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Abstract: Craniotomy is an invasive operation with great trauma and many complications, and 
patients undergoing craniotomy should enter the ICU for monitoring and treatment. Based on 
electronic medical records (EMR), the discovery of high-risk multi-biomarkers rather than a single 
biomarker that may affect the length of ICU stay (LoICUS) can provide better decision-making or 
intervention suggestions for clinicians in ICU to reduce the high medical expenses of these patients 
and the medical burden as much as possible. The multi-biomarkers or medical decision rules can be 
discovered according to some interpretable predictive models, such as tree-based methods. Our study 
aimed to develop an interpretable framework based on real-world EMRs to predict the LoICUS and 
discover some high-risk medical rules of patients undergoing craniotomy. The EMR datasets of 
patients undergoing craniotomy in ICU were separated into preoperative and postoperative features. 
The paper proposes a framework called Rules-TabNet (RTN) based on the datasets. RTN is a 
rule-based classification model. High-risk medical rules can be discovered from RTN, and a risk 
analysis process is implemented to validate the rules discovered by RTN. The performance of the 
postoperative model was considerably better than that of the preoperative model. The postoperative 
RTN model had a better performance compared with the baseline model and achieved an 
accuracy of 0.76 and an AUC of 0.85 for the task. Twenty-four key decision rules that may have 



838 

Mathematical Biosciences and Engineering  Volume 20, Issue 1, 837–858. 

impact on the LoICUS of patients undergoing craniotomy are discovered and validated by our 
framework. The proposed postoperative RTN model in our framework can precisely predict whether 
the patients undergoing craniotomy are hospitalized for too long (more than 15 days) in the ICU. We 
also discovered and validated some key medical decision rules from our framework. 

Keywords: craniotomy; electronic medical records; length of ICU stay; predictive model; TabNet; 
decision rules discovery 

 

1. Introduction 

Craniotomy is a common treatment of neurosurgical diseases. Patients undergoing craniotomy 
should enter the ICU for monitoring and treatment because of surgical trauma and the development 
of postoperative complications [1]. The increase in the length of ICU stay (LoICUS) of these patients 
results in high medical costs while suffering from physical pain. LoICUS is a common outcome used 
as an indicator of quality of care and resource use [2]. Therefore, from the perspective of 
personnel cost and resource management, predicting the LoICUS, especially for patients with 
long ICU hospitalization is an inevitable task, as the length of stay (LOS) outliers accounted for 
most ICU cost [3]. 

The vigorous development of machine learning (ML) or deep learning (DL) in the past decade 
has made ML- or DL-based predictive models (PM) widely used in various health care areas, which 
proves the feasibility of ML or DL methods in this field [4]. However, based on different problem 
definitions and medical scenarios, whether such methods are better than traditional models is a 
controversial issue. The prediction of the onset of diseases or medical outcomes, such as mortality, 
based on electronic medical records (EMRs) using DL or ML has been widely used in recent years [5]. 
ML- or DL-based methods are often implemented to ICU data for its rarity and value to predict 
outcomes [6]. Many scholars have focused on LoICUS prediction. Recent studies translated LoICUS 
prediction into a classification task but not a regression task. For example, Gentimis et al. [7] 
believed that day 5 has the greatest impact on LoICUS, and they made a classification model of 
whether the LoICUS is greater than 5 days based on neural network (NN) algorithm with 80% 
accuracy. In 2019, Harutyunyan et al. [8] made a PM to predict whether the LoICUS is greater than 7 
days based on linear regression model and long short-term memory, and the accuracy of the 
classification model was 84%. They also noted that the task of LoICUS prediction is more difficult 
than other outcome prediction tasks, such as in-hospital mortality prediction, and they believed that 
predicting whether a patient would have an extended LoICUS (longer than 7 days) from only the 
first 24 hours of data might be more reasonable than other time points [8]. In 2021, Khalid et al. [9] 
applied six ML-based PMs for binary classification using the median patient population ICU stay 
of 2.64 days, and they considered that random forest (RF) is a good predictive model in this task 
with 65% accuracy. In conclusion, based on the research above and the sample size of our study, we 
decided to apply the classification method (classification boundary is the median of LoICUS) to 
predict the LoICUS in our research. 

In recent years, the decision-making process of the PM is always the key point in interpretable 
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learning, especially in the area of medical research. Miller defined interpretability as “the degree to 
which a human can understand the cause of a decision” [10]. In the field of medical research, such as 
the prediction tasks of medical outcome, establishing an interpretable model instead of a black-box 
one is more acceptable. 

Gradient boosting-based tree models, such as gradient boosting decision tree (GBDT), XGBoost, 
or LightGBM [11,12], have presented many achievements and unusually brilliant results in data 
science competition, such as Kaggle, especially in the field of tabular data competition. Through this 
type of algorithm, we can obtain the decision-making process of the model conveniently in the form 
of decision rules, which are also known as cross features or feature interactions. In medical research, 
these rules can be understood as the combination of some clinical variables or biomarkers called 
multi-biomarkers. Previous studies have shown a higher prognostic accuracy using multi-biomarkers 
than an individual one [13]. Therefore, we believe that discovering some key decision rules or 
multi-biomarkers instead of a single biomarker according to self-interpretable methods, such as RF 
or GBDT, is a helpful method for medical workers. 

In our study, we propose a supervised self-interpretable medical knowledge discovery 
framework, including a PM called Rules-TabNet (RTN), to predict the LoICUS, aiming to discover 
some medical rules that may affect the LoICUS of a patient undergoing craniotomy. RTN consists of 
a gradient boosting-based tree model to generate decision rules and a TabNet, the self-interpretable 
and NN-based model proposed by Sercan et al. [14] in 2019, to select some important decision rules. 
We also validated the medical rules discovered by RTN through risk analysis. 

