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Abstract: In this paper, a coupling SEIR epidemic model is proposed to characterize the interaction
of virus spread in the body of hosts and between hosts with environmentally-driven infection, humoral
immunity and incubation of disease. The threshold criteria on the local (or global) stability of feasi-
ble equilibria with or without antibody response are established. The basic reproduction number Rb0 is
obtained for the SEIR model without an antibody response, by which we find that the disease-free equi-
librium is locally asymptotically stable if Rb0 < 1. Two endemic equilibria exist if Rb0 < 1, in which
one is locally asymptotically stable under some additional conditions but the other is unstable, which
means there is backward bifurcation. In addition, the uniform persistence of this model is discussed.
For the SEIR model with an antibody response, the basic reproduction number R0 is calculated, from
which the disease-free equilibrium is globally asymptotically stable if R0 ≤ 1, and the unique endemic
equilibrium is globally asymptotically stable if R0 > 1. Antibody immunity in the host plays a great
role in the control of disease transmission, especially when the diseases between the hosts are entirely
extinct once antibody cells in the host reach a proper level. Finally, the main conclusions are illustrated
by some special examples and numerical simulations.

Keywords: virus infection model; humoral immunity; antibody response; incubation; environmental
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1. Introduction

Infectious diseases have serious impacts on human health, social stability, economic development,
happiness of families, and even national security. In particular, humans beings are facing serious
threats from various kinds of viruses, e.g., AIDS, influenza, hepatitis B, dengue, cholera, MERS,
SARS, Ebola and COVID-19 [1–6]. Therefore, it is vitally important to study the dynamic properties
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of viral spread, which could provide evidently theoretical guidance for the prediction and control of
disease transmission.

During the past few decades, many epidemic models of various viruses have been extensively in-
vestigated by medical scientists, and bio-mathematicians, and many very important results have been
obtained, e.g., [7–21] and the references cited therein. In particular, the dynamics of infectious diseases
driven by environmental viruses have gradually become central issues. Therein, the epidemiological
processes among several compartmental classes of the population, and the virus infection processes in
hosts are coupled by two kinds of models at quick and slow time scales, respectively, which are very
different from most existing models that study these two processes separately and do not explicitly
connect them. During the disease transmission process, the environmental contamination rate depends
not only on the number of infected individuals but also on the density of the virus, which makes it more
necessary to study the interaction between these two different kinds of transmitters of disease by using
coupling models, i.e., the transmission model of a virus in a single host and the disease spread model
between hosts (see, e.g., [7–9, 11–16, 20, 21] and the references cited therein).

Recently, epidemic models with two processes of within-host virus infection and between-host
disease transmission have been investigated in many articles. (See [9, 11–15, 20, 21]). In Particular,
Wen et al. [13] investigated a discrete time environmentally-driven coupling dynamic model of within-
host virus infection and between-host disease transmission. Wen et al. [22] further improved the above
discrete time model into a more practical form with saturation incidence. In [20, 21], the authors also
investigated age-structured and reaction-diffusion epidemic models for coupling within- and between-
host dynamics in environmentally-driven infectious diseases.

In many infectious diseases, such as influenza, COVID-19, the incubation period cannot be ne-
glected. These diseases have no obvious symptoms in the early stages of infection, some symptoms
only appear after a period of incubation, and some of them are contagious not only during the infectious
period but also during the incubation period [23–25]. In particular, COVID-19 is contagious during
its incubation period. With the idea of infectivity in the incubation period, Jiao et al. [26] proposed
a SEIR epidemic model with homestead-isolation on the susceptible population. However, for some
diseases, such as tuberculosis, measles and AIDS, that are transmissible up on adequate contact with
an infected individual, a susceptible individual becomes lurk, that is, infected but not infective. This
individual remains in the incubation period before becoming infective.

We already know that the immune response has a great role in controlling the spread of disease
during the virus infection process [27–30]. Particularly, when antibodies in a host do not work or
the effect of antibodies is weak, viruses will continue to spread. As a result, the spread of disease
between hosts will be difficult to control. Otherwise, when a host has an extensive antibody response,
the production rate of B cells in the host will increase, and environmental virus invasion into the host
will be prevented; then, the transmission of disease is well controlled. Humoral immunity is much
more efficient than cellular immunity in some infections [31]. Murase et al. [32] introduced a model
that described the interaction among target cells, pathogens and immune responses. Wang et al. [27]
applied this model to investigate the dynamic behavior of in host virus infection models with humoral
immunity and intracellular delays.

Furthermore, many works have realized that the interaction driven by the environment between two
kinds of spread routes, i.e., virus transmission (or replication) within the body and between hosts, has a
significant effect on the spread of diseases [7–16,20,21]. In Particular, asymptomatic infected individ-
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uals will make the control of disease spread more difficult [23, 25]. Based on the above consideration,
in this paper, we propose an SEIR epidemic model coupling virus spread within the body and between
hosts, incubation, antibody response and environmental effects. The paper is organized as follows: In
Section 2, the virus infection model with humoral immunity in the host, and the SEIR epidemic model
of in vitro transmission between hosts are proposed with incubation at fast and slow time scales re-
spectively, and both models are coupled by the environmental concentration of the virus. In Section 3,
some properties and important results of the virus infection model with humoral immunity are given.
In Section 4, the positivity and boundedness of solutions for the SEIR model without antibody re-
sponses are discussed, criteria on the existence and local stability of equilibria are established, and the
uniform persistence of the model is obtained. In Section 5, we further study the SIER model with an
antibody response. The basic reproduction number is calculated, and the existence and global stability
of equilibria are studied. In Section 6, the main conclusions are illustrated by numerical examples and
discussion. In Section 7, we give a brief conclusion.

