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Abstract: Watersheds of tropical countries having only dry and wet seasons exhibit contrasting water 

level behaviour compared to countries having four seasons. With the changing climate, the ability to 

forecast the water level in watersheds enables decision-makers to come up with sound resource 

management interventions. This study presents a strategy for days-ahead water level forecasting 

models using an Artificial Neural Network (ANN) for watersheds by conducting data preparation of 

water level data captured from a Water Level Monitoring Station (WLMS) and two Automatic Rain 

Gauge (ARG) sensors divided into the two major seasons in the Philippines being implemented into 

multiple ANN models with different combinations of training algorithms, activation functions, and a 

number of hidden neurons. The implemented ANN model for the rainy season which is RPROP-Leaky 

ReLU produced a MAPE and RMSE of 6.731 and 0.00918, respectively, while the implemented ANN 

model for the dry season which is SCG-Leaky ReLU produced a MAPE and RMSE of 7.871 and 

0.01045, respectively. By conducting appropriate water level data correction, data transformation, and 

ANN model implementation, the results of error computation and assessment shows the promising 

performance of ANN in days-ahead water level forecasting of watersheds among tropical countries.  

Keywords: artificial neural network; days-ahead water level forecasting; watersheds; water level 

forecasting; multilayer perceptron neural network  
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1. Introduction  

Due to climate change, erratic and undetermined water levels among bodies of water affect both 

lives and properties. This has led to the importance of predicting the occurrence of flash floods in 

watersheds as a critical technique for ensuring the safety and well-being of nearby residents. The 

phases of water level are designed to raise awareness among local authorities on the level of risks 

posed by the rising water level with the goal that an emergency arrangement can be initiated for the 

welfare of the local community residing near these bodies of water [1–4]. Forecasting water levels in 

lakes, rivers, watersheds, and groundwater levels have different factors to consider such as the 

experimental dataset for training the model, different forms of methods to be used for the training 

function, and the different input and output parameters [2,3]. There have been numerous existing 

models and technologies used in water level forecasting with the most common machine learning 

framework to be Artificial Neural Network (ANN) along with traditional statistical techniques such as 

Auto Regressive Moving Average (ARMA) and Auto-Regressive Integrated Moving Average 

(ARIMA) [2,5–9]. Several studies have developed a hybrid model by combining two different models 

and have been proven to provide better accuracy over individual models alone [7,8,10]. However, these 

models are expected to slow down the training process which would in turn affect its utilization. Like 

non-hybrid models, if there is not enough training data available, then accurate estimation and 

prediction become difficult. ANN is a mathematical model based on the structure and function of 

biological neural networks. When sufficiently trained with cleaned data, this model can solely identify 

non-linear patterns of meteorological behavior [8,11]. Thus, ANN should be ideally suited for the 

modelling of hydrological data which are known to be non-linear and complex [3,11–13]. To accurately 

predict the water level, the dataset must be prepared and the significant input variables must be properly 

selected along with choosing the suitable structure, parameters, and other variables. Consequently, if the 

chosen settings do not suit the data, the outcome will result in poor performance of the model’s accuracy. 

Tropical countries like the Philippines only have two seasons of the dry season from December to 

May and rainy the season from June to November. During the rainy and typhoon season, the occurrence 

of floods around the affected areas of the Mandulog River Watershed in Southern Philippines has been 

causing major problems to local administrators, government officials, and people’s lives and property. 

With an area of about 78,228 hectares, the watershed collects from smaller rivers connected by a 

network of waterways more than 50 kilometres long as a network of channels serving as one of the 

main drains of rainfall water from its surrounding mountains [14]. The current technology used in the 

watershed is the Water Level Monitoring Station (WLMS) which determines the water level at a point 

in time every 5–10 minutes interval. The challenge faced by decision-makers in monitoring the 

watershed goes beyond capturing the past and present water levels of the watershed but is focused in 

the prediction of the water level. With currently no existing system that can predict the water level of 

the watershed, this study attempts to develop a days-ahead water level forecasting system by 

conducting data preparation of the captured water level dataset and implementing artificial neural 

networks as a machine learning framework. By evaluating its forecasting performance, close to 

accurate prediction of the watershed’s water level can serve as inputs for local administrators in the early 

identification of flooding resulting to timely protection of property and evacuation of affected individuals. 
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2. Methodology 