The rest of our paper is organized as follows. In the next section, the materials of our study and 
the methodology of our framework are described. In the third section, we present the statistics and 
experimental results of our study. The discussion and conclusion are stated in the last section. 

2. Materials and methods 

2.1. Task modeling 

We aimed to discover some medical rules that may affect the LoICUS of a patient undergoing 
craniotomy according to our framework. We handled the prediction and discovery tasks based on the 
following steps, and the framework is shown in Figure 1. 



840 

Mathematical Biosciences and Engineering  Volume 20, Issue 1, 837–858. 

 

Figure 1. Study framework. The framework has three parts. The Input module 
contains data preprocessing and feature selection. The RTN module has four steps: the 
construction of GBDT and Tree Decomposing, Rules Embedding, TabNet 
construction, and Global Rules importance computation. The last part of the 
framework is Rules Validation. 

• First, the dataset of patients undergoing craniotomy from real-world data is retrieved from the 
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EMR. The data is dichotomized according to the median of LoICUS, which is also the outcome of 
our study. Positive examples are the patients with longer LoICUS (above the median) after 
craniotomy, and negative examples are the patients with shorter LoICUS (less than the median). The 
data was entered into the Input module, and the preoperative and postoperative features were 
obtained after data preprocessing and feature selection. 

• Second, we trained a supervised gradient boosting-based classification model, and the label is 
the outcome using the dataset of Step 1. After the hyperparameters of the model were tuned, we 
constructed a bunch of decision trees based on the model. Some coarse-grained rules can be 
generated by the tree-decomposing process. We then applied a rule-embedding method to generate 
rule features. A TabNet model was trained according to the rule features. TabNet has two major 
modules: Rule Transformer (RT) and Attentive Transformer (AT). The output of TabNet was entered 
into a Softmax for outcome prediction. During the training process of TabNet, the global importance 
of these rules can be calculated to evaluate them. 

• Finally, a rule validation step, which includes case–control matching and risk analysis, is 
subsequently applied to validate the rules to analyze some risk factors that might affect the LoICUS 
of patients undergoing craniotomy. 

2.2. Data retrieval 

In this study, we retrospectively retrieved the EMR from the surgical ICU data platform of a 
hospital of China from 2005 to 2018. The variables were extracted from the surgical ICU special 
disease database, and the demographic information, vital signs, laboratory diagnosis, and other 
variables of patients from 6 hours before to 24 hours after entering the ICU were used as candidate 
variables for modeling. During the ICU stay of the patients, some variables, such as vital signs 
(blood pressure, heart rate, etc.) and laboratory results (platelets, white blood cells, etc.) were 
continuously changing in a short time. Therefore, these dynamic variables were represented by the 
first (the first collected value in ICU), maximum (the maximum value of the variable during ICU 
stay), and minimum (the minimum value of the variable during ICU stay) values of patients in the 
ICU as shown in Table S1. 

Adult patients (age ≥ 18 years) undergoing craniotomy and requiring ICU treatments were 
recruited according to the inclusion and exclusion criteria of our study. We only retained data for at 
least one in-ICU test. For patients who entered the ICU multiple times, we only collected the data of 
the first ICU admission. Patients whose LoICUS is null or incorrectly recorded, too long (more than 365 
days), or too short (less than 24 hours) were excluded. Based on the above criteria, we also excluded 
patients with an in-hospital outcome of death and patients whose discharge status is automatic 
discharge. The automatically discharged patient might die after discharge, and the therapeutic 
importance for such patient and his/her family members is little. Moreover, family members are 
unwilling to let the patient die in the hospital because of local culture and customs. In our previous 
study, we made a PM to predict the mortality of patients undergoing craniotomy in the ICU and 
discovered some high-risk factors (such as heart rate, temperature, etc.) that are closely related to the 
mortality of patients undergoing craniotomy [15]. Therefore, we excluded the dead samples in our 
dataset, which means that we removed the “death situation” in input features to reduce the impact of 
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confounding factors. Besides, we performed an odds ratio (OR) test to analyze the relation between 
death situation and the LoICUS of such patients and a chi-square test to validate the OR and its 95% 
confidence interval (CI). We also tested the sensitivity of death situation to LoICUS. The main 
outcome of our study is the LoICUS. Through the investigation and other research [9], we divided 
the LoICUS into two categories based on the median LoICUS (15 days) to build a classification 
model, and we also made some regression models. 

This study was approved by the Ethics Committee of Fujian Provincial Hospital, and all 
procedures performed in this study involving human participants were in accordance with its ethical 
standards. This study obtained the informed consent of all the participants. 

2.3. Statistical analysis 

After data retrieval, we selected the variables with filling rate greater than 70%. A total of 146 
variables consisting of 20 preoperative and 126 postoperative variables were extracted from the data 
platform. The detailed information and statistical results are shown in Table S1. 

In consideration of the feature engineering technology in ML, selecting all the variables as the 
input matrix for the predictive model is not a wise option, but variables related to clinical practices 
and medical facts need to be taken into account. We divided the patients into two groups according to 
whether the LoICUS is more than 15 days, which means the endpoint of our study is LoICUS groups. 
We made assumptions to see whether a variable is a statistical difference between the two groups. 
Chi-square test was applied to discrete variables, such as gender, and student t-test was used for 
continuous variables that conform to normal distribution in both groups (group 1: LoICUS ≥ 15 days; 
group 2: LoICUS < 15 days). Otherwise, Wilcoxon test was used to judge the statistical difference 
between two groups. For discrete variables, we applied Yates’s correction for chi-square tests 
according to the number of samples and frequency of variables. We performed 100 permutation tests 
to correct the multiple testing for each continuous variable, and adjusted P < .05 was used as the 
standard to express statistical significance. Feature selection was conducted according to the adjusted 
P-value, and variables related to clinical practices and medical facts were also considered.  