2. Model description

In this section, we provide a detailed description of the SEIR epidemic model coupling virus trans-
mission in the body and between hosts, incubation and environmental effects. We first proposed the
following assumptions.

(A1) The transmission of diseases is mainly caused by susceptible individuals being exposed to a
virus in the environment. This kind of infection is commonly called indirect infection. The environ-
mental contamination rate is related to the quantity of infected individuals and the virus load V of
hosts, with the form θVI.

(A2) Susceptible individuals have an incubation period after being infected by the virus. Usually,
different lurks have different incubation periods. To facilitate discussion, we take an average incubation
period provided that the infected individuals will not transmit disease in the incubation period.

(A3) The infected individuals usually will either die or be cured as a remover after being infected.
To facilitate discussion, we assume that the removed individuals will not become susceptible again or
that the disease will not recur.

(A4) The Viruses in the environment primarily comes from unique releasers, i.e., infected individu-
als. The amount of virus released by different infected individuals is related to the total load of virus
within the bodies of hosts. To facilitate discussion, we take the average number of viruses within the
infected individuals.

Based on the above assumptions, we can first establish the following SEIR epidemic model of viral
infection: 

dS (t)
dt
= A − µS (t) − βS (t)U(t),

dE(t)
dt
= βS (t)U(t) − (µ + α)E(t),

dI(t)
dt
= αE(t) − (µ + σ + ζ)I(t),

dR(t)
dt
= σI(t) − µR(t),

dU(t)
dt
= θV(s)I(t)(1 − U(t)) − (ξ + γ)U(t),

(2.1)

where S (t), E(t), I(t) and R(t) indicate the numbers of susceptible, latent, infected and removed indi-
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viduals at time t, U(t) is the contamination rate of the virus in the environment at time t, β indicates
the probability of susceptible individuals being exposed to environmental viruses, Λ indicates the re-
cruitment rate of susceptible individuals, µ indicates the natural mortality rate of the entire population
(including susceptible, latent, infected, and removed individuals), α indicates the conversion rate of
lurks into infected individuals, σ indicates the cure rate of infected individuals, ζ indicates the disease-
related mortality rate of infected individuals, θ indicates the emission rate of virus to the environment
released by each infected individual, θVI(t)(1 − U(t)) indicates the increase in virus concentration in
the environment per unit time as a whole, ξ indicates the decay rate of virus in the environment, and γ
is the per capita virus clearance rate in the environment.

In the above model, V represents the amount of virus carried in infected individuals. To obtain the
specific form of V , we need to further study the dynamic process of virus infection in host. Dynamic
models of virus infection in different types of hosts have been investigated [9, 11–13, 20, 21]. In this
article, we further propose a virus infection model with humoral immunity in the host as follows:

dT
ds
= Λc − kV(s)T (s) − mT (s),

dT ∗

ds
= KV(s)T (s) − (m + d)T ∗(s),

dV
ds
= pT ∗(s) − cV(s) − qB(s)V(s),

dB
ds
= hB(s)V(s) − ωB(s),

(2.2)

where s represents the dynamic evolution time of cells, viruses, and B cells in hosts, with T = T (s),
T ∗ = T ∗(s), V = V(s) and B = B(s) being the density of healthy cells, infected cells, virus load and B
cells at a fast time scale s, respectively. The parameters Λc, k, m, d, p and c are all positive constants.
Λc indicates the recruitment rate of healthy cells, k indicates the infection rate of cells, m indicates the
natural mortality rate of cells, d indicates the infection mortality rate of cells, p indicates the rate of
virus release by infected cells, c indicates the virus clearance rate in hosts, q indicates the neutralization
rate of B cells, h indicates the production rate of B cells, and ω is the mortality rate of B cells.

In this article, the influence of environmental viruses is also introduced. The number of viruses
in the body of a host will increase due to contact with environmental viruses, breathing and diet.
Therefore, we improve model (2.2) and change it into the following form:

dT
ds
= Λc − kV(s)T (s) − mT (s),

dT ∗

ds
= KV(s)T (s) − (m + d)T ∗(s),

dV
ds
= g(U(t)) + pT ∗(s) − cV(s) − qB(s)V(s),

dB
ds
= hB(s)V(s) − ωB(s),

(2.3)

where function g(U(t)) represents the increase in the number of viruses in the host caused by envi-
ronmental viruses invading into the host per unit time. Virus invasion usually indicates that the virus
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invades the host through breathing, eating, or contact with air, water, food or other objects contam-
inated by environmental viruses. Obviously, as the number of environmental viruses increases, the
number of viruses that invade the host will also increase.