2.1. Water level data preparation 

In order to implement a well performing system, water level data from the Mandulog River 

Watershed needs to undergo data selection, data correction, and data transformation for it to be fed into 

the ANN. Initially, choosing the right dataset was conducted by identifying reliable data source along 

with selecting the range of time to be considered. Studies considered parameters that can be used for 

the ANN inputs such as rain, rain rate, air temperature, humidity, air pressure, and solar radiation in 

water level forecasting [2–4,9,13]. In this study, the researchers used the rainfall and water level data 

from 2013 to 2018 collected by the Philippine Department of Science and Technology-Advanced 

Science and Technology Institute (DOST-ASTI). The collected water level data from a WLMS has a 

10-minute interval with a unit of measurement in meters, while the rainfall data from one Automatic 

Rain Gauge (ARG) has a 15-minute interval and the rainfall data from two ARGs has a 30-minute 

interval, with a unit of measurement in millimeters. As shown in Table 1, the water level data from the 

WLMS were in a.csv format with the columns specific for the date, time, and water level delivered. 

These raw data from the .csv file format were then later imported and stored in a PostgreSQL database. 

Table 1. Sample water level raw data. 

DATE TIME WATER LEVEL DELIVERED 

XX XX XX 

XX XX XX 

Data correction was then conducted for the detection, correction, or removal of corrupt and 

inaccurate records from the water level dataset which may refer to incomplete, incorrect, or irrelevant 

parts of the data. Researchers conducted a manual visual inspection to determine the missing values in 

the spreadsheet of water level and rainfall data. Data correction or cleaning was then conducted to 

handle missing values in the WLMS raw dataset and was replaced using applicable imputation 

methods [4,15]. The percentage of missing data in the dataset was then computed in order to determine 

how much data is erroneous in term of missing values, skipping time and time inconsistency. As 

suggested by authors, the researchers used two imputation methods for filling the missing data values 

with the regression analysis method applied for the missing water level data and the linear interpolation 

method applied for the missing rainfall data [1,10,16]. In formulating the regression model, as shown 

Equation 1, the predicted value y is the water level and x is the rainfall. The regression model with the 

dependent variable y and independent variable x1, x2 , ... , xn is defined as: 

𝑦𝑖  =  𝑏0  +  𝑏𝑗  𝑥𝑖𝑗  + . . . + 𝑏𝑖 𝑥𝑖𝑝  + 𝑒𝑖       (1) 

where 𝑦𝑖 is the amount of ith dependent variable 𝑝 is the number of predictors, 𝑏𝑗 is the amount of 

ith coefficient, 𝑗 =  0, . . . , 𝑝 𝑥𝑖𝑗 is the value of 𝑖th of 𝑗th predictor and 𝑒𝑖 is the observed error of 

the value for 𝑖th [16].  

  The linear interpolation method has been used by researchers for filling the missing values in time 

series and found that it has good results for rainfall data [17,18]. In formulating the linear interpolation 

model, the predicted value 𝑥 is the rainfall data. Equation 2 shows the Linear Interpolation Equation 

where 𝑥 is the independent variable, 𝑥0 is the known value of the independent variable and 𝑓1(𝑥) 

is the value of the dependent variable for a value 𝑥 of the independent variable [17] .  
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𝑓1(𝑥) =  𝑏0+𝑏1(𝑥 − 𝑥0)         (2) 

where  𝑏0 = 𝑓(𝑥0) ; 𝑏1 =
𝑓(𝑥1)−𝑓(𝑥0)

𝑥1−𝑥0
 

In dealing with the issue of time inconsistency, this study considered that each data row with time 

inconsistency will be associated to the nearest original time interval by replacing each row to the 

nearest time interval. The researchers used Python’s resample(how) function as the process of 

replacing each row to the nearest original time interval and filling in the gaps of skipping time, where 

how is the preferred frequency or time interval of the data, which in this study is 10-minute for water 

level data and 15-minute for rainfall data. 

Data transformation was then conducted by normalizing the dataset input with a certain finite 

range followed by the process of partitioning the data will be done into three subsets such as training, 

testing, and validation sets. The process of transforming or normalizing is important because without 

it the training of the network will be slow [9,10,19] . All input data to the ANN was normalized using 

the min-max normalization method shown in Equation 3.  