The imputation of missing value is an inevitable process for many predictive models. Missing 
values were imputed by mean for continuous variables and mode for discrete variables. 

The PMs were constructed using the scikit-learn (version 0.23.0) and PyTorch (version 1.3.1) 
packages in Python (version 3.7.3 Python Software Foundation), and statistical analysis was 
conducted using the SciPy (version 1.5.0) package in Python (version 3.7.3). The statistical values 
and ranges of different variables were different. Continuous variables that conformed to normal 
distribution were analyzed by mean and standard deviation (mean ± std), whereas other continuous 
variables were analyzed using median and interquartile range (IQR). The discrete variables are 
presented as the percentages of positive examples (%). 
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2.4. RTN model 

2.4.1. Rules generated by gradient boosting-based tree model 

A GBDT algorithm was adopted to train the predictive model by generating multiple additive 
trees because of the good interpretability and advantage in training time of tree-based models 
compared with NN-based black-box models,. 

 

Figure 2. Framework of the gradient boosting-based tree model. N additive trees that are 
not independent are trained, and the later tree (Tree ) learns the residual error based on 
the previous one (Tree ), which means 𝑋 , Residual  is the input of Tree . 𝑓  
is the initial value. 𝑅 is the terminal region to each additive tree, and 𝑐 is the minimum 
square loss of 𝑅. 𝐼 represents the indicating function. 𝑓 𝑥  is the output. 

Figure 2 illustrates the framework of the GBDT model. The first step is to initialize 𝑓 𝑋
arg min ∑ 𝐿 𝑦 , 𝑐 . 𝑁 additive trees are trained iteratively. The input of the later tree (Tree ) is 
𝑋 , Residual . The residual is simulated approximately by negative gradient. The terminal 

region corresponding to each tree 𝑛 is 𝑅 , 𝑗 1, 2, … , 𝐽, where 𝐽 is the number of leaf nodes. As 

for the 𝐽  leaf nodes, 𝑐 arg min ∑ 𝐿 𝑦 , 𝑓 𝑋 𝑐∈  is the minimum loss of 𝑅 . 

𝐼 𝑋 ∈ 𝑅  is the indicating function, 𝐼 1 when 𝑋 ∈ 𝑅 ; otherwise, 𝐼 0. The output of the 

model is shown in Eq (1). The final classification result is 𝑦 1 / 1 exp 𝑓 𝑋 . 

𝑓 𝑋 𝑓 𝑥 ∑ ∑ 𝑐 𝐼 𝑥𝜖𝑅         (1) 

After the parameter tuning of the model, we generated the medical rules from the model. All the 
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additive trees in the model can be denoted as decision trees, and a tree model can be represented as 
nodes (𝑁  is the root node, 𝑁  is the internal node, and 𝑁  is the leaf node) and edges (𝐸), 𝑇
𝑁 , 𝑁 , 𝑁 , 𝐸 . We decomposed the trees into decision rules by connecting 𝑁  or 𝑁  by 𝐸 from 

𝑁 . Any path through the 𝑁  can be converted into a decision rule, and the coarse-grained medical 
rule base 𝑅  is obtained and consisted of 𝐾 rules. The strategy in [16] was adopted to limit the tree 
size to reduce the complexity of the model. If the maximum depth of the model is set to 2 and the 
three types of rules in 𝑅  as shown in Eq (2). 𝑁 is the number of trees, 𝐾 is the number of rules 
derived from the model, and 𝑡  is the number of 𝑁  within Tree . 

𝑅  
𝑁 → 𝐸 → 𝑁  

𝑁 → 𝐸 →  𝑁 → 𝐸 → 𝑁
𝑁 → 𝐸 → 𝑁  

 ; 𝐾  ∑ 2 𝑡 1                         (2) 

We take an example to illustrate the process of tree decomposing. As shown in Figure 1, 𝑇
1 𝑁 , 1 𝑁 , 3 𝑁 , 4 𝐸 . The tree has 3 layers, and four rules can be generated as follows: 

·𝑁 → 𝐸 → 𝑁 : x0 < a0; 
·𝑁 → 𝐸 → 𝑁 : x0 ≥ a0; 
·𝑁 → 𝐸 → 𝑁 → 𝐸 → 𝑁 : x0 < a0 & x2 = a2; 
·𝑁 → 𝐸 → 𝑁 → 𝐸 → 𝑁 →: x0 < a0 & x2 ≠ a2. 

x0 denotes the split node of the first layer, and x2 denotes the split node of the second layer. a0 and 
a2 represent the range of split nodes of x0 and x1, respectively.  

Given the 𝐾 coarse-grained medical rules derived by GBDT, we transfered each rule 𝑅 in 𝑅  
into an embedding vector 𝑟 𝑖 𝑟 , 𝑟 , … , 𝑟 , … , 𝑟 , where 𝑛 is the embedding size, also 
known as the samples of the dataset, and 𝑟  is the embedding representation of the 𝑚-th patient. 
The rule features of the data can be denoted as 𝑋 . 

𝑟  ∏ 𝐼 𝑟 𝑗                                             (3) 

Rule 𝑅 can also be described as a cross feature, which meaning that 𝑅 had 𝑝 features, such 

as x0 and x2 of r (1) in Figure 1. 𝐼 .  is the indicator function and is 0 or 1 like 𝐼 .  in [17]. 𝑟  is the 
representation of the 𝑘  rule in 𝑟  as shown in Eq (3). 

