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Abstract: The application of a high-speed parallel manipulator necessitates the adoption of a
lightweight design to reduce dead weight. However, this increases the elastic deformation of certain
components, affecting the dynamic performance of the system. This study examined a 2-DOF planar
flexible parallel manipulator. A dynamic model of the parallel manipulator composed of fully flexible
links was established using a floating reference coordinate system and a combination of the finite
element and augmented Lagrange multiplier methods. A dynamic analysis of the simplified model
under three driving torque modes showed that the axial deformation was less than the transverse
deformation by three orders of magnitude. Further, the kinematic and dynamic performance of the
redundant drive was significantly better than that of the non-redundant drive, and the vibration was
well suppressed in the redundant drive mode. In addition, the comprehensive performance of driving
Mode 2 was better than that of the other two modes. Finally, the validity of the dynamic model was
verified by modeling via Adams. The modular modeling method is conducive to the extension to other
models and programming. Furthermore, the dynamic model of the established fully flexible link
system can aid in optimizing the lightweight design and dynamic performance of the parallel
manipulator.

Keywords: parallel manipulator; redundant actuation; finite element method; flexible body; dynamic
modeling
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1. Introduction

Compared with serial manipulators, parallel manipulators offer the benefits of large stiffness,
excellent dynamic performance, and small cumulative error [1]. With the rapid technological
development in recent years, they are being widely used in motion simulation, aeronautical
manufacturing, high-speed machining, medicine, and other fields [2—-6]. However, it suffers from
certain disadvantages such as a small workspace with many singularities and the difficulty in solving
dynamics problems.

The singularity of the parallel manipulator can result in motion instability and the decline of
stiffness and accuracy. Therefore, the design and application of parallel manipulators should avoid
singularities as far as possible, particularly the second type. Numerous studies conducted on this
subject have proposed certain methods to avoid singularities [7—10]. Specifically, the drive redundancy
method [4,11] can effectively avoid singularities without increasing the degree of freedom (DOF) of
the system.

To adapt to the working environment of high-speed motion in certain applications, the parallel
manipulator frequently adopts a lightweight design. However, certain components may experience
flexible deformation with the accumulation of the high-speed motion of the manipulator movement
with time. Consequently, the dynamic performance and motion accuracy of the entire system is
affected. In recent years, many studies have focused on the dynamic modeling of flexible parallel
manipulators. Liang et al. studied a 2-DOF multi-drive parallel manipulator, established a rigid-flexible
coupling dynamic model, and conducted control research [12,13]. Chen et al. studied a 3-RRR parallel
manipulator, established a rigid-flexible coupling dynamic model, and conducted dynamic research
[14]. Rosyid et al. studied a 3-PRR asymmetric planar parallel manipulator and established a rigid-
flexible coupling dynamic model [15]. Sheng et al. established a rigid-flexible coupling dynamic
model of a parallel manipulator with flexible intermediate links and verified it via modal analysis [16].

In addition, there are many scholars who have carried out many meaningful studies on the control
strategy of flexible parallel robots [17-20], which are of great significance for improving the accuracy
of trajectory tracking and positioning of flexible parallel robots.

Owing to the modeling being based on a flexible multi-body system, the final result is generally
a complex time-variant nonlinear partial differential equation. Thus, obtaining the analytical solution
for complex flexible systems is challenging. Generally, the flexible body is discretized to reduce the
complexity of the research, primarily through the following methods: 1) finite element method (FEM)
[21,22], 2) assumed mode method (AMM) [23,24], 3) finite segment method (FSM) [25], and 4)
lumped parameter method [26]; FEM and AMM have been used extensively. A study compared these
methods, and the results were found to be similar [27]. However, FEM can be applied to the flexible
members with complex shapes. More accurate system dynamics model can be obtained when the
elements are reasonably divided; therefore, the method is suitable for the dynamic analysis of the
system. In contrast, AMM is more suitable for the study of active control.

Shang et al. studied a 3-RRR parallel manipulator [28], established the kinematics and rigid body
dynamics models, and studied the control strategy. However, this study did not consider the influence
of elastic deformation of components on the dynamic performance of the entire system when the
manipulator was in high-speed motion.

Compared with the previous work, this paper adopts the floating reference coordinate system and
finite element method, combined with the augmented Lagrange multiplier method, to establish a
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dynamic model of the parallel robot composed of fully flexible Levers, and analyzes the dynamic
performance of the simplified model in three driving modes. The modeling adopts a modular approach,
which is conducive to generalizing to other models and is more conducive to programming, and the
dynamic model of the fully flexible Lever system established is conducive to the optimization between
the lightweight design and dynamic performance of the parallel robot, and also helps the subsequent
control strategy research.