Thus, we finally establish the SEIR model coupling virus transmission both in the body and between
hosts, incubation and environmental effects as follows:



dT
ds
= Λc − kVT − mT,

dT ∗

ds
= KVT − (m + d)T ∗,

dV
ds
= g(U(t)) + pT ∗ − cV − qBV,

dB
ds
= hBV − ωB,



dS
dt
= A − βUS − µS ,

dE
dt
= βUS − (µ + α)E,

dI
dt
= αE − (µ + σ + ζ)I,

dR
dt
= σI − µR,

dU
dt
= θIV(s)(1 − U) − (ξ + γ)U.

(2.4)

There are two time scales in model (2.4). One is the dynamic evolution time s of susceptible
cells, infected cells, viruses and B cells within the host. The other is the dynamic evolution time
t of susceptible, latent, infectious, and recovered individuals and the level of environmental in vitro
contamination of hosts. Time s is a fast time scale within hosts, and time t is a slow time scale between
hosts. Usually, s is faster than t; then, we can assume that t = ωs, where ω is a very small positive
number. However, there is a variable g(U(t)) in subsystem (2.3) within hosts and a variable V(s) in
subsystem (2.1) between hosts. In this case, model (2.4) can be seen as a coupling models (2.1) and
(2.3) in the body and between hosts.

3. Virus infection model with humoral immunity in a host

For the virus infection model (2.3), since the virus infection change process in the host is much
faster than the disease transmission process between hosts, we can assume that the environmental
contamination rate U(t) in model (2.3) remains constant U (0 ≤ U ≤ 1). Thus, model (2.3) becomes
an isolated virus infection dynamics model.

We further suppose that environmental contamination is mainly related to the density of viruses
living in polluted environment, and the host is infected through the ingestion of contaminated food.
Therefore, function g(U) is assumed to satisfy the following condition:

(H1) g′(U) > 0, g′′(U) ≤ 0 for all U ≥ 0, and g(0) = 0.
There are some special forms of g(U) satisfy condition (H1). For example, the linear function

g(U) = aU used in [9, 11, 12], means that the amount of environmental virus entering the host linearly
increases with U. The nonlinear function g(U) = a(U)

1+bU is used in [12], where a > 0, b > 0, which
means that the amount of environmental virus entering the host will reach saturation.

From the biological significance of model (2.3), any solution (T (s),T ∗(s),V(s), B(s)) is assumed to
satisfy the initial conditions:

T (0) > 0, T ∗(0) > 0, V(0) > 0, B(0) > 0. (3.1)

Based on the positivity and boundedness of solutions, the conclusion is as follows.
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Theorem 1. Any solution of model (2.3) with initial conditions (3.1) is positive and ultimately bounded
for all s ≥ 0.

The proof of Theorem 1 is not difficult, so we omit it here.
When U = 0, model (2.3) degrades into model (2.2). The basic reproduction number of virus

infection and antibody response for model (2.2) are defined, respectively, by

Rw0 =
kpT0

c(m + d)
, Rw1 =

hpkΛc

c(m + d)(kω + mh)
. (3.2)

From [9, 11–13, 20, 21], we can summarize the following conclusions.

Theorem 2. Assume that U = 0 in model (2.3).
(1) Model (2.3) always has infection-free equilibrium A0 = (T0, 0, 0, 0), where T0 =

Λc
m ;

(2) If Rw0 > 1, then model (2.3) has no antibody response infection equilibrium A1 = (T1,T ∗1 ,V1, 0),
where, T1 =

T0
Rw0
, T ∗1 =

mT0
m+d (1 − 1

Rw0
) and V1 =

m(Rw0−1)
k ;

(3) If Rw0 > 1 and Rw1 > 1, then model (2.3) has antibody response infection equilibrium A2 =

(T2,T ∗2 ,V2, B2), where, T2 =
hΛc

kω+mh , T ∗2 =
kωΛc

(m+d)(kω+mh) , V2 =
ω
h and B2 =

pkΛch−c(m+d)(kω+mh)
q(m+d)(kω+mh) .

Theorem 3. Assume that U = 0 in model (2.3). Then, the following conclusions hold:
(1) If Rw0 ≤ 1, then infection-free equilibrium A0 = (T0, 0, 0, 0) is globally asymptotically stable;
(2) If Rw0 > 1 and Rw1 ≤ 1, then the antibody-free infection equilibrium A1 = (T1,T ∗1 ,V1, 0) is

globally asymptotically stable;
(3) If Rw0 > 1 and Rw1 > 1, then the antibody response infection equilibrium A2 = (T2,T ∗2 ,V2, B2) is

globally asymptotically stable.

When U > 0, the basic reproduction number of the antibody response to the infection for model
(2.3) is defined by

Rw =
hg(U)(m + d)(kω + mh) + kpωhΛc

cω(m + d)(kω + mh)
.

Obviously, when U = 0, Rw = Rw1. The existence of equilibria for model (2.3) is given in the
following conclusion.

Theorem 4. Assume that U > 0 in model (2.3).
(1) Model (2.3) always has antibody-free infection equilibrium A3(U) = (T3(U),T ∗3(U),V3(U), 0),

where T3(U), T ∗3(U) and V3(U) are given below. Furthermore,

lim
U→0+

A3(U) =

A0 = (T0, 0, 0, 0), if Rw0 ≤ 1,
A1 = (T1,T ∗1 ,V1, 0), if Rw0 > 1.