2.4.2. TabNet and global rule importance 

We applied a TabNet encoder, which is an additive model consisting of several steps to predict 
the outcome and compute the global importance of all rules. The embedding vector of all rules was 

input into the TabNet, and we merely selected a batch rule embedding (BRE), 𝑋 , into the rule 
transformer (RT) and every step, where 𝐵 is the batch size.  

The RT module has four F-B-G layers, and each of which is composed of a fully-connected (FC) 
layer, BRE, and a gated linear unit (GLU) [18]. A skip-connection process was applied to each 

F-B-G, and a normalization with √0.5 after the last three F-B-G was used to stabilize the learning 
process of the network [19]. 𝐴 𝑖 , 𝐸 𝑖  is the output of RT after splitting in step , 𝐴 𝑖  is the 
input of the fellow module, and 𝐸 𝑖  is used to generate the outcome of step . 

𝐴 𝑖  is the input of attentive transformer (AT), and the Mask 𝑖  module of step , which is 
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shown in Eq (4), was employed for rule selection. Mask 𝑖  has the same dimension as 𝑋 𝑖 , 
and the value range of Mask 𝑖  is [0,1]. 

Mask 𝑖 Sparemax ∏ 𝛾 Mask 𝑗 ℎ 𝐴 𝑖 1 , Mask i ∈ 0,1    (4) 

Compared with Softmax, Sparemax is a normalization method that can obtain more sparse 
results [20]. 𝛾 is the relaxation parameter, which means that the feature can be used again with 
higher weight in subsequent steps if 𝛾 1. ℎ 𝐴 𝑖 1  is the output of the F-B of AT. 

After the AT to Mask 𝑖  to RT in step , 𝐴 𝑖  was input into the AT of step , and 𝐸 𝑖  was 
input into the ReLU of step  to get the output of the i-th estimator. 

Finally, the output of RTN is the sum of the results of all estimators, and the output of the i-th 
estimator is ReLU 𝐸 𝑖 . The final output of RTN is shown in Eq (5). Softmax was used to classify 
the LoICUS of patients undergoing craniotomy. 

RTN 𝐹𝐶 ∑ ReLU 𝐸 𝑖        (5) 

The GBDT architect and Mask module in our study make RTN have a stronger 
self-interpretability compared with the traditional NN-based black-box model. The calculation 
method of rule importance is described below. 

As for a sample 𝑏 of step , 𝐸 𝑖  is one of the outputs of RT, and the dimension of 𝐸 𝑖  is 
𝐵 𝑁 . The output of step  is  𝐸 𝑖 0  when 𝐸 , 𝑖   0, where 𝑗 is a one-dimensional 

rule-feature in 𝑁 . The contribution of sample 𝑏 in step  𝑐 𝑖  is shown in Eq (6)   

𝑐 𝑖  ∑ 𝑅𝑒𝐿𝑈 𝐸 , 𝑖           (6) 

The larger the 𝑐 𝑖 , the more obvious its impact on the outcome. 𝑐 𝑖  is also known as the 
weight of step  in RTN. Therefore, the global importance of rule 𝑗 in sample 𝑏 is the sum of the 
weights of Masks in all steps. The normalized representation of rule importance if RTN has 𝑁 steps 
is shown in Eq (7). 

𝐼 ,  
∑ ,

∑ ∑ ,
                                      (7) 

2.5. Rule validation 

According to the global importance of all rules computed by RTN, the rules 𝑅  with 
nonzero global importance will be left for the subsequent validation. For each rule 𝑟 𝑓  in 𝑅 , f 
represents the feature set contained in rule r. We adopted an analogous case-control strategy, which is 
similar to the case-control study that is commonly used in medical research to construct the 
validation data of the risk factor. We performed a risk analysis to validate the correlation between the 
rule and outcome. 

Case-control study is widely used in risk factor detection [21]. It is very unfriendly, especially 
for small sample data, such as in our research, because of the precise inclusion and exclusion criteria 
of such study. We conducted an analogous case-control matching method of each rule automatically 
in terms of Propensity Score Matching (PSM), which is a statistical method that deals with biases 
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and confounding factors [22]. We constructed two groups for each rule: group A (patients complying 
to 𝑟 𝑓 ) and group B (patients not complying to 𝑟 𝑓 ). Propensity score (PS) was calculated for 
each patient in terms of the predicted probability of the logistic regression (LR) model shown in Eq (8). F 
is the representation of all original feature set, and F 𝑓  means the different sets of the original 
feature set and the features contained in the rule 𝑟 𝑓 . 

PS  𝐅           (8) 

Two patients from groups A and B with the closest PS were selected and entered to a new 
patient cluster. Case and control groups were generated from the new cluster according to the 
outcome [23]. The number of people in the case group is at least 100, and the number of people in 
the control group is greater than or equal to that in the case group. 

The OR and its 95% CI were computed to analyze the risk of each rule. Here, we made an 
example to illustrate the process of risk analysis. As for a rule 𝑟 𝑓 min PCT 
0.16 & tracheotomy  in 𝑅 , which means the patient has a minimum PCT of less than 0.16 and 
a tracheotomy is either performed. We built a fourfold table to calculate the OR value as shown in 
Table 1. The case–control pair of the rule will be divided into four parts: patients that comply with 
𝑟 𝑓  and the outcome is LoICUS ≥ 15 (A); patients that do not comply with 𝑟 𝑓  and the outcome 
is LoICUS ≥ 15 (B); patients comply with 𝑟 𝑓  and the outcome is LoICUS < 15 (C); and patients 
do that not comply with 𝑟 𝑓  and the outcome is LoICUS < 15 (D). The calculation process of the 
95% CI of the OR is shown in Eq (9). 

Table 1. Fourfold table of 𝒓 𝒇 . 