This study examined a 3-RRR flexible parallel manipulator. To facilitate modeling, a floating
reference coordinate system was used to describe the deformed body. The methodology of the study
conducted is as follows: In Section 2, The 3-RRR parallel mechanism was described. In Section 3,
FEM was used to discretize a single flexible body and establish the dynamic equation of the module.
The dynamic equation of a single flexible body was obtained by assembling the module. Further, the
flexible bodies were assembled to obtain the dynamic equation of the open chain system. Subsequently,
the constraint equation was established and combined with the dynamics equation of the open chain
system to form a complete system dynamics equation. In Section 4, the driving torques in three
different modes obtained from the inverse dynamics of the rigid body were used as feed-forward input,
and the dynamic response was obtained using the ode23tb solver. In Section 5, the numerical
simulation results were compared with Adams software simulation results to verify the correctness of
the model. In Section 6, finally, certain conclusions were drawn from the results obtained.

2. Model overview

S 4, (—250,-144)

@ Active joints ©Q Passive joint © End effector

Figure 1. Flexible deformation of 3-RRR parallel manipulator in motion.

Figure 1 shows the structure of the 3-RRR parallel manipulator. Specifically, 4;:is the position of
the active joint of the i branch chain, whose coordinates are marked as (xA,.,yA,.) and angle as &;;
Bi is the position of slave joint of the i” branch chain, whose coordinates are marked as(x,,, y,) and
angle as f; the position of the end-effector is marked as P and its coordinates as (x,,y,); and the
coordinates of the active joint are A4,(0,289), 4,(250,-144) and 4,(-250,-144). A redundant
parallel manipulator is formed when A1, 42 and 43 function as the driving joint, and a non-redundant

parallel manipulator formed when 41 and 42 function as the driving joint.
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3. Dynamics modeling of rigid-flexible coupling system

To improve their dynamic performance, parallel manipulators often adopt a lightweight design,
which results in the deformation of certain components when the manipulator works at high speed.
Consequently, the dynamic performance of the manipulator is affected. Therefore, certain components
of the manipulator must be flexible and a rigid-flexible coupling dynamic model needs to be
established.

RN
@ Active joints & Cut off the hinge

Figure 2. Schematic of 3-RRR parallel manipulator hinge uncoupling.

To facilitate the modeling, first, the slave joint and end effector were disconnected, as shown in
Figure 2, to form an independent flexible body. Subsequently, the dynamics equation of each
independent flexible body was derived. Finally, various parts were assembled to form a complete
system dynamics equation.

3.1. Dynamics equation of single flexible body j

For the convenience of description, all levers were numbered uniformly as j(j=1,2,---,6). As

the section size of the lever was much smaller than the length of the lever, the Euler—Bernoulli beam
theory was applied.

This study employed the floating reference coordinate system to describe the deformed body; that
is, the motion of the flexible body was divided into two parts: elastic deformation in the body-
connected coordinate system and large-scale motion of the entire body-connected coordinate system
relative to the inertial reference system, as shown in Figure 3. In this figure, O—x—y is the global

coordinate system of the system where the rack is located, O, —x'-y' is the flexible body-connected
coordinate system, /is any point along the axis of the body-connected coordinate system, r, is the

radius vector of the origin of the body-connected coordinate system in the global coordinate system,
ryp =[x 0]T is the radius vector in the body-connected coordinate system O, —x'-y' of any point

P on the flexible body j before deformation, &, = [MA,- v, ]T expresses the deformation displacement
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vector from P or P’in the body-connected coordinate system, and r, is the position vector of the
position P’of the deformed flexible body in the global coordinate system.
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Figure 3. Deformation of any flexible body j in motion.

According to the closed vector relationship shown in Figure 3, the following equation is obtained:
1 =1y + R(@)(ry p +6,) (D

cosp, —sing,

where R(goj):{ } is the rotation transformation matrix of the body-connected

sing;  cosQ,
coordinate system relative to the global coordinate system, and ¢, is the rotational angular

displacement of the flexible body ;.
3.1.1.  Discretization of flexible body j
FEM was used to discretize the flexible body ;. For this purpose, the beam element was selected,

each containing the left and right nodes and each node containing three generalized coordinates [29],
as shown in Figure 4.
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Figure 4. Discretization of finite element of arbitrary flexible body j and one element i.