𝑧 =
𝑥−min(𝑥)

max(𝑥)−min (𝑥)
         (3) 

where 𝑧 is the new water level normalized data, 𝑥 is the water level data value to be normalized, 

𝑚𝑎𝑥(𝑥) is the maximum water level data value and 𝑚𝑖𝑛(𝑥) is the minimum water level data point 

value in a dataset. The min-max transformation method is a linear transformation of data to a smaller 

range, typically in the 0 to 1 range without outliers. 

2.2. ANN Model implementation 

After data preparation, the dataset was then ready to be fed into the multilayer perceptron neural 

network. As shown in Figure 1, the architecture of the ANN involved a single input layer with seven 

input neurons identified as Year, Month, Day, Time, Mandulog Water Level, Digkilaan Rainfall, and 

Rogongon rainfall. One output layer was utilized having 144 output neurons which represents 3 days 

with 30-minute intervals. The three-day predictive projection was the request of the local Disaster Risk 

Reduction and Management Office as the ideal and optimal time period for decision making and 

information dissemination. This study used 1 hidden layer containing 149 hidden neurons along with 

identified parameters of 0.001 to 0.1 learning rate, 0.1 momentum and an epoch of 17,000. Two 

separate ANN models were implemented with an ANN model for the rainy season utilizing Resilient 

Propagation (RPROP) as the training algorithm and Leaky ReLU as the activation function while an 

ANN model for the dry season utilizing Scale Conjugate Gradient (SCG) as the training algorithm and 

Leaky ReLU as the activation function. 

The researchers used Keras – an open-source neural network library written in Python, which runs 

on top of the machine learning platform TensorFlow. This library includes easy handling of data sets, 

supports several different activation functions and training algorithms, and it includes a framework for 

easy handling of training data sets. Keras is designed to enable fast experimentation with neural 

networks and focuses on being user-friendly, modular, and extensible. Keras library was imported into 

the systems project library to be able to implement the ANN model and used the built-in functions 

provided in the Keras Library. Figure 2 shows the web-based application that integrated the ANN 

model using Keras and a micro web framework written in Python language called Flask. Creating the 
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model, training the model, and testing the model, and the parameters were done using the Keras 

functions such as add() and compile(), fit(), evaluate(), and predict(). 

 

Figure 1. Block diagram of the ANN. 

 

Figure 2. Screenshot of the web-based application. 

The predictive ability of the ANN models for the two seasons were then tested and validated by 

comparing the results of the forecasted values to the actual water level values of the Mandulog River 

Watershed. The implemented ANN models were tested using the validation set from the water level 

data of March 2018 by producing 3-days ahead forecasted values. To evaluate the accuracy of the ANN 

models, two statistical formulas were selected, namely the Root Mean Square Error (RMSE) and Mean 

Absolute Percentage Error (MAPE). The RMSE describes the average magnitude of error of the 

observed and forecasted values with values near to 0 indicating the best fit to the data while the MAPE 

measures the size of the error in percentage terms. Smaller RMSE and MAPE values indicate 

consistency and accuracy of the developed ANN model. Equation 4 shows how RMSE was computed 

where ℎ𝑖 is the observed water level, ℎ̂𝑖 is the forecasted water level from the model, and 𝑁 is the 

number of data points. Equation 5 shows how MAPE was computed where ℎ𝑖 is the observed water 
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level, ℎ̂𝑖 is the forecasted water level from the model, and 𝑁 is the number of data points. 

𝑅𝑀𝑆𝐸 =  √∑ (ℎ𝑖− ℎ̂𝑖)2𝑁
𝑖=1

𝑁
          (4) 

𝑀𝐴𝑃𝐸 =  
100

𝑁
∑ |

ℎ𝑖− ℎ̂𝑖

ℎ𝑖
|𝑁

𝑖=1           (5) 