 Case Control Total 

LoICUS  15 A = 119 B = 73 192 

LoICUS  15 C = 22 D = 68 90 

Total 141 141 282 

OR  
/

/
5.04;  95% CI  𝑒

.
2.87, 8.84    (9) 

We eliminated the rules with vague OR (the left and right CIs of OR strides across 1). The 
higher the OR corresponding to a rule, the higher the risk impact of the rule on the LoICUS. 

2.6. Experimental settings 

We separated the experiments into two groups (preoperative group and postoperative group) 
according to the operation time of the patients. We split the dataset into training and testing sets in 
the proportion of 9:1, and a 10-fold cross validation is performed on the training set in our 
experiment to find the optimized hyperparameters, and the optimized hyperparameters of models are 
shown in Table S3. After rule-embedding, in the process of DL model training, we split the 
rule-features in to training, validation, and testing set in the proportion of 8:1:1. The classification 
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result is measured by accuracy, precision, recall, f1-score, and AUC of the receiver operating 
characteristic (ROC) curve.  

There are two types of parameters in RTN, including the parameters of tree-based model and the 
hyper-parameters of TabNet. Table 2 presents the parameters applied to preoperative model and 
postoperative model.  

Specifically, as for tree-based model, the learning rate is tuned first to increase the convergence 
speed. 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 denotes the number of additive trees that are trained to generate the rules, 
𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ is the limitation of the depth of the tree model, 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑠𝑝𝑙𝑖𝑡 represents the 
minimum number of samples required to split 𝑁 , 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑙𝑒𝑎𝑓  means the minimum 
number of samples required to be at a 𝑁 , and 𝑚𝑎𝑥_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 is the number of features to consider 
when looking for the best split. 

As for the hyperparameters for TabNet, gamma is the coefficient for feature reusage in Mask 𝑖  
to increase the attention of features that the model has not been focused on in the next step. 𝑁  and 
𝑁  are the dimensions of the outputs of RT, and 𝑁 𝑁  is usually a good choice. 𝑛_𝑠𝑡𝑒𝑝𝑠 
means the number of steps in the architecture. TabNet was trained using gradient descent-based 
optimization, the optimizer is Adaptive Moment Estimation (Adam), and the learning rates are 0.02 
for the postoperative model and 0.001 for the preoperative model. All rule-features were mapped to a 
single-dimensional trainable scalar with a learnable embedding, the loss function of the classification 
is softmax cross entropy, and the training process will stop until convergence. All the 
hyperparameters of TabNet were optimized on the validation set. 

Table 2. Parameters of RTN in the experiments. 

 Parameters Preoperative model Postoperative model 

Tree-based model    

 learning rate 0.1 0.01 

 n_estimators 20 40 

 max_depth 2 2 

 min_samples_split 124 158 

 min_samples_leaf 9 57 

 max_features ‘sqrt’ ‘sqrt’ 

TabNet model    

 batch size 100 100 

 epochs 71 48 

 Gamma 1.8 1.4 

 N  56 40 

 N  56 40 

 n_steps 9 6 

We constructed some baseline models to prove the effectiveness of our model. In the rule 
generation process, we implemented two self-interpretable models, namely, LR and RF, which can 
generate some rules from the baseline model compared with GBDT. LR is widely used in many medical 
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research and is considered a baseline model for classification task [24,25]. Ensembling methods, such as 
RF and GBDT, are a good choice for tabular data in recent years. We applied some evaluation metrics, 
including the area under the receiver operating characteristic curve (AUC), accuracy, precision, recall, 
and F1 score to evaluate the performance of the rule generation model.  

RuleFit (GBDT based) was used as the baseline model compared with RTN in the fitting of the 
rule-based predictive model. RuleFit is a composite and self-interpretable model that can fit the rules 
generated by a tree-based model according to a linear model. It is a compound model that includes a 
rule generation model (GBDT) and a LR to screen the rules by global importance. The structure of 
RuleFit, including rule generation and rule fitting, has high similarity with our model. Therefore, we 
chose RuleFit as our main comparison model.  

We also performed supplementary regression experiments to predict LoICUS using some 
regression models. We implemented some traditional models, such as linear regression, poisson 
regression, and hurdle regression, and some ML-based models, such as random forest regressor 
(RFR), gradient boosting regressor (GBR), and RuleFit (GBR based), to predict the number of days. 
Fitting predictive models for a dichotomous endpoint is much easier then predicting for time to event 
outcomes. Thus, we set supplementary experiments to illustrate the difficulty of regression in our 
tasks and why we defined the LoICU prediction task as a classification problem. 

3. Results 

3.1. Statistical results 

The results of OR test to analyze the relation between death situation and the LoICUS (OR = 
0.78 [0.46, 1.32], p = 0.421) revealed no significant difference between the death situation and 
LoICUS of such patients. Sixty-one death samples were excluded by our criteria from the original 
data. We focused on these data and extracted 61 non-death samples from the collected data through 
down-sampling. Based on the 122 samples, we trained a traditional LR model. The input features 
were consistent with the feature selection results of this study. The outcome is whether the LoICUS 
is greater than 15, and the evaluation metrics were defined as the AUC, sensitivity, and specificity of 
the model. We only focused on the model performance of the 61 death samples but did not split the 
data into training and testing sets. The experiment results are shown in Table S5. We compared 
whether the “death situation” was added to the model as a feature. We found that the “death situation” 
did not increase the sensitivity of the model but decreased the performance of the model. Hence, we 
excluded the dead samples in our study. 