Here, O]—-x'—y', is the coordinate system of the module i, w,, wj, and wj represent the

axial elastic displacement, transverse elastic displacement, and elastic rotational angle of the node i,
respectively. The generalized coordinate array of the flexible element i is expressed as:

J— J J
w)=[w/, W,

1l
5

. ‘ ST
j . j j
i Wi Waun Wi ] . ()

The deformation displacement vector of any point P’ on the element i in the flexible body j in the
element coordinate system is expressed as:

aj _ |:ulj ('x 'i > t)

T (a0

j|=Sl.j(x'l.)wl.j, 3)

where S/(x')) is the type function matrix of the element 7, given by:

S/ (x") = Si{l(x'i) _ Ni{l 0 0 N'{rl’l 0 0
J(x)= AN NI J il “)
i2 (x z') 0 Ni,2 Ni,3 0 Ni+1,2 Ni+l,3
2 3 2 3
where N/ =1-2i N,fz:l—3(x—_"j +2 x—} N/ =1 x—f—z(x—fj +[x—.f] , NI, =21,
T 7 70 I TR W7 B 7 S

2 3 3 2
N/, :3(%j —2[%} , and N/ =1 [%} —[%} . Specifically, I/ is the length of the

element i in the flexible body j without deformation.
Overall deformation displacement array of flexible body j is expressed as:

i

W/ = [W’ w Wl W/ w w } 5
1,1 2.1 3,1 1n;+1 2,m;+1 3,n;+1 3on, 41" &)

After discretizing the flexible body j via FEM, the displacement vector of any point P’on its
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upper element i in the global coordinate system after deformation is

r)=r + R/ (9,)(rg, +S/(x',)B/ D'w’), (6)
W/
i T
where ré',i :{ Il +x, 0} (Il =0) is the coordinate array of any point P’ on the element i of the
k=0

flexible body j in the body-connected coordinate system before the deformation, and B/ is the

Boolean indicator matrix of the element 7 in the flexible body ;.

[0, 0,y - I, 0,, - 0,, O,
BiJ=|:33 3x3 3x3 3x3 3x3 33:| ‘ (7)
6x3(n;+1)

03><3 03><3 O3><3 I3><3 03><3 03><3

For the cantilever beam model, the axial and transverse elastic displacements and elastic rotation at
the first node are zero according to its boundary conditions. Then, the independent overall deformation
displacement array of the flexible body j is expressed as:

J = J J J J J J
w _[W1,2 Wys Wi Winet Waun W3,n+l]~ (8)

Thus, the corresponding global generalized coordinate transformation matrix can be written as:

j 03x3nj
D=1, . (9)

3nj ><3nj
3(nj+1p3n;

The generalized coordinate array j of an arbitrary flexible body is defined as:
~|T
qj:[rgj ?; wa] . (10)
To solve the first derivative of time for closed vector Eq (6), the following is considered:

o R’ (9;) . j i (v BT v/ J (' YR TV vip/
ro=r, + p goj(ro,l. +S8/(x',)B/D’w )+R((oj)Sl. (x'.)B/D’'w’ . (11)
J o, .

J

To facilitate the subsequent calculation, it is transformed into the form of matrix

F=Hl§’ (12)
5 OR'(p;) . . . N . o
H/=\I,, a—jcﬂj(r(‘)’ﬁs,’(x'i )B/D’w’)  R(p;)S/(x',)B/D'w’ (13)
?; 2%(3+3n;)
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3.1.2. Dynamics modeling of arbitrary element i

| R AT TT Y AL o — 0/
01i| ————— |02i

Figure 5. Beam element i.

A beam element i as shown in Figure 5. According to the results of kinematic analysis, the kinetic
energy of the element i can be expressed as:

1
2q,M’q, (14)

Pi

The mass matrix corresponding to the volume M/ of the middle continuum of the element ¥/, with

the material density of p, is a symmetric positive definite matrix as follows:

Mi/ :.[Vj PH',/TH',/ dVl/

(15)
Mljn Mi{rgo Ml/rf

M; =\ M; l]t/)r M 1{1/760 M z{cof . (16)
Ml] Sr Ml{f [ Mij,.ff i

To facilitate the subsequent calculation, several commonly used integrals are expressed as follows:

J = J J
Gi,l —IV_/ p”o,thi )

G/, = IVI‘,- pS{ (x')B/D'dV;/

~ [0 1
k= :

potential energy analysis of arbitrary element 7 is determined as follows: Since the 3-RRR workspace
isonthe O—-x-y plane, the influence of gravity can be ignored. Here, only the bending strain energy
and tensile and compressible strain energies of the element are considered, while the shear strain energy
and buckling strain energy are ignored.