A tabular and graphical representation of the computed results was then generated to illustrate the 

comparison between the observed and forecasted values. As an additional validation, results were 

transformed and compared with the actual values to visualize if they were accurate to the real-world 

scenario. In this study, the validation data set from June 2018–October 2018 will be used to generate 

the validation results for rainy season and the validation data set from December 2017–May 2018 for 

dry season. These results were compared to actual water level values to determine if they were accurate 

by denormalizing the predicted water level and comparing them to the actual water level values by 

graphing them into a line graph. For the selected model, the denormalized values at each 3-day iteration 

will be graphed against the actual values of the same day. Once the graph was generated, they will be 

assessed for accuracy by way of visual inspection. The scheme that will be used for visual inspection 

is by observing it on a per day per 3-day basis. This means that for every day in the month of March, 

the next 3 days will be collected and graphed. Equation 6 shows the Min-Max denormalization formula 

where 𝑥 is the original pre-normalized value of water level, 𝑧 is the normalized equivalent of 𝑥, 

𝑚𝑎𝑥 (𝑥) is the maximum value and 𝑚𝑖𝑛 (𝑥) is the minimum value. 

𝑥 =  𝑧 (𝑚𝑎𝑥(𝑥)  − 𝑚𝑖𝑛 (𝑥)) +  𝑚𝑖𝑛 (𝑥)      (6) 

2. Results and discussion 

3.1. Water level data preparation results 

The obtained water level data for the Mandulog River Watershed captured by the WLMS and the 

rainfall data for the neighboring vicinities of Digkilaan, Rogongon, and Pugaan captured by the ARGs 

were originally stored in a .csv file format. Figure 3 shows a map containing the locations of the four 

sensors with the WLMS at the Mandulog River Watershed and the ARGs located in Rogongon, 

Digkilaan, and Pugaan surrounding the Luinab catchment. The rainwater run-off from the Luinab 

catchment flows to the Luinab creek, which is a tributary of the Mandulog River [20]. Thus, rainfall 

data from Digkilaan and Rogongon were selected to be used in this study since these are the nearest 

ARGs installed near the Mandulog River Watershed WLMS. The rainfall data from Pugaan was not 

included since it is too far from the Mandulog River Watershed. 

As shown in Table 2, the water level data from the Mandulog River Watershed WLMS contains 

6 years of data from June 2012 to October 2018 with a 10-minute interval. The rainfall data from 

Digkilaan ARG contains 6 years of data from July 2012 to October 2018 with a 15-minute interval, 

and the rainfall data from Rogongon ARG contains 5 years of data from February 2013 to October 

2018 with a 15-minute interval. In order to match the start and end date/time, this study used 5 years 

of data that ranges from February 2013 to October 2018. Several researchers used 2–4 years of 

historical data to forecast water level and proved enough to obtain satisfactory predictions [13,21]. 

Thus, in this paper, the 5-year historical data was considered be enough in developing the predictive 

model. Trimming the data was necessary for two reasons in order to the water level and rainfall data 
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to coincide so that they have the same starting date/time and end date/time and for the simplified 

conversion to 30-minute interval since the water level data has a 10-minute interval while rainfall data 

has a 15-minute interval. Table 3 shows the details of the trimmed data from the three sensors, a total 

of 573,189 rows of data were collected with each set having 3 variables of 264,246 records from 

Mandulog River Watershed water level, 156,279 records from Digkilaan rainfall, and 152,664 records 

from Rogongon rainfall. From this point onward of this study, the term dataset will refer to these 

trimmed data. 

 

Figure 3. Map containing the location of the sensor sources. 

Table 2. Details on the selected sensors. 

Sensor Date range Number of rows Time interval 

Mandulog WLMS Jun 2012–Oct 2018 298, 592 10-minute 

Digkilaan ARG Jul 2012–Oct 2018 176, 795 15-minute 

Rogongon ARG Feb 2013–Oct 2018 152, 709 15-minute 

Table 3. Details on the trimmed selected sensors. 

Sensor Date range Number of rows Time interval 

Mandulog WLMS Feb 2013–Oct 2018 264, 246 10-minute 

Digkilaan ARG Feb 2013–Oct 2018 156, 279 15-minute 

Rogongon ARG Feb 2013–Oct 2018 152,664 15-minute 

 

After conducting a manual inspection of the dataset, it was found out that time inconsistency, 

skipping time, and missing values were present due to the limitations of the device. Time inconsistency 

refers to a time that is not within the time interval e.g. 6:32, 8:17, and 22:46. Table 4 shows the sample 

raw data of a chosen sensor originally in a 15-minute interval with its actual time inconsistency 

compared to the ideal time consistency. 