After data collection, 631 non-hospital dead patients (63.87% male) were enrolled into the study. 
The average age of the patients was 55.94 ± 15.15 years. The statistical information of the LoICUS is 
shown in Table 3. The positive examples are the patients with a LoICUS of more than 15 days after 
craniotomy (group one: 319 patients), and the negative examples are patients with a LoICUS of less 
than 15 days (group two: 312 patients). A total of 146 variables were extracted from the dataset. The 
variables were divided into the following categories: demographic information, previous medical 
history, brain injury inducements, infection sources, vital signs, Glasgow Coma Scale (GCS) score, 
hematoma properties, laboratory test, and therapeutic index. 
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The feature selection procedure revealed that 91 variables are statistically significant as shown 
in Table S1. The bold parts indicate the variables that are significantly different from the outcome. 
Six of them are preoperative variables (age, epilepsy, cerebral contusion and laceration, brain tumor, 
vascular diseases, and intracerebral hematoma), and 85 of them are postoperative variables. Patients 
in group one (58.14 ± 15.44) were older than those in group two (53.69 ± 14.53), and the two groups 
had a remarkable difference in age. The statistical results revealed that the LoICUS of men is longer 
than that of women. The statistically substantial variables are distributed in GCS scores, vital signs, 
and laboratory test indicators besides age. The detailed statistical results of the dataset are shown in 
Table S2. 

Table 3. Statistical information of LoICUS. 

Statistical information Days 

Mean of LoICUS 19.87 
Std of LoICUS 19.87 
Min of LoICUS 1.01 
Q1 of LoICUS 5.53 
Median of LoICUS 15.00 
Q3 of LoICUS 28.02 
Max of LoICUS 182.42 

Note: Std: Standard deviation; Min: Minimum; Q1: Lower quantile; Q3: Higher quantile; Max: Maximum 

3.2. Results of the predictive model 

3.2.1. Results of rule generation 

Table 4. Evaluation metrics of models. 

 PM Accuracy Precision Recall F1 AUC 

Preoper

ative 

      

 LR 0.59 (0.50, 0.73) 0.66 (0.44, 0.92) 0.50 (0.16, 0.90) 0.53 (0.24, 0.75) 0.61 (0.47, 0.77) 

 RF 0.58 (0.50, 0.69) 0.64 (0.43, 0.90) 0.51 (0.10, 0.88) 0.53 (0.17, 0.73) 0.60 (0.46, 0.74) 

 GBDT 0.56 (0.44, 0.69) 0.68 (0.39, 0.92) 0.38 (0.04, 0.83) 0.43 (0.07, 0.70) 0.60 (0.44, 0.73) 

Postope

rative 

      

 LR 0.78 (0.67, 0.88) 0.82 (0.68, 0.93) 0.77 (0.53, 0.90) 0.79 (0.66, 0.88) 0.85 (0.72, 0.95) 

 RF 0.80 (0.70, 0.89) 0.82 (0.70, 0.93) 0.79 (0.66, 0.93) 0.80 (0.70, 0.89) 0.88 (0.80, 0.95) 

 GBDT 0.81 (0.70, 0.88) 0.83 (0.70, 0.93) 0.79 (0.56, 0.93) 0.81 (0.68, 0.89) 0.91 (0.84, 0.97) 

The dataset was split into training and testing sets with a ratio of 9: 1 (training set: 567, testing 
set: 64). After the hyperparameters were tuned, the rules were generated based on GBDT. The results 
of GBDT compared with other baseline models are shown in Table 4. The optimized 
hyperparameters of the models are shown in Table S3. 
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For the preoperative model, we found that the overall effect of the prediction models is not good 
(the AUC of all models is lower than 0.70). Twenty estimators and two depths were set in GBDT, 
and we generated 38 rules according to the model. For the postoperative model, all the evaluation 
metrics of GBDT were higher than those of the other baseline models. We set 40 estimators and two 
depths in GBDT and generated 116 medical rules according to the model. 

3.2.2. Performance of the predictive model 

After rule embedding, we split the rule-feature into training, validation, and testing sets with a 
ratio of 8:1:1 (training set: 510, validation set: 57, testing set: 64). Figure 3 depicts the training 
process of RTN based on the constructed datasets. The horizontal axis is the number of epochs, and 
the vertical axis represents the AUCs of the training and validation sets. 

 

Figure 3. Training process of RTN. The blue curve stands for the training loss of RTN, 
the orange and green curves are the variation of the training and validation AUCs, 
respectively. 

Table 5. Ten times 10-fold cross validation results of different models. 

 PM Accuracy Precision Recall F1 AUC 

Preoper

ative 

      

 RuleFit 0.57 (0.56, 0.58) 0.57 (0.56, 0.59) 0.60 (0.59, 0.62) 0.58 (0.57, 0.60) 0.59 (0.58, 0.60) 

 RTN  0.65 (0.64, 0.66) 0.71 (0.70, 0.72) 0.56 (0.55, 0.58) 0.60 (0.59, 0.61) 0.71 (0.70, 0.73) 

Postope

rative 

      

 RuleFit 0.73 (0.72, 0.74) 0.73 (0.72, 0.74) 0.75 (0.74, 0.78) 0.73 (0.73, 0.74) 0.80 (0.79, 0.81) 

 RTN 0.79 (0.78, 0.80) 0.79 (0.78, 0.80) 0.80 (0.79, 0.81) 0.79 (0.78, 0.80) 0.90 (0.89, 0.91) 

Note: Bold font indicates the best value for each metric. 

We found that the preoperative model is difficult to fit and the loss is about 0.60 after 30 epochs. 
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The postoperative model can converge quickly after 60 epochs, and the final loss is close to zero. We 
can draw the conclusion that the performances of the preoperative and postoperative models on the 
validation set is poor according to the figure. The 10 times 10-fold cross validation results of the 
different models are shown in Table 5. We used the mean and 95% confidence interval of all 
indicators. The RTN performed better on the training set compared with RuleFit, and all the 
evaluation metrics exceeded the baseline model. 