The strain energy of arbitrary element i in the flexible body j is as follows:

0% f(xl,t) 6uf(xl,t)

— [ B v [ Eac Fax-alKig, ()

where E is the elastic modulus of the material, / is the cross-sectional moment of inertia of the element,
A is the cross-sectional area of the beam element, and K is the stiffness matrix of the beam element,
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02><2 02><1 2><3nj
Kl-j = 01><2 O 01><3n/- > (18)
J
03n/><2 3n;x1 Ki,./7

where

i 2¢j ] T ¥ al '
A et B~ o

1

]Bl.j D/dx', +

. T .
J‘llj EAD'T BT [ oG7, (x', )J {anﬁ (x';)
0 1

Bl.ijdx'l.
Oox'; ox',

Dynamics equation of arbitrary element i is determined as follows: Considering the kinetic and
potential energies of the element into the Lagrange equation, the following is obtained:

j j
408, %l _p o)
dt oq;,  0q; "

J

where F/,is the generalized external force array of elements, and ¢/ is the Lagrange function.

R P I
¢ =T/ -V =54, M4, -4, K4,

Further, on rearranging the elements in Eq (19):

1. .
oL/ ~ 6(5‘1,TM,/‘11)

: 1 . OM/ . .
~K/q,=—(I®q,) ——4,=Cq, (20)
oq, oq, 2 oq
d ol d L M’
a4, )= (Miq;)=— "4, +M}q,, 21)
where
M; . oM/ ... oM/ . . .
dt J aq;l" J ] aq;f J J J
Through further rearrangement of Eq (19), the following is obtained:
M/, +Clq;+K/q,=F], (23)
where
. . . oM/ . 1 . \r oM/
C'=C,-C,L=—=—¢gI)-—I®q,) ——
i il i2 a Z‘ (qj ) 2( qj) aql ’ (24)
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where symbol ® indicates the Kronecker product, and I,.; indicates the unit diagonal matrix.

J J J
Ci,rr Ci,r(p Ci,rf
J — J J J
Ci - Ci,(pr Ciw Ci,(/?f
J J J '
Ci,fr Ci,f(ﬂ Ci,ﬁ’

Thus far, the mass, stiffness, and centrifugal force/Coriolis force matrices of the dynamics Eq (23)
of any element i on the flexible body j have been obtained, and the dynamics equation modeling of the
module i has been completed.

3.1.3. Dynamics equation of arbitrary flexible body j

As the dynamics Eq (23) of the element i is established in the generalized coordinate system of
the flexible body j, the dynamics equation of the flexible body j can be obtained provided the dynamics
equations of all the elements i in the flexible body j are accumulated.

MG, +C'q,+K'q,=F’, (25)

where
M,=>M/ C,=>C K=K F=)F
’ . ’ i=l ’
Here, n;is the number of discretized elements in the flexible body ;. To facilitate discussion, the

discretization number of all flexible bodies was considered same in the subsequent sections; that is
n,=n(j=1,--,6)
J .

3.2. Modeling of system dynamics equation
3.2.1. System dynamics equation without constraints

First, the system dynamics equation without constraints is established. The mechanism is
composed of six flexible bodies. The generalized coordinate array of the system is written as

1T T

q(s):l”oT1 o w o Fo, P wéTJ- (26)

By assembling the six flexible bodies, the system dynamics equations without constraints can be
established as:

MOGO +COGY + KO g = F© 27)
where

M® =diagM, M, --- M,) CY =diag(C, C, --- C,)

b
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K(“')zdiag(Kl K, - K, Fe(s):diag(F:1 F;z FeT6)T

3.2.2. Constraint equation of the system

To establish a complete system dynamics equation, certain constraints must be imposed on the
joints and disconnected joints of the end effector based on the system dynamics equation without
constraints. The constraints include the joint position and link constraints, totaling 18 constraint
equations. The specific equations are as follows:

Position coordinate constraint equation:

) A X4
Joint A1 ¥\, =r, —| " |=0,,, (28)
AI
) A Xy
JomtA> ¥,=r, —| 7 |=0,,, (29)
P Vs
) A Xy
Joint 43 Y.=r, —| 7 |=0,,, (30)
P Va4
. A X, L +wm
JomtBr ¥,=r, —-| " |-R(p) i | = 00s (31)
: yAl Wl,y'
_ A X, I +w
Joint B2 ¥, =ry, —| 7 |~ R(py) od |7 0 (32)
yA2 W3,y'
. A Xy L+ Wse’f'
Joint B3 ¥ =Fy, — |- R(ps) od | = 00> (33)
: 4 ws"