 

Table 4. Sample dataset with its time inconsistency. 

Digkilaan ARG 

Date Actual time inconsistency Actual time consistency 

06-17-2016 23:16:00 23:15:00 

06-18-2016 00:32:00 00:30:00 
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Table 5 shows the amount of time inconsistency per sensor and its percentage when compared to 

the calculated total amount of data. The total amount of raw data was defined as the number of rows 

of the data gathered directly from the sensor, while calculated total amount of data is the expected 

complete number of rows of data. Results showed that the sensor obtaining the highest amount of time 

inconsistency is the Digkilaan ARG with 4.76% while the Mandulog River Watershed WLMS has the 

least amount of time inconsistency with 0.023%. The presence of time inconsistency in the data may 

be due to sensor failure or faulty transmission of data, and for this reason it is beyond human capability 

to make perfect data. 

Table 5. Amount of time inconsistency per sensor. 

Sensor Time incosistency 
Total amount of 

raw data 

Calculated total 

amount of data 

Percentage of time 

inconsistency 

Mandulog WLMS 69 264,246 298,653 0.023% 

Digkilaan ARG 9,438 156,279 199,102 4.74% 

Rogongon ARG 838 152,664 199,102 0.42% 

 

Skipping time refers to rows of time that do not conform to the specific time interval, e.g. from 

5:30 directly skipping to 10:15 with the difference between skipping time and time inconsistency is 

that the time in skipping time jumps forward widely. As shown in the sample data of the Mandulog 

WLMS in Table 6, with the time 11:40, it jumped right to 12:10 when it should be 11:50 since water 

level data has a 10-minute interval.  

 

Table 6. Sample dataset with its skipping time. 

Mandulog WLMS 

Date Time Water level (m) 

12-15-2013 11:40:00 1.6 

12-15-2013 12:10:00 1.65 

 

Table 7 shows the amount of skipping time per sensor and its percentage when compared to the 

actual total amount of data. Total amount of raw data is defined as the number of rows of the data 

gathered directly from the sensor, while calculated total amount of data is the expected complete 

number of rows of data. Results showed that the sensor having the highest amount of skipping time is 

the Rogongon ARG with 23.41% while the Mandulog River Watershed WLMS has the least amount 

of skipping time with 11.57%. The same as time inconsistency, the presence of skipping time in the 

data may be due to measurement equipment malfunction or other measurement errors. 

 

Table 7. Amount of skipping time per sensor. 

Sensor Skipping time 
Total amount of 

raw data 

Calculated total 

amount of data 

Percentage of 

skipping time 

Mandulog WLMS 34, 407 264,246 298,653 11.52% 

Digkilaan ARG 42, 632 156,279 199,102 21.50% 

Rogongon ARG 46, 440 152,664 199,102 23.32% 
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In dealing with the issue of time inconsistency, each data row with time inconsistency was 

associated to the nearest original time interval by replacing each row to the nearest time interval. For 

example, as shown in Table 8, with the Digkilaan ARG, rows of data have a time inconsistency of 

23:16:00, 23:31:00, 0:01:00. By replacing each row to the nearest original time interval, the new actual 

time consistency became 23:15:00, 23:30:00, 0:00:00. For skipping time, as shown in Table 9, this was 

dealt by filling in the gaps with the difference between the succeeding time and the previous time. The 

process of replacing each row to the nearest original time interval and filling in the gaps of skipping 

time was performed using the Python function resample (how), where how is the preferred frequency 

or time interval of the data, which in this case is 10-minute for water level data and 15-minute for 

rainfall data.  

 

Table 8. Sample states of before and after time inconsistency intervention. 

Digkilaan ARG 

Before After 

Date Time Date Time 

06-17-2016 23:16:00 06-17-2016 23:15:00 

06-17-2016 23:31:00 06-17-2016 23:30:00 

06-18-2016 00:01:00 06-18-2016 00:00:00 

 

Table 9. Sample States of Before and Skipping Time Intervention. 