(2) If Rw > 1, then model (2.3) has antibody response infection equilibrium A4(U) =
(T4(U),T ∗4(U),V4(U), B4(U)), where T4(U), T ∗4(U), V4(U) and B4(U) are given below. Furthermore,

lim
U→0+

A4(U) =


A0 = (T0, 0, 0, 0), if Rw0 ≤ 1,
A1 = (T1,T ∗1 ,V1, 0), if Rw0 > 1, Rw1 ≤ 1,
A2 = (T2,T ∗2 ,V2, B2), if Rw0 > 1, Rw1 > 1.
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Proof. Clearly, equilibrium A3(U) = (T3(U),T ∗3(U),V3(U), 0) satisfies the following equations:
Λc − kV3(U)T3(U) − mT3(U) = 0,
kV3(U)T3(U) − (m + d)T ∗3(U) = 0,
g(U) + pT ∗3(U) − cV3(U) = 0.

(3.3)

We directly obtain

V3(U) =
1
c

(g(U) + pT ∗3(U)), T ∗3(U) =
m

m + d
(T0 − T3(U)) (3.4)

and T3(U) = m
m+kV3(U)T0 < T0. Substituting (3.4) into the first equation of (3.3), we further obtain the

quadratic equation with T3(U) as a root:

T 2
3 (U) − a1T3(U) + a2 = 0, (3.5)

where a1 =
(m+d)g(U)

pm + T0(1 + 1
Rw0

) and a2 =
T 2

0
Rw0
. By direct calculation, Eq (3.5) has a unique root

T3(U) = 1
2 (a1 −

√
a2

1 − 4a2), which satisfies T3(U) < T0. Thus, model (2.3) has a unique no antibody
response infection equilibrium A3(U) = (T3(U),T ∗3(U),V3(U), 0) with

T3(U) =
1
2

(a1 −

√
a2

1 − 4a2) =
T0

Rv(U)
, T ∗3(U) =

Λc

m + d
(1 −

1
Rv(U)

),

V3(U) =
1
c

(g(U) +
pΛc

m + d
(1 −

1
Rv(U)

)), Rv(U) =
2T0

a1 −

√
a2

1 − 4a2

.

When Rw > 1, with calculation, model (2.3) has a unique antibody response infection equilibrium
A4(U) = (T4(U),T ∗4(U),V4(U), B4(U)) with

V4(U) =
ω

h
, T ∗4(U) =

kωΛc

(m + d)(kω + mh)
, T4(U) =

Λch
kω + mh

,

B4(U) =
hg(U)(m + d)(kω + mh) + kωΛc ph − cω(m + d)(kω + mh)

qω(m + d)(kω + mh)
.

(3.6)

This completes the proof. □

Regarding the stability of equilibria A3(U) and A4(U), the following conclusion is established.

Theorem 5. Let U > 0 in model (2.3).
(1) If Rw ≤ 1, then theantibody-free infection equilibrium A3(U) is globally asymptotically stable.
(2) If Rw > 1, then the antibody response infection equilibrium A4(U) is globally asymptotically

stable.

Proof. For equilibrium A3(U), we define the Lyapunov function L3 as follows:

L3 = T3(
T
T3
− ln

T
T3
− 1) + T ∗3(

T ∗

T ∗3
− ln

T ∗

T ∗3
− 1) +

m + d
p

V3(
V
V3
− ln

V
V3
− 1) +

q(m + d)
hp

B.
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For equilibrium A4(U), we define the Lyapunov function L4 as follows:

L4 =T4(
T
T4
− ln

T
T4
− 1) + T ∗4(

T ∗

T ∗4
− ln

T ∗

T ∗4
− 1) +

m + d
p

V4(
V
V4
− ln

V
V4
− 1)

+
q(m + d)

hp
B4(

B
B4
− ln

B
B4
− 1).

Computing the derivatives of L3 and L4 along the solution of model (2.3), we can obtain

dL3

dt
=(1 −

T3

T
)(Λc − kVT − mT ) + (1 −

T ∗3
T ∗

)(kVT − (m + d)T ∗)

+
m + d

p
(1 −

V3

V
)(g(U) + pT ∗ − cV − qBV) +

q(m + d)
hp

(hBV − ωB)

=mT3(2 −
T
T3
−

T3

T
) + (m + d)T ∗3(3 −

T3

T
−

V3T ∗

T ∗3V
−

T ∗3TV
T3V3T ∗

)

+
(m + d)g(U)

p
(2 −

V
V3
−

V3

V
) +

q(m + d)B
p

(V3 −
ω

h
),

dL4

dt
=(1 −

T4

T
)(kV4T4 + mT4 − kVT − mT ) + (1 −

T ∗4
T ∗

)(kVT − (m + d)T ∗) +
m + d

p
(1 −

V4

V
)

× (g(U) + pT ∗ −
g(U)
V4

V −
pT ∗4 − qB4V4

V4
V − qBV) +

q(m + d)
hp

(1 −
B4

B
)(hBV − ωB)

=mT4(2 −
T
T4
−

T4

T
) + kV4T4(3 −

T4

T
−

V4T ∗

T ∗4V
−

T ∗4TV
T4V4T ∗

) +
(m + d)g(U)

p
(2 −

V
V4
−

V4

V
).