Link constraint equation:

, [ x, I +wend L+we | [x,
Branch chain1 ¥, "+ R(p) wa | T R(@,) I =0,,, (34)
w W

Ly'

>

) Al Xy L+ wie L+ wi Xp
Branch chain2 ¥, |+ Ry L |+ R(p,) od |~ =0,,, (35)
w w,

3. 4,y

. AL Xy L+ ws L+we | [ %
Branch chain 3 ¥, T+ R(ps) ot | T R(P) T =0y, (36)
w w

5.y 6.y’

where ¢ p= [xP Vp ]T is the coordinates of the end effector.

The constraint equation of the system is written as:

q’(q(s):t) =0, (37)
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where ¥(q",1)= [t//lT W, - W()T]r e R"™.
To facilitate the operation, the generalized variable array (26) is reorganized into the following form

T
T T
qm:[”q B g g T w} | (38)
9 w

1y (18n+18)x1

The mapping between ¢‘”and g can be expressed as:

¢ =" (39)

where ¢ is the adjustment matrix between ¢’ and q*.

T
¢=ler oo oad ol (40)
0rriy  Tno Orisisna)
where ;; =l O I, 0,60 ) (j=1--,6)
0n><(nj—n+18) Inxn 0n><n(6—j)

Solving the first derivative of time for Eq (37), the following is obtained:
Jq(q(s)at)q(s)+y’t =0y, (41)

J (q9.1) = (g0
A dgWT  is the system constraint Jacobian matrix. As the constraint equation is

dy(q"™,1)

T =0y, -

where

time independent, therefore w, = Thus, it can be concluded that

J, (q(s)at)q(S) =0, - (42)

According to Eq (26), the first derivative of the generalized coordinates of the system can be expressed
as:

g0 =il ¢ W e i g W] (43)
The second derivative of the generalized coordinates of the system can be expressed as:
§O=lir @ W o g W] (44)
Subsequently, while determining the second derivative of time for Eq (37), the following equation is

obtained:
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(s (s)
J,(4".0§ =1, (45)
where,
o (ow(g™,0) .. ). o (owg,0)... O w(g®,t
- !//(qr(x)T ) g g —2< !//(qr(x)T ) i — !/f(q2 ) (46)
g\ oq ol og o

3.2.3. Complete system dynamics equation

By combining the open-chain system Eq (27) with the constraint Eq (37) and introducing
Lagrange multipliers, a complete system dynamics equation can be obtained as follows:

(s) x(s) (s) 5 (s) (s) () T (s) — F®)
{M g7V +CVgV +KVq" +J (9, 0)A=F, , @7

w(q®,0) =0,
where A e R'is the Lagrange multiplier array.

F(s) _ |:01><2 Tl 01><3n1 0l><(3n2+3) 01><2 2-3 01><3n3 01><(3n4+3)
- %f—/

e — —_ | —
Flexible body 1 Flexible body 2 Flexible body 3 Flexible body 4
T (48)
0., 7, 01><3n5 01><(3/16+3) jl
Ef—/
Flexible body 5 Flexible body 6
The generalized independent coordinates of the system can be marked as:
1T et T
x w oo w

q= [Lﬁ %,_} . (49)

4, 1, (18n+2)x1

To ease the calculation, the constraint Eq (37) is expressed as
A
l/’l.”l//6:llla(qr’q(pﬂqw):07 (50)
A

W Wo=v,(45.9,.9,)=0. (51)

By solving the first derivative with respect to time at both ends of Eq (50), the following equation is
obtained:

. Aoy, . Ow,. Oy, .
Y, =—=4+t=+49,+=+49.=0, (52)
oq; " oq, " 0q,

where oy / 6qu is the 12 order reversible square matrix. By rearranging Eq (52), the following

equation is obtained:
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. oy, ., 0 oy, .

b = S G Weg (53)
Further, by solving the first derivative with respect to time at both ends of Eq (51), the following
equation is obtained:

. Aoy, . Oy, . .
= + —Z§,=0, 54
Wb aq;" q(p aquv qw qP ( )

whereZ=[I, I, L], I, is the identity matrix, and Oy, / dq, is a 6" order reversible square

matrix. Eq (54) can be rearranged as:

-1 -1 )
i=|| 2| z |2 al;[‘?”] (55)
g, 4, ) o4, 4.