Mandulog WLMS 

Before After 

Date Time Water level (m) Date Time Water level (m) 

02-15-2013 11:40:00 1.6 02-15-2013 11:40:00 1.6 

02-15-2013   02-15-2013 11:50:00  
02-15-2013   02-15-2013 12:00:00  
02-15-2013 12:10:00 1.65 02-15-2013 12:10:00 1.65 

 

In the case of missing values, the presence of missing values causes a significant bias in the results 

and reduces the efficiency of the dataset. Ignoring the missing data is generally not valid for time-

series prediction in which the currently predicted value of a system commonly depends on the 

historical time data of the system [1,17,22]. Table 10 shows the number of missing values per sensor 

and its percentage in terms of being sensor-based or being aggregated. Percentage of missing values 

in terms of sensor-based is defined as the percentage of the number of missing values from the raw 

data received directly from the sensor over the total amount of raw data, while percentage of missing 

values in terms of aggregated is defined as the percentage of the number of missing values from the 

calculated total amount of data. Figure 4 shows a graphical representation of the percentage of missing 

data per sensor. According to the results, the sensor that exhibits the least number of missing values is 

the Mandulog River Watershed WLMS with 11.61%, while the Rogongon ARG with 23.46% is the 

sensor that exhibits the greatest number of missing values. The large number of missing values is most 

likely to have been caused by sensor failure and recording process. In a research, ANNs do not suffer 

much with missing data up to about 30% [23]. So the missing values are still acceptable for processing. 



767 

 

Mathematical Biosciences and Engineering  Volume 20, Issue 1, 758–774. 

Table 10. Missing values per sensor. 

Sensor 

Sensor-based Aggregated 

Number of 

missing values 

Total amount 

of data 

Percentage of 

missing values 

Number of 

missing values 

Calculated total 

amount of data 

Percentage of missing 

values 

Mandulog WLMS 145 264,246 0.05% 34,552 298,653 11.61% 

Digkilaan ARG 12 156,279 0.008% 42,644 199,102 21.50% 

Rogongon ARG 92 152,664 0.061% 46,532 199,102 23.46% 

 

 

Figure 4. Graphical representation of missing data percentage per sensor. 

After calculating the percentage and the amount of missing data for rainfall, an imputation method 

was used to handle the missing data. In this study, linear interpolation was used to fill in the missing 

values of rainfall data. Table 11 shows the state of the dataset pre-imputation and post-imputation of 

the missing values for a chosen rainfall sensor. 

 

Table 11. Sample state of rainfall data pre and post imputation. 

Rogongon ARG 

Pre-imputation Post-imputation 

Date Time Rainfall (mm) Date Time Rainfall (mm) 

3-1-2018 11:15:00 0 3-1-2018 11:15:00 0 

3-1-2018 11:30:00  3-1-2018 11:30:00 0 

3-1-2018 11:45:00  3-1-2018 11:45:00 0 

 

In imputing the water level data, regression analysis was used to fill in the gaps of the missing 

data for water level. Table 12 shows the state of the dataset pre-imputation and post-imputation of the 

missing values for the Mandulog River Watershed WLMS water level. 
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Table 12. Sample state of water level data pre and post imputation. 

Mandulog MWLS 

Pre-imputation Post-imputation 

Date Time Water level (m) Date Time Water level (mm) 

3-1-2018 11:00:00 1.28 3-1-2018 11:00:00 1.28 

3-1-2018 11:10:00 1.29 3-1-2018 11:10:00 1.29 

3-1-2018 11:20:00  3-1-2018 11:20:00 1.28333 

3-1-2018 11:30:00  3-1-2018 11:30:00 1.27666 

   

In this research, the Mandulog water level data which has a unit of measurement in meters was 

converted to millimeters for the water level and rainfall to have the same unit of measurement, since 

both Digkilaan rainfall data and Rogongon rainfall data were in millimeters. After converting the water 

level into millimeters, the dataset was converted into a 30-minute interval, since it is the least common 

multiple of the rainfalls’ fifteen-minute interval and water levels’ 10-minute interval. Since the water 

level data was in a ten-minute interval and the rainfall data was in a fifteen-minute interval, the 

maximum water level among the three per ten-minute recordings was chosen for the half-hour and the 

maximum rainfall among the two per fifteen-minute recordings was chosen for the half-hour. The 

process of choosing the maximum water level from the three ten-minute records and the rainfall from 

the two fifteen-minute records was performed using a python code created by the researchers. The data 

from the three sensors were then concatenated into a single dataset based on the date and time. The 

total number of rows of the dataset was then reduced to 99,552. 