When Rw ≤ 1, V3 ≤
ω
h . Hence, for any (T,T ∗,V, B) ∈ R4

+,
dL3
dt ≤ 0. Moreover, dH3

dt = 0 implies that
T = T3, T ∗ = T ∗3 and V = V3. Furthermore, B = 0 when V = V3. Thus, from the LaSalle invariance
principle [33], equilibrium A3(U) is globally asymptotically stable.

When Rw > 1, dL4
dt ≤ 0 for any (T,T ∗,V, B) ∈ R4

+. Moreover, dH4
dt = 0 implies that T = T4, T ∗ = T ∗4

and V = V4. In addition, B = B4 when V = V4. Thus, from the LaSalle invariance principle [33],
equilibrium A4(U) is globally asymptotically stable. This completes the proof. □

4. SEIR model without antibody response

4.1. Positivity and boundedness

Here, we discuss the nonnegativity and boundedness of solutions for model (2.4) in the general
case, so we discuss neither the antibody response, nor the antibody dose response. Since the viral
infection change process in the host is much faster than the disease transmission process between the
hosts, we can assume that the state of virus infection in hosts has reached its equilibrium while the state
of disease transmission between the host has not changed. Therefore, we can assume that the fast time
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variable V(s) = V̄(U) in model (2.4); furthermore we have the following form of the coupled model:

dS
dt
= A − βUS − µS ,

dE
dt
= βUS − (µ + α)E,

dI
dt
= αE − (µ + σ + ζ)I,

dR
dt
= σI − µR,

dU
dt
= θIV̄(U)(1 − U) − (ξ + γ)U.

(4.1)

According to Theorem 4, we have V̄(U) with the following expression,

V̄(U) =



1
c

(g(U) + pT ∗3(U)), U > 0, Rw ≤ 1;
ω

h
, U > 0, Rw > 1;

0, U = 0, Rw0 ≤ 1;
m(Rw0 − 1)

k
, U = 0, Rw0 > 1, Rw1 ≤ 1;

ω

h
, U = 0, Rw0 > 1, Rw1 > 1.

(4.2)

For the convenience of statements, we denote R5
+ := {(x1, x2, x3, x4, x5) : xi ≥ 0, i = 1, 2, 3, 4, 0 ≤

x5 ≤ 1}. Due to the biological significance of model (4.1), any solution (S (t), E(t), I(t),U(t)) of model
(4.1) satisfies the following initial condition:

S (0) = S 0, E(0) = E0, I(0) = I0, R(0) = R0, U(0) = U0, (4.3)

where (S 0, E0, I0,R0,U0) ∈ R5
+ and S > 0.

Regarding the nonnegativity and boundedness of solutions for model (4.1), we have the following
conclusions.

Theorem 6. For any initial point x0 = (S 0, E0, I0,R0,U0) ∈ R5
+, model (4.1) has a unique nonnegative

solution u(t) = (S (t), E(t), I(t),R(t),U(t)) ∈ R5
+ defined on [0,∞), and the solution is also ultimately

bounded. Furthermore, 0 ≤ U(t) ≤ 1 for all t ≥ 0.

Proof. Let solution (S (t), E(t), I(t),R(t),U(t)) be defined for t ∈ [0, τ∞) with τ∞ ≤ ∞. We first
prove the nonnegativity of the solution. Assume that (S 0, E0, I0,R0,U0) > 0. If we define m(t) =
min{S (t), E(t), I(t),R(t),U(t)}, then m(0) = min{S (0), E(0), I(0),R(0),U(0)} > 0. Now, we need to
verify m(t) > 0 for any t > 0. If we assume that there is a t0 ∈ (0, τ∞) satisfying m(t0) = 0 and m(t) > 0
for any t ∈ [0, t0). If m(t0) = S (t0), then from the first equation of model (4.5), we easily have

dS (t)
dt
≥ −(βU(t) + µ)S (t), t ∈ [0, t0).
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It follows that S (t0) ≥ S (0)e−
∫ t0

0 (βU(u)+µ)du > 0, which leads to a contradiction. Similarly, if m(t0) =
E(t0), m(t0) = I(t0), m(t0) = R(t0) or m(t0) = U(t0), we also obtain a contradiction. Therefore, m(t) > 0
for any t ∈ [0, τ∞). If we assume that (S 0, E0, I0,R0,U0) ≥ 0, then, from the continuity of solutions
with respect to initial values, we obtain (S (t), E(t), I(t),R(t),U(t)) ≥ 0 for any t ∈ [0, τ∞).

Next, we prove the boundedness of the solutions. Let N(t) = S (t)+ E(t)+ I(t)+R(t); then, we have

dN(t)
dt
=A − µS − µE − (µ + ζ)I − µR ≤ A − µN(t). (4.4)

This shows that N(t) is bounded for any t ∈ [0, τ∞). Now we consider U(t). Assume that U(0) < 1.
If there is a t0 ∈ (0, τ∞) satisfying U(t0) = 1 and U(t) < 1 for any t ∈ [0, t0), then dU(t0)

dt ≥ 0.
However, from the fifth equation of model (4.1), we have dU(t0)

dt = −(ξ+γ), which causes a contradiction.
Therefore, U(t) < 1 for any t ∈ [0, τ∞). Furthermore, assume that U(0) ≤ 1; then, by the continuity
of solutions with respect to initial values, we can obtain U(t) ≤ 1 for any t ∈ [0, τ∞). Thus, we finally
determine that solution (S (t), E(t), I(t),R(t),U(t)) is defined for all t ≥ 0. That is, τ∞ = ∞.