For simplification, it is expressed as follows:

T I (56)
o w

r [ w

Substituting Eq (55) into Eq (53) and canceling ¢,,,

q, =[, %]h }d{‘?”} (57)

q q,
where,
®=-(J,)"1,(,) 2. (58)
¢2 = (J(l” )_1 Jtl(/’ (Jb(p )71 wa - (Jar )_1 Jaw > (59)
. q q
q,=I, r{}r{} (60)
q, q,
further,
r=.,)'z, (61)
r,=-{s,,)'s,. (62)
q,=U {ﬂ : (63)
qM’

where, U = [018n><2 Il8n><18n] .
By combining Egs. (58), (61) and (64) with the generalized coordinate variable array (38), the
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following is obtained:

q, .
i =4, :@{‘?P}:@q, (64)
q.w "
where,
D). 15n42) 65
0= F6><(18n+2) ’ ( )
U18n><(18n+2)

This is the first-order mapping matrix between the generalized independent coordinate array and
generalized coordinate variable array.
Further, solving the first-order derivative of time for Eq (65), the following equation is obtained:

79 =04+0j, (66)

where,

@
o=\T| (67)
U

b=|d, @], (68)
r=r, r,], (69)
U= 018n><(18n+2) . (70)

The mapping relationship between the independent generalized coordinate variable array (49) and
generalized coordinate variable array (38) is

q(x) — @'q , (71)
where,
@' _ |: 018><2 018><18n :| . (72)
018n><2 118n><18n

To facilitate the calculation, the following settings are made
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0 o'y, i oy, Py, |
ar a(qu)z rl a(qrz)z r2 a(quz)z ri24»
: O y, . Dy, . Oy, .
=[—54 T )
" a(%51)2 o a(%z)z ” a(%)z o
. o'y o'y R 4
Jw :[ : qw : q.w . q.w n]’ (73)
’ 6(qw1)2 1 a(qu)z ’ a(qwl&'l)2 "
PO AC: S e AU
“ a(%l)z o a(%z)z ” a(%s)z e
PR AP e AU AP
aw 6(qu)2 wl a(qwz)z w2 a(qwmn)z wl8n 1

Thus far, the mapping relationship between the generalized coordinate variable array and system
independent generalized coordinate array (including the first-order form and second-order form) is
established.

¢ =G = 0'q
q" =44 =04 : (74)

§© =" = {04+

Substituting Eq (75) into constraint Eq (43) and combining the relationship between ¢ and

g, the following relation is obtained:
J,(q".10§=0. B

As ¢ is a generalized independent coordinate array of the system, the following relationship is
always true for any ¢ in the system workspace:

J, ¢V, 00 =0 < &0)'J, q“,0)=0. (76)

To eliminate the generalized constraining force J; (9,04 that is difficult to obtain in the

closed-chain system equation, the two ends of the closed-chain system dynamics Eq (48) are multiplied
by (é0)",and (E@)' J; (¢¥,H)A is canceled. Thus, the following equation is obtained:

€O MYV +(L0)' CV¢"™ +({0) Kq™ = ({O) F". (77)

The mapping relationship (75) is plugged into Eq (78) and rearranged to obtain the complete
dynamics equation of the system represented by the generalized independent coordinates of the system,

Mg+Cqg+Kq=F, (78)
where,

M =({0)"M"“¢0,

C=(¢0) MO +((O) C0,
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K=(0) k"o,
F=({0)'F.

This completes the dynamics modeling.
4. Numerical simulation and analysis

To establish a generic dynamic model and facilitate the rigid-flexible coupling dynamic analysis,
1-6 levers are all considered flexible. The study found that the elastic deformation of the driving lever
is more evident than that of the follower lever. Thus, to reduce the difficulty of numerical solution,
only 1, 3 and 5 levers were considered flexible, and each lever was divided into three sections. Whereas,
2, 4 and 6 levers were regarded as rigid bodies. When the manipulator moves at high speed, its motion
essentially includes two parts: large-scale rigid and small-scale flexible motions, which affect each
other. The ode23tb solver was used to solve the system dynamics Eq (79) established in the previous
section.

In this simulation, the planning path was that the center point P of the terminal console moved
from the point (0,0) to the point (—14.42 mm, 36.15 mm) with a spiral trajectory within 0—0.5 s. The
trajectory, velocity, and acceleration of point P are shown in Figures 6 and 7. The eccentric spiral was
selected owing to the increasing speed and acceleration of the spiral trajectory, which is convenient for
dynamic analysis. In addition, the influence of the asymmetric trajectory of eccentric spiral on the
system was studied.