  After converting the dataset to a 30-minute interval, the dataset was represented with numeric 

values. The time variable in the 30-minute interval was converted into numerical values since ANN 

models cannot be fed with variables represented with a colon symbol. Starting with 00:00, which is 

12:00 AM, time was represented with a value of 1. For every increment of 30 minutes, the 

representation value was incremented by 1. The process iterates until 23:30 is converted to up to 48. 

The researchers also divided the Date variable to have the year, month, and day variable since Keras 

does not accept data with semicolons, commas, and other non-numeric symbols. As shown in Table 

13, these attributes including the Time, were then represented by binary values.  

 

Table 13. Attribute binary table. 

Year 
Binary 

value 
Month 

Binary 

value 
Day 

Binary 

value 
Time Binary value 

2013 00000001 January 00000001 1 00000001 1 00000001 

2014 00000010 February 00000010 2 00000010 2 00000010 

2015 00000011 March 00000011 3 00000011 3 00000011 

2016 00000100 April 00000100 4 00000100 4 00000100 

2017 00000101 … … … … … … 

2018 00000110 December 00001100 31 00011111 48 00110000 

 

After representing the attributes by binary values, the water level and rainfall was normalized 

using the Min-Max Normalization that scales the data into a 0 to 1 range. Table 14 shows the sample 

dataset after normalization. 
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Table 14. Sample dataset after data representation. 

Year Month Day Time 

Mandulog 

water level 

Digkilaan 

rainfall 

Rogongon 

rainfall 

00000001 00000010 00001101 00000001 0.120805369 0.0 0.0 

00000001 00000010 00001101 00000010 0.121764142 0.0 0.0 

00000001 00000010 00001101 00000011 0.120805369 0.0 0.0 

 

After data representation, the dataset was partitioned into training set, testing set, and validation 

set. As shown in Table 15, the dataset was divided into two major seasons in the Philippines reflected 

as June to November 2013–2018 being used as the rainy season dataset while data records during the 

dry season from December to May 2013–2018 were used as the dry season dataset. Each season was 

then proportioned to 70% for training set, 15% for testing set, and 15% for validation set [2].  

 

Table 15. Data partitioning. 

Study set 
Rainy season (50, 640) Dry season (48, 912) 

Dates Months Data rows Dates Months Data rows 

Training 

set 

June to Nov 

2013–2016 
24 months 35,136 

Dec 2013– 2015, 

Jan to May 

2013–2016 

24 months 31,440 

Testing set 
June to Nov 

2017 
6 months 8, 784 

Dec 2016, 

Jan to May 2017 
6 months 8,736 

Validation 

set 

June to Oct 

2018 
5 months 6,720 

Dec 2017, 

Jan to May 2018 
5 months 8,736 

 

2.2. ANN Model implementation results 

Predictive performance of the ANN models for both the rainy and dry season were assessed using 

RMSE and MAPE. Table 16 shows the error computation results on the validation set where the ANN 

model for the rainy season had a MAPE of 6.731 and RMSE of 0.00918 while the ANN model for the 

dry season had a MAPE of 7.871 and RMSE of 0.01045.  

 

Table 16. Error computation results. 

Season Training algorithm Activation function Mape Rmse 

Rainy Season Resilient Propagation Leaky ReLU 6.731 0.00918 

Dry Season Scaled Conjugate Gradient Leaky ReLU 7.871 0.01045 

 

Once the values of the models have been denormalized, the values were compared to the actual 

water level values by graphing them into a line graph. For the two ANN models, the denormalized 

values at each 3-day iteration were graphed against the actual values of the same day. Once the graphs 

have been generated, the models were assessed for accuracy for visual inspection. The scheme that 

was used for visual inspection is by observing it on a per 3-day basis. Figure 5 depicts predicted outputs 

compared to actual values for the rainy season. The graph showcased the 3-day iteration of the months 
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of June 2018 to October 2018 for the predictive performance of the Resilient Propagation–Leaky ReLU 

combination implemented for the rainy season. It can be observed from the graph that the prediction 

follows the actual water level of the Mandulog River Watershed exhibiting close to accurate predictive 

values across the months with the values from June 3, 2018 to June 9, 2018 and on July 3, 2018 being 

very close to the actual values.  

 

 

Figure 5. Actual vs. forecasted water level for the rainy season. 

