the regular network (Left) and
ER network (Right), revealing the estimated effects of the parameter pairs (β,p) and (β,γ2).

and attracts more attention. Once becoming interested, the internet users have the potential to retweet
and spread the information actively. In order to provide further insight into the hot search effect, the
density of propagable nodes as a function of time was investigated for the four types of networks in
Figure 9. When the hot search effect is absent, i.e., q = 0, it is shown that there is a very small variation
in the density of I(t). With the increase of q from 0 to 0.6, there is a much higher number of propagable
individuals in each type of the network, which provides striking evidence of the peculiar influence of
the hot search on the process of information propagation.

6. Case study

To validate the proposed SEIR model, real data from Sina Weibo (the largest online social media
in China) were collected through Python software. Then, the model was employed to fit the data, with
the aim of minimizing the difference between model simulation and the collected data. In the case
study, two datasets, named Information A and Information B, were used to illustrate the capability of
our model to simulate the dynamical behaviors of information propagation.

Information A is a promotional tweet from an actress for her starring TV series. Table 3 lists the
number of retweets in the first 13 hours after the microblog was posted. From the initial time, the data
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Figure 8. Effect of the parameter K on the density of I(t) on four networks.

Figure 9. Hot search effect on the density of I(t) on four networks.
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Table 3. Data for Information A.

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Number 1 76 97 144 89 93 55 29 22 12 14 17 16 6

Time 15 16 17 18 19 20 21 22 23 24 25 26 27
Number 4 5 4 4 3 1 1 1 4 3 2 1 1

Table 4. Data for Information B.

Time 1 2 3 4 5 6 7 8 9 10 11 12
Number 1 332 660 704 352 251 213 127 69 66 40 30

Time 13 14 15 16 17 18 19 20 21 22 23 24
Number 25 26 30 30 17 20 19 13 13 18 9 16

Time 25 26 27 28 29 30 31
Number 20 18 12 18 7 1 1

were recorded in half-hour time intervals; then, a total of 27 data points was obtained. Information B
is a tweet about the performance of Chinese women players in a World Table Tennis Championship.
The collecting time lasted 15 hours, and the data of the forwarding after information release is listed
in Table 4, in which the data were also collected every half an hour, the same as with Information A.
In these two tables, the first data point denotes the publisher’s release, counted as 1. In data collecting,
when the retweet of the concerned information decreased to 1 and experienced no fluctuations in the
next hour, it was regarded as the end time, and the last data point was 1.

Figure 10. Data fitting for Information A.

In our numerical simulations, we use the BA network to fit the collected data for Information A
and Information B, according to the experimental results in [4], revealing the phenomenon that some
real networks, including social networks, have a power-law exponent that also exists in microblog net-
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Figure 11. Data fitting for Information B.

works. In fitting the data, we determine the values of parameters by using the least squares method to
minimize their root mean square error (RMSE) and mean absolute error (MAE) for better accuracy;
then, the model was applied on the BA network with an average degree of 12. The simulation results
and the collected data are plotted in Figures 10 and 11. The experimental illustrations show that the
whole process for the two cases can be divided into three stages. The retweet of the Weibo information
increased dramatically at the initial stage, implying that most users interested in it were involved in for-
warding the information shortly after its release. Then, the popularity of it decayed and the forwarders
of the microblog decreased in the following second stage. At the last stage, the number of retweets
approached a very low level eventually.

Table 5. List of parameters and variables values used in case study.

Parameter & variable Λ β α ε µ γ1 γ2 p q S (0)

Information A 4 0.89 0.68 0.78 0.004 0.12 0.22 0.65 0.66 277
Information B 4 0.85 0.68 0.76 0.004 0.20 0.22 0.58 0.65 1997

Table 6. RMSE and MAE.

Case RMSE MAE

Information A 7.29 4.85
Information B 92.53 59.68

The parameters and initial values used in Figures 10 and 11 are listed in Table 5. In these two cases,
we set E(0) = 1, I(0) = 1 and R(0) = 1. From the comparison of the model simulation and the data
of Information A, it can be observed from Figure 10 that the proposed model captured the trend of
the data accurately, although there exists some error in the fitting. In Figure 11, there is an obvious
deviation of the simulation results from the real data of forwarding Information B in the decay period,
and the possible reason may be that the sharp decline in the data occurred at midnight when there are
relatively few users active on Weibo, which is not considered in the simulation. The values of the
RMSE and MAE are given in Table 6.
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Regarding the case study, it is worth noting that the best-fit parameter q came out to be almost the
same, i.e., q = 0.66 for Information A and q = 0.65 for Information B. The possible reason is that
these two kinds of data had similar structural characteristics and three stages, as mentioned before.
Particularly, from Figures 10 and 11, it can be seen that a single wave of forwarding occurred in the
propagating process. Although the fitting results were not accurate enough to match the collected data,
they may give us some hint that the hot search exerts a similar effect on information propagation with
these types of characteristics.

7. Conclusions

In this paper, an extended SEIR model was investigated to capture the dynamic property of infor-
mation propagation in complex networks. In particular, the effect of a hot search in OSNs was incor-
porated into our model, with aim of demonstrating its performance in information diffusion. Based
on the proposed model framework, we conducted dynamical analysis of the model in homogeneous
networks and heterogeneous networks, including the stability of the information-free equilibrium and
the information-propagating equilibrium. In addition, numerical simulations were carried out to vali-
date the theoretical results and analyze the sensitivity of the concerned parameters. Furthermore, we
focused on two types of specific information spreading in Weibo and performed data fitting on the BA
network, which confirmed the validity of our model in application. The presented results allow us to
have a better knowledge of the process of information propagation in OSNs.

In fact, real-world networks in which information is disseminated are more complex and dynamic; it
is reasonable to expect that the proposed model can characterize the behaviors of information diffusion
more accurately, and consequently have better performance in practical realization. In this perspec-
tive, the incorporation of many elements of realism, such as a time delay in forwarding, followers’
awareness and competition of different online information, is important in modeling to acquire a better
understanding of information propagation. Other than the case with one single wave of forwarding,
numerical examples with more characteristics should be considered to improve the level of agreement
between the model and real data, which will be left for us to explore in future.
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