Again, from (4.4), we have lim supt→∞ N(t) ≤ A
µ
. Specifically, we also obtain N(t) ≤ A

µ
for all

t ≥ 0 while N(0) ≤ A
µ
. This shows that solution u(t) is also ultimately bounded. This completes the

proof. □

4.2. Basic reproduction number and equilibria

Now, we consider the SEIR model without an antibody response. Because the removed R does not
emerge in the other four equations of model (4.1), we can only investigate the following sub-model

dS
dt
= A − βUS − µS ,

dE
dt
= βUS − (µ + α)E,

dI
dt
= αE − (µ + σ + ζ)I,

dU
dt
= θIV̄(U)(1 − U) − (ξ + γ)U.

(4.5)

For the convenience of discussion, we always assume that Rw0 > 1 and Rw ≤ 1 in this section. Thus,
from (4.2), we can determine that the fast time variable V̄(U) in model (4.5) has the form V̄(U) =
1
c (g(U) + pT ∗3(U)). Moreover, from (4.2), we also have V̄(0) = m(Rw0−1)

k . Now, we define the basic
reproduction number for model (4.5) as follows:

Rb0 =
βS 0αθV̄(0)

(µ + α)(µ + σ + ζ)(ξ + γ)
. (4.6)

Obviously, if Rw0 < 1, then Rb0 < 0; if Rw0 = 1, then Rb0 = 0; if Rw0 > 1, then Rb0 > 0; and if
Rb0 > 1, then Rw0 > 1.

We rewrite Rb0 =
1

(µ+σ+ζ) ·θ · V̄(0) · 1
(ξ+γ) ·β ·S 0 ·

1
(µ+α) ·α. Where, 1

(µ+σ+ζ) indicates the average infected
period of an infected individual. θ indicates the emission rate of the virus to the environment released
by each infected individual. V̄(0) indicates the host’s virus load in the initial stage of environmental
pollution. 1

(ξ+γ) indicates the average survival time of the virus in the environment. β indicates the
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probability of infection of susceptible individuals after contact with environmental viruses. S 0 indicates
the total number of susceptible individuals in the initial stage of infection. 1

µ+α
indicates the average

latent period of latent individuals. α indicates the conversion rate of latent individuals into infected
individuals.

Therefore, the basic regeneration number Rb0 denotes the number of new cases in which in the initial
stage of infection, an infected individual releases viruses into the environment during the infection
period. These viruses infect susceptible individuals during the survival period and make susceptible
individuals become latent individuals, and last these latent individuals become infected individuals in
the incubation period.

Define the functions F(U) = 1−U
c

[
g(U) + pm

m+d

(
T0 − T3(U)

)]
, G(U) = 1

Rb1
+

βU
µRb1

and H(U) = F(U) −
G(U), where Rb1 =

βS 0αθ

(µ+α)(µ+σ+ζ)(ξ+γ) . Clearly, Rb0 = Rb1V̄(0).
Model (4.5) always has disease-free equilibrium W̃0 = (S 0, 0, 0, 0) with S 0 =

A
µ
. Let W̃ =

(S̃ , Ẽ, Ĩ, Ũ) be the positive equilibrium of model (4.5) that satisfies the following equations:
A − βŨS̃ − µS̃ = 0,
βŨS̃ − (µ + α)Ẽ = 0,
αẼ − (µ + σ + ζ)Ĩ = 0,
θĨV̄(Ũ)(1 − Ũ) − (ξ + γ)Ũ = 0.

(4.7)

Easily, we can obtain S̃ = A
µ+βŨ , Ẽ = AβŨ

(µ+α)(µ+βŨ) , Ĩ = AβαŨ
(µ+α)(µ+βŨ)(µ+σ+ζ) and Ũ is a zero point of

equation H(U) = 0 in (0, 1). Let HM = max0≤U≤1 H(U). Combining the basic reproduction number
Rb0, assuming the existence of equilibria, we can obtain the following conclusion.

Lemma 1. (1) Model (4.5) always has disease-free equilibrium W̃0 = (S 0, 0, 0, 0) with S 0 =
A
µ
.

(2) Model (4.5) has a unique endemic equilibrium W̃ = (S̃ , Ẽ, Ĩ, Ũ) if and only if one of the condi-
tions given below holds:

(a) Rb0 > 1; (b) Rb0 = 1 and HM > 0; (c) Rb0 < 1 and HM = 0.
(3) Model (4.5) has two positive equilibria, W̃1 = (S̃ 1, Ẽ1, Ĩ1, Ũ1) and W̃2 = (S̃ 2, Ẽ2, Ĩ2, Ũ2) if and

only if the condition given below holds:
(d) Rb0 < 1 and HM > 0.
(4) Model (4.5) has only disease-free equilibrium W̃0 = (S 0, 0, 0, 0) if and only if one of the condi-

tions given below holds:
(e) HM < 0; ( f ) Rb0 = 1 and HM = 0.