Figure 6 shows the performance for the SCG–Leaky ReLU combination for the dry season. It can 

be observed that though the actual and the predicted water levels have a margin, the rise and fall was 

evidently consistent to follow the pattern. 

 

 

Figure 6. Actual vs. forecasted water level for the dry season. 

As for the overall comparison of the two seasons, the forecasted outputs of rainy season’s RPROP–

Leaky ReLU ANN model was closer to the actual values than that of the dry season’s SCG–Leaky 

ReLU ANN, but still produced good results in predicting the water level of the Mandulog River 

Watershed. The ANN models for the two tropical seasons exhibited an acceptable MAPE of below 15% 

by weather forecast standards [24]. While this study only used water level data to develop a water level 
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forecasting model for rainy and dry season, other researchers have used other climatic factors other 

than water level, such as rainfall, precipitation, temperature, and evaporation, which yielded good 

results [1,2,6–11,13,25,26]. A study used hourly rainfall and multiple water level data to predict the 

water level at the Anyangcheon stream in South Korea using ANN forecasting model showing a fairly 

good forecasting performance with an RMSE of 0.0936 which indicates that ANN models can simulate 

accurate water level forecasts [3]. However, there are also some studies that proved that water level 

alone can be used to develop ANN water level forecasting. A study implemented ANN, adaptive-neuro-

fuzzy inference system (ANFIS), gene expression programming GEP, and ARMA to forecast daily 

water level, where in the four of them have almost the same accuracy with ANN having an RMSE of 

0.114 for the 3-day ahead prediction [27]. Their result showed that ANN model was able to provide 

almost the same performance to the ANN models implemented in this study. 

3. Conclusions and recommendations 

In this study conducted in a tropical country, separate ANN models were implemented for each 

rainy and dry seasons in order to predict the water level of the Mandulog River Watershed. The general 

objective of this study was to develop days-ahead water level forecasting using ANN from the provided 

data of WLMS and ARGs conducted through a thorough data preparation and ANN model 

implementation process. In data preparation, the imputation process was a critical part in addressing 

the issues of time inconsistency, skipping time along with the missing and incorrect values in the data 

sets as it can significantly affect the result of the forecasting model. The linear interpolation method 

was able to fill in the missing values of both rainfall values on the dataset, while the regression method 

was able to fill in the 11.61% missing water level values. In implementing the ANN models into a web 

application, Keras library was successfully integrated with the application in setting up the 

environment for the development. In the validation of models, the researchers provided a calculation 

of MAPE and RMSE as well as a graphical visualization of the comparison between the actual and the 

forecasted water levels. It was shown that the ANN models exhibited good forecasting performance 

showcasing the Resilient Propagation–Leaky ReLU combination implemented for the rainy season 

exhibiting a MAPE of 6.731 with RMSE of 0.00918 and the Scaled Conjugate Gradient–Leaky ReLU 

combination implemented for the dry season exhibiting a MAPE of 7.871 with RMSE of 0.01045. It 

is also worth noticing that the rainy season ANN model has considerably better predicted outputs than 

the dry season ANN model. 

Based on the findings of the study, the researchers would like to recommend further studies on the 

methods in data correction especially with the case if there are a lot of time inconsistencies, missing 

time, and more importantly the empty values in the water level dataset. As an improvement to the 

models, the researchers would also like to recommend further network training as well as using other 

ANN libraries aside from Keras. While Keras is an open-source neural network library, it has a limited 

training algorithm and activation function. The possibility of using other neural network libraries might 

gain a better result and can lead to a better forecasting system. Moreover, the researchers also suggest 

exploring different methods in selecting ANN parameters and other ways of performing training, 

testing, and validation as this might help in establishing a reliable ANN model for water level 

forecasting. Lastly, the researchers highly recommend installing other climactic monitoring systems in 

the Mandulog River Watershed such as rainfall and temperature that could be used as another input 

variable. Overall, the results of this study showed that ANN has the capability to be a promising days-
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ahead water level forecasting model with proper data preparation and ANN model implementation. 

Water level forecasting among watersheds is a necessary tool to help identify the occurrence of flash 

floods for affected areas as it can help the local authorities in developing wise decisions for initiating 

emergency management or risk reduction management for the welfare of the local community. 
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