Table 6 shows the performance on the test set of our model comparing to RuleFit (GBDT based). 
It is noticeable that the performance of postoperative models is much better than baseline model, and 
the five evaluating indicators of postoperative models have more superiority.  

For the preoperative models, the advantage of RTN is not obvious compared with the baseline 
model. Compared with baseline model, RTN had an increased in AUC (6%, 0.57) and precision (4%, 
0.61). RuleFit (GBDT-based model) had 0.56 accuracy, 0.68 recall, and 0.60 F1 score, which is 
higher than that of RTN. 

We can see the advantage of our postoperative model (RTN) compared with the baseline model. 
Compared with previous studies on self-interpretable models, we can find remarkable performance 
improvements in our model.  

The accuracy (0.76) and AUC (0.85) of the RTN exceeded the performance of the baseline 
model, and the precision (0.86) of the RTN was equal to that of the baseline model. Its recall and F1 
score are slightly lower than those in the baseline model. Compared with RuleFit, which is also a 
rule-based prediction model, our model had few limitations, such as the premise assumption of data 
distribution. Therefore, the RTN proposed in our study performed better and had better robustness 
and applicability. 

Table 6. Performance of RTN on the test set compared with the baseline model. 

 PM Accuracy Precision Recall F1 AUC 

preoper

ative 

      

 RuleFit 0.56 (0.47, 0.66) 0.57 (0.46, 0.71) 0.68 (0.14, 0.92) 0.60 (0.22, 0.73) 0.51 (0.38, 0.67) 

 RTN  0.54 (0.41, 0.66) 0.61 (0.35, 0.88) 0.43 (0.01, 0.90) 0.46 (0.16, 0.71) 0.57 (0.40, 0.71) 

postope

rative 

      

 RuleFit 0.73 (0.63, 0.81) 0.86 (0.73, 0.96) 0.70 (0.46, 0.85) 0.76 (0.61, 0.85) 0.83 (0.72, 0.92) 

 RTN 0.76 (0.64, 0.86) 0.86 (0.72, 0.95) 0.67 (0.40, 0.88) 0.74 (0.55, 0.87) 0.85 (0.75, 0.95) 

Note: Bold font indicates the best value for each metric. 

3.2.3. Results of supplementary regression experiments 

The results of regression models are shown in Table S4. The evaluation metrics are explained 
variance score, mean squared error, root mean squared error, mean absolute error, R2 score, and 
adjusted R2 score. Overall, according to the results and performance in supplementary experiments, 
we drew the conclusion that regression predictive models are harder to fit compared with 
classification models on preoperative and postoperative tasks. Besides, considering that the 
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follow-up tasks need the strong reliability of the prediction model, we believe that using a 
dichotomized endpoint rather than time to event data as the outcome of the study is a better choice. 
Therefore, we chose classification instead of regression methods to predict the LoICUS. 

3.3. Result of postoperative risk analysis 

Based on the outstanding performance of our postoperative model, we extracted and validated 
the medical rules generated by RTN. A total of 116 rules imported into the TabNet were extracted for 
subsequent verification. According to the global rule importance computed by RTN, we filtered out 
57 rules with global importance of zero, and 59 rules were left. We match the case–control pairs of 
each rule according to the case–control matching strategy. After the rules with vague OR were 
eliminated, 24 rules were left, and 13 of which are risk factors. We listed seven representative 
decision rules in Table 7. All rules are sorted in descending order by OR value. 

Table 7. Medical rules discovered by our framework. 

No. Medical decision rules OR 95% CI low 95% CI high I 

1 
max ALP   160.0 & min RBC 

 2.52 
5.12 1.59 16.42 0.0330 

2 min WBC  5.33 & first Ca  2.25 4.29 2.05 8.96 0.0034 

3 
min PCT  0.30 & max PCT  

0.31 
4.17 2.39 7.28 0.0069 

4 
min PT  12.65 & max PT  

14.15 
3.95 1.82 8.57 0.0594 

5 
min urine volume  32.5 & min 

DBIL  3.58 
3.82 2.25 6.48 0.0741 

6 
min PCT  0.30 & max PCT  

0.44 
3.54 2.12 5.91 0.0002 

7 max GLO  36.35 3.29 1.31 8.27 0.0001 

Note: OR: odds ratio; 95% CI low: the lower limit of confidence interval of OR; 95% CI high: the higher limit of 

confidence interval of OR; I: global importance of the rule computed by RTN; ALP: alkaline phosphatase; RBC: 

red blood cells; WBC: white blood cells; Ca: calcium; PCT: procalcitonin; PT: prothrombin time; GLO: globulin. 

4. Discussion 

4.1. Discovery of medical rules 

Based on the experiments results, we can draw the conclusion that in the LoICUS prediction 
task of patients undergoing craniotomy, postoperative variables, such as the vital signs and 
laboratory information of patients, may have a greater impact on the outcome compared with 
preoperative variables. 

From the experiment result of medical rules discovery and validation in Table 6, we found 



853 

Mathematical Biosciences and Engineering  Volume 20, Issue 1, 837–858. 

that the global importance of the rules is not completely positively correlated with the results of 
risk analysis. Some interesting findings and inspirations can be analyzed from the results. 

No. 1 is the rule with the highest OR value (5.12) and high global feature importance 
(0.0330). No. 1 means that within 24 hours after the patient enters the ICU, we need pay more 
attention to patients with an ALP higher than 160 U/L and an RBC below 2.52 1012/L, because 
they might have a longer LoICUS. Research found that the gradual elevation in ALP might 
prolong hospitalization [26]. A study found that the postoperative length of hospitalization increases 
by 0.837% (95% CI, 0.249–1.425%) per RBC unit transfused [27]. Therefore, the LoICUS might 
increase when RBC is too low to require red blood cell transfusion.  