Proof. With calculation we obtain H(0) = V̄(0)(1 − 1
Rb0

) and H(1) = − 1
Rb1
−

β

µRb1
< 0. The second order

derivative of H(U) is given as follows:

H′′(U) = −
2
c
[
g′(U) −

mp
(m + d)

T ′3(U)
]
+

1 − U
c
[
g′′(U) −

mp
(m + d)

T ′′3 (U)
]
.

From the assumption (H1), a′1(U) = g′(U)m+d
pm > 0 and a′′1 (U) = (m+d)g′′(U)

pm ≤ 0. In addition, a2 > 0,
where a1 and a2 are defined in (3.5). This implies that T ′3(U) = 1

2a′1(U)(1 − a1(U)√
a2

1(U)−4a2
) < 0 and

T ′′3 (U) = 1
2a′′1 (U)[1 − a1(U)√

a2
1(U)−4a2

] + 1
2 (a′1(U))2 4a2

[a2
1(U)−4a2]

3
2
> 0. Therefore, we further obtain H′′(U) < 0

for any U ≥ 0. H(U) is an upper convex function that has at most two zeros.
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If condition (a) is true, then due to Rb0 > 1, H(U) = 0 has a unique positive root Ũ ∈ (0, 1).
Therefore, endemic equilibrium W̃ = (S̃ , Ẽ, Ĩ, Ũ) exists and is unique.

If condition (b) holds, H(0) = 0 when Rb0 = 1. From HM > 0, H(U) = 0 has unique positive root
Ũ ∈ (0, 1). Thus, endemic equilibrium W̃ = (S̃ , Ẽ, Ĩ, Ũ) exists and is unique.

Under condition (c), H(0) < 0 when Rb0 < 1. H(U) = 0 has unique positive roots Ũ ∈ (0, 1) with
H(Ũ) when HM = 0. Therefore, a unique endemic equilibrium W̃ = (S̃ , Ẽ, Ĩ, Ũ) exists.

Let condition (d) hold; then, due to H(0) < 0 and HM > 0, H(U) = 0 has only two positive roots.
Thus, model (4.5) has only two positive equilibria: W̃1 = (S̃ 1, Ẽ1, Ĩ1, Ũ1) and W̃2 = (S̃ 2, Ẽ2, Ĩ2, Ũ2).

If condition (e) is true, owing to HM < 0, H(U) = 0 has no roots in (0, 1). Hence, only disease-free
equilibrium W̃0 = ( A

µ
, 0, 0, 0) exists.

Last, for condition ( f ), then, due to H(0) = 0, H(U) < 0 for all U ∈ (0, 1]. Obviously, H(U) = 0
has only one root U = 0. Hence, only disease-free equilibrium W̃0 = ( A

µ
, 0, 0, 0) exists. This completes

the proof. □

Remark 1. Conclusion (3) in Lemma 1 indicates that model (4.5) generates backward bifurcation at
disease-free equilibrium W0 when Rb0 < 1.

4.3. Stability of equilibria

We first consider the stability of the disease-free equilibrium W̃0 = (S 0, 0, 0, 0) of the model (4.5).
The following conclusion is established.

Theorem 7. (a) If Rb0 < 1, then equilibrium W̃0 is locally asymptotically stable;
(b) If Rb0 > 1, then equilibrium W̃0 is unstable.

Proof. Calculating the Jacobian matrix of model (4.5) at any equilibrium W̃ = (S̃ , Ẽ, Ĩ, Ũ), we obtain

J(W̃) =


−βŨ − µ 0 0 −βS̃
βŨ −(µ + α) 0 βS̃
0 α −(µ + σ + ζ) 0
0 0 θV̄(Ũ)(1 − Ũ) J44(W̃)

 , (4.8)

where J44(W̃) = θĨ
(
V̄ ′(Ũ)(1 − Ũ) − V̄(Ũ)

)
− (ξ + γ).

From (4.8), the Jacobian matrix at equilibrium W̃0 is

J(W̃0) =


−µ 0 0 −βS 0

0 −(µ + α) 0 βS 0

0 α −(µ + σ + ζ) 0
0 0 θV̄(0) −(ξ + γ)

 .
Furthermore, the characteristic equation of J(W̃0) is

f (λ) = (λ + µ)(λ3 + a2(W̃0)λ2 + a1(W̃0)λ + a0(W̃0)) = 0,

where

a2(W̃0) = (µ + α) + (µ + σ + ζ) + (ξ + γ),
a1(W̃0) = (µ + α)(ξ + γ) + (ξ + γ)(µ + σ + ζ) + (µ + σ + ζ)(µ + α),
a0(W̃0) = (µ + α)(µ + σ + ζ)(ξ + γ) − βαθV̄(0)S 0 = (µ + α)(µ + σ + ζ)(ξ + γ)(1 − Rb0).
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When Rb0 < 1, we obtain ai > 0 for i = 0, 1, 2. By calculation we further obtain

a1(W̃0)a2(W̃0) − a0(W̃0)
=(µ + α)2(ξ + γ) + (ξ + γ)(µ + α)(µ + σ + ζ) + (ξ + γ)2(µ + α) + (µ + α)(µ + σ + ζ)(ξ + γ)
+ (ξ + γ)(µ + σ + ζ)2 + (µ + σ + ζ)(ξ + γ)2 + (µ + α)2(µ + σ + ζ) + (µ + σ + ζ)2(µ + α)
+ (ξ + γ)(µ + α)(µ + σ + ζ) − (µ + α)(µ + σ + ζ)(ξ + γ) + βαθV̄(0)S 0

=(µ + α)2(ξ + γ) + 2(µ + α)(ξ + γ)(µ + σ + ζ) + (µ + α)(ξ + γ)2

+ (µ + σ + ζ)2(ξ + γ) + (ξ + γ)2(µ + σ + ζ) + (µ + α)2(µ + σ + ζ)
+ (µ + σ + ζ)2(µ + α) + βαθV̄(0)S 0 > 0.