The parameters of a group of 3-RRR parallel manipulators are listed in Table 1. It was assumed
that all the levers and terminal consoles were composed of aluminum with uniform texture, and all
joints were light ideal bearings (i.e., massless, frictionless, clearanceless, etc.).

30t

20+

Y direction [mm]
o

-60 -40 -20 0
X direction [mm]

Figure 6. Trajectory of Point P.

Mathematical Biosciences and Engineering Volume 20, Issue 1, 807-836.



824

x10*
1500 : \
- --Velocity of x direction KA 4l
1000 H— Velocity of y direction ! 1 o
£ 500 . E 2
=) =
z 0 1 g o
§3] i~
k= ] 3ot
3 500 5
-1000 1 < -4 1- - - Acceleration of x direction
— Acceleration of y direction
I . . . Y 6k N N I
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4
Time [s] Time [s]
(a) (b)
Figure 7. (a) P velocity of end-effector; (b) P acceleration of end-effector.
Table 1. Parameters of 3-RRR parallel manipulator (unit: mm).
) b Section A(mm?)  Lever thickness h p(g/mm?)
244 244 40 5 0.0027
8 . I
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Figure 8. Three modes of feed-forward input torque of inverse rigid body dynamics: (a)
non-redundant drive mode; (b) minimum Euclidean norm mode of internal force of
redundant driving joint; (¢) minimum Euclidean norm mode of active joint power.
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When the end-effector moves in a planned trajectory, the driving torque has a unique solution for
the non-redundant drive mode with two driving joints. However, for redundant drive mode with three
driving joints, the distribution of driving torque is multi-solution. This study selected three types of
driving torque distribution modes: (1) under non-redundant drive (A1, A2 are driving joints); (2) under
redundant drive (A1, A2 and A3 are driving joints), the distribution of driving torque with minimum
Euclidean norm of internal force of slave joints; (3) under redundant drive (A1, A2, A3 are driving
joints), the distribution of driving torque with minimum European norm of driving joint power. The
driving torque calculated via the inverse rigid body dynamic model (as shown in Figure 8) was used
as the feed-forward input of the rigid-flexible coupling dynamic model to obtain the positive motion
solution, thereby obtaining the dynamic response of the system.

Mode |
30 Mode II
20 H~ - ~Mode III
----- Desire trajectory
— 10} /
£ [
E 0 [
>\ ‘
-10 \
\
-20 \
30+ \\
-80 -60 -40 -20 0 20

Figure 9. Trajectory of end-effector under the three driving torque distribution modes.

Figures 9 and 10 show that among the three modes, the trajectory of the end-effector is very close
to the expected trajectory at the beginning, and the error increases gradually with the passage of time.
In particular, the deviation of Mode 1 from the expected trajectory is relatively large at the final stage;
this is more clearly observable in Figure 11. The redundant drive adopted in Modes 2 and 3 was found
to effectively improve the dynamic performance of the parallel manipulator.

Mode 1 3l Mode I
I —Mode II 1 —Mode 1I
---Mode III - - -Mode III

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Time [s] Time [s]

(a) (b)

Figure 10. Motion error of end-effector under the three driving torque distribution modes:
(a) x-direction error; (b) y-direction error.
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Figure 12. Angular velocity under three driving torque distribution modes. (a) Lever 1; (b)
Lever 3; (c) Lever 5; (d) Lever 2; (e) Lever 4; (f) Lever 6.

Figures 12 and 13 show that the oscillation amplitude of angular velocity and angular acceleration
of Levers 1, 3 and 5 is much larger than those of Levers 2, 4 and 6. This is because the former are
flexible, while the latter are treated as rigid, and the oscillations generated by the latter are caused by
the flexible body. In addition, the oscillation amplitude of Mode 1 is much larger than that of Modes 2
and 3, indicating that the dynamic performance of redundant drive is significantly better than that of
the non-redundant drive, and the stability of the system driven by redundant drive is significantly
improved.
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The elastic deformation at the end of the three flexible bodies can be clearly observed in Figures
14—16. The axial elastic deformation under the three modes is considerably small, i.e., three orders of
magnitude smaller than the transverse deformation. Compared with the other two modes, Mode 2
exhibited smaller elastic deformation, more stable change, and better performance. The elastic
deformation of Mode 1 in Figure 16 showed a significant decrease mainly owing to the non-redundant
drive of Mode 1 and follower Lever 5.
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Figure 14. Elastic parameters of Lever 1 under three driving torque distribution modes: (a)
axial deformation; (b) transverse deformation; (c) elastic angle.