No. 2 implies that when the patient's serum ionized calcium is lower than 2.25 mmol/L when 
he first entered the ICU, we also need to pay attention to whether the WBC of patient will drop 
below 5.33 109/L, which might increase the LoICUS for patients undergoing craniotomy. Satoshi et 
al. indicated that for patients after cardiopulmonary bypass in the ICU, ionized calcium can make a 
remarkable difference in LoICUS [28]. To the best of our knowledge, no study has reported on the 
effect of ionized calcium on the LoICUS of patients undergoing craniotomy when they first entered 
the ICU. A study found that for patients undergoing craniotomy, infection can be predicted within 4 
days according to standard blood count data, such as WBC [29]. However, within 24 hours after the 
patient undergoing craniotomy enters the ICU, the effect of decreased WBC on LoICUS has not been 
studied before, and its rule needs to be paid attention. 

No. 3 and No. 6 focuses on the minimum and maximum values of PCT for patients undergoing 
craniotomy, meaning that too low or too high PCT within 24 hours after the patient undergoing 
craniotomy enters the ICU will have a certain impact on the LoICUS. A study found that PCT is a 
valuable marker for patients undergoing craniotomy [30]. Therefore, high and low PCT values 
should be concerned for patients undergoing craniotomy, especially the LoICUS. 

No. 4 indicates that short prothrombin time may affect the LoICUS after patients enter the ICU. 
It has the second highest global importance with an OR of 3.95. Traumatic injury is associated with 
coagulopathy [31]; thus, we consider that it might be a risk factor of patients undergoing craniotomy 
that has not been studied before. 

No. 5 possesses the highest global importance (0.0741) among the rules. It means that the 
minimum urine volume of the patient is lower than 32.5 and the minimum direct bilirubin (DBiL) 
is lower than 3.58 μmol/L. The urine outcome is routinely measured in the ICU and may be 
associated with hospital mortality [32]. Hyperbilirubinemia is a common postoperative 
complication, and DBiL is related to some pathophysiologies [33]. However, research on declined 
DBiL, especially for patients undergoing craniotomy is few. We believe that for patients undergoing 
craniotomy who entered the ICU within 24 hours, the cross influence of declined DBiL and urine 
volume on LoICUS might need to be paid more attention. 

No. 7 means that when the serum globulin (GLO) is higher than 36.35 g/L, the rule is a risk 
factor of LoICUS for patients undergoing craniotomy. The increase in serum GLO may be the 
enhancement of immune response caused by infection. We found that each infection after craniotomy 
is statistically substantial and might affect the LoICUS. Therefore, we should pay attention to 
whether patients have elevated serum GLO within 24 hours after entering the ICU. 
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4.2. Limitations and future works 

Our study still has some limitations and improvements despite the compelling results. First, in 
the study of e-healthcare systems using health electronics records, privacy is an important factor that 
needs to be considered, and we need to integrate privacy-preserving methods as a future work for the 
proposed method [34,35]. Second, the lack of preoperative variables in our study leads to the poor 
effect of our preoperative model. However, considering the allocation of medical resources, 
discovering the preoperative rules of patients undergoing craniotomy may be more helpful to reduce 
the medical burden in the real world. Third, our model achieved a better performance than the 
baseline model, and it has a strong interpretability, especially the interpretation of feature interaction. 
However, its performance is slightly lower compared with the gradient boosting-based method, such 
as GBDT. Our research shed light on the results of [36], which considered that tree-based models 
still outperform DL on tabular data, especially on medium-sized data (< 10 K samples). They also 
found that NNs are not robust to uninformative features, which we could not remove, because the 
feature selection method is combined with the statistical results and recommendations of domain 
experts. In our study, we considered GBDT is a basic, typical, and common method in gradient 
boosting, and we might attempt to apply other ML algorithms. such as faster implementation 
methods, including LightGBM, instead of GBDT in rule generation procedure in the future. Besides, 
other ML algorithms, except for tree-based method (such as k-NN, SVM, etc.) are also used in 
medical research [37,38], and the rule generation framework based on these methods are expected to 
be studied. We considered that our approaches disturb the spatial continuity of the original structure 
of the trees to some extent in the process of tree decomposing and rule embedding. In the future work, 
we can handle this problem by regarding trees as directed acyclic graphs, and the representation of rules 
is the combination of vertices and edges of graphs, such as the Bayesian network. Moreover, missing data 
is an inevitable phenomenon in real-world study, and many of the ML packages we applied in our 
research do not accept missing data. According to the previous research, missing values have to be 
imputed using the population mean. However, mean imputation is more likely to introduce bias in the 
model; thus, we might build a model using an algorithm that is less affected by missing values in the 
future. Finally, verifying a piece of knowledge in medical research is difficult, especially on small-sample 
datasets. In our study, some possible high-risk rules may be filtered out because the experimental samples 
are too few. 

5. Conclusions 

Aiming at discovering some medical decision rules affecting the LoICUS of patients undergoing 
craniotomy, this paper proposes an interpretable framework including a PM (RTN) and a rule 
validation process based on real-world EMR data. The medical decision rules were generated and 
screened preliminary by RTN, and the validation procedure was implemented to verify and make 
further selection of the rules. The experiment results indicate that postoperative features have a 
greater impact on the LoICUS of patients undergoing craniotomy compared with preoperative 
features. The results also proved that RTN can achieve good performance and outperform other 
postoperative baseline models. The medical decision rules discovered by our framework are valuable 
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in providing some clinical decision supports in the ICU to shorten the LoICUS and reduce the 
medical expenses of patients undergoing craniotomy. 
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