5. Simulation verification

The simulation verification was based on the parametric model of the rigid-flexible coupling
system of the 3-RRR parallel manipulator established on Adams. The modeling used a method similar
to the finite segment discretization, wherein the three driving levers were discretized (Levers 1, 3 and
5), and each lever was divided into eight rigid segments linked by massless torsion springs (total of 24
segments). The three follower levers (Levers 2, 4 and 6) were not divided; the details are shown in the
Figure 17. To facilitate the observation of the section of the lever, the parameters of Lever 1 were
hidden and amplified, as shown in Figure 17(b). The driving torque under the previous Mode 2 was
used as the feed-forward input of the simulation model, and certain simulation results were compared
with the numerical model simulation results of the previous Mode 2, as shown in the Figures 18-21.
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Figure 15. Elastic parameters of Lever 3 under three driving torque distribution modes: (a)
axial deformation; (b) transverse deformation; (c) elastic angle.

To maintain generality, certain dynamic response parameters of the end-effector and each lever
in Mode 2 were selected and compared with the simulation results. It was found that the trajectory and
angular velocity of the end-effector in Figures 18 and 19 were nearly identical, and the velocity of the
three follower levers in Figure 21 was consistent, with small deviations. Further, the velocity of the
three driving levers in Figure 20 was consistent in general, with certain deviations. This is mainly
because the discretization technology used in the two methods is different. The numerical simulation
uses FEM while the software simulation uses FSM. Thus, it was confirmed that the rigid-flexible
coupling dynamic model established in this study is accurate.
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Figure 16. Elastic parameters of Lever 5 under three driving torque distribution modes: (a)
axial deformation; (b) transverse deformation; (c) elastic angle.
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Figure 17. Adams simulation model and trajectory.
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Figure 18. (a) Displacement of the end effector in x-direction; (b) Displacement of the end
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Figure 19. (a) Velocity of end-effector in x-direction; (b) Velocity of end-effector in y-
direction.

6. Conclusions

This study determined the configuration of 3-RRR parallel manipulator and performed a flexible
treatment to establish a rigid-flexible coupling dynamic model. The modular modeling method is
conducive for extension to other models and soft programming. The dynamic response of three
different driving torque distribution modes was obtained via numerical simulation. Finally, FSM was
used to establish the model in Adams, and the established model was verified. The conclusions of this
study are as follows:

(1) Establishing dynamics model of flexible link system

The rod was finitely discretized by the element method, and the dynamic equation of the module
was established using the floating reference coordinate system. Further, the module was linked to
establish the dynamic equation of the flexible body. All the flexible bodies were combined to obtain
the dynamic equation of the open chain system, and a complete system dynamics equation was
established. The modular modeling method was applied in the entire process. First, the independent
flexible body dynamics equation was established. Second, based on the constraint equation, each
segment was grouped together to form a complete equation, which is conducive to the promotion of
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other modeling and software programming systems, as well as lightweight design and system dynamic
performance optimization.

(2) Numerical simulation and analysis

The driving torque in the three modes obtained by inverse rigid body dynamics was used as the
feed-forward input of numerical simulation to obtain the dynamic response using the ode23tb solver.
The analysis revealed that the redundant drive had better dynamic performance than the non-redundant
drive and exhibited a suitable inhibitory effect on vibration. In addition, the dynamic performance of
Mode 2 was smoother, with smaller vibration, compared to that of Mode 3. From the flexible
deformation perspective, the axial deformation was much smaller than the transverse deformation, and
they differed by three orders of magnitude. Moreover, the deformation of the driven flexible body was
smaller than that of the active flexible body. Furthermore, the deformation of driving lever in Mode 2
was smaller than that in Modes 1 and 3, and the change was more stable with the performance being
better than the other two modes.

(3) Finally, FSM was used to establish the simulation model in Adams.

The driving torque of Mode 2 is selected as the feed-forward input, and certain dynamic response
results were compared with the numerical simulation results to verify the correctness of the established
rigid-flexible coupling dynamic model.

This paper mainly carries out the dynamic modeling and dynamic analysis of flexible Lever
parallel robots.it will be carried out around the control strategy of parallel robots in the follow-up
research, which improve its trajectory tracking and positioning accuracy, the potential application
fields of the parallel robot including fast packaging, fast sorting, high-speed motion simulation, etc.
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Figure 20. Angular velocity of three flexible driving levers: (a) Lever 1; (b) Lever 3; (c)
Lever 5.
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Figure 21. Angular velocity of three rigid follower levers: (a) Lever 2; (b) Lever 4; (c) Lever 6.
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