Thus, from the Routh-Hurwitz criterion [35], all roots of equation f (λ) = 0 have negative real parts.
Hence, W̃0 is locally asymptotically stable. When Rb0 > 1, a0(W̃0) < 0; then, equation f (λ) = 0 has at
least one positive root. Therefore, W̃0 is unstable. This completes the proof. □

Next, the stability of the endemic equilibrium W̃ = (S̃ , Ẽ, Ĩ, Ũ) of model (4.5) is considered. From
(4.8), we can see that the Jacobian matrix of model (4.5) at equilibrium W̃ is

J(W̃) =


−βŨ − µ 0 0 −βS̃
βŨ −(µ + α) 0 βS̃
0 α −(µ + σ + ζ) 0
0 0 θV̄(Ũ)(1 − Ũ) J44(W̃)

 ,
where J44(W̃) = θĨ

(
V̄ ′(Ũ)(1 − Ũ) − V̄(Ũ)

)
− (ξ + γ). From the fourth equation of equations (4.7), we

can obtain θĨ = (ξ+γ)Ũ
V̄(Ũ)(1−Ũ) =

(ξ+γ)
F(Ũ) Ũ. Then, we have J44(W̃) = −(ξ + γ) F(Ũ)−ŨF′(Ũ)

F(Ũ) . Denote K(Ũ) =
F(Ũ) − ŨF′(Ũ); then, K′(Ũ) > 0 for Ũ > 0. Since K(0) = V̄(0) ≥ 0, K(Ũ) > 0 for Ũ > 0.

with calculation we can obtain the characteristic equation J(W̃) as follows:

f1(λ) =λ4 + b3(W̃)λ3 + b2(W̃)λ2 + b1(W̃)λ + b0(W̃) = 0,

where

b3(W̃) =(ξ + γ)
K(Ũ)
F(Ũ)

+ (µ + α) + (µ + σ + ζ) + (βŨ + µ),

b2(W̃) =(µ + α + µ + σ + ζ)(ξ + γ)
K(Ũ)
F(Ũ)

+ (µ + α)(µ + σ + ζ) +
(
(ξ + γ)

K(Ũ)
F(Ũ)

+ (µ + α) + (µ + σ + ζ)
)
(βŨ + µ),

b1(W̃) =(ξ + γ)
K(Ũ)
F(Ũ)

(µ + α)(µ + σ + ζ) − βS̃αθV̄(Ũ)(1 − Ũ) + (µ + α

+ µ + σ + ζ)(ξ + γ)
K(Ũ)
F(Ũ)

(βŨ + µ) + (µ + α)(µ + σ + ζ)(βŨ + µ),

b0(W̃) =(µ + α)(µ + σ + ζ)(ξ + γ)
K(Ũ)
F(Ũ)

(βŨ + µ) − βS̃αθV̄(Ũ)(1 − Ũ)µ.

Obviously, bi(W̃) > 0 for i = 2, 3. Moreover, we can propose the following conclusion.
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Theorem 8. Assume that F′(Ũ) ≤ 0 and

b3(W̃)b2(W̃)b1(W̃) > b1(W̃)2 + b3(W̃)2b0(W̃), (4.9)

and either conditions (a) or (b) in Lemma 1 holds. Then, unique endemic equilibrium W̃ is locally
asymptotically stable.

Proof. Equations (4.7) imply S̃ = (µ+α)Ẽ
βŨ =

(µ+α)(µ+σ+ζ)Ĩ
βŨα =

(µ+α)(µ+σ+ζ)(ξ+γ)
βαθF(Ũ) . Then, we obtain

b1(W̃) =(ξ + γ)
K(Ũ)
F(Ũ)

(µ + α)(µ + σ + ζ) − βS̃αθF(Ũ) + (µ + α + µ + σ + ζ)

× (ξ + γ)
K(Ũ)
F(Ũ)

(βŨ + µ) + (βŨ + µ)(µ + α)(µ + σ + ζ)

=(µ + α)(µ + σ + ζ)(ξ + γ)
(K(Ũ)
F(Ũ)

− 1
)
+ (µ + α + µ + σ + ζ)

× (ξ + γ)
K(Ũ)
F(Ũ)

(βŨ + µ) + (µ + α)(µ + σ + ζ)(βŨ + µ),

b0(W̃) =(µ + α)(µ + σ + ζ)(ξ + γ)
K(Ũ)
F(Ũ)

(βŨ + µ) − βS̃αθF(Ũ)µ

=(µ + α)(µ + σ + ζ)(ξ + γ)
K(Ũ)
F(Ũ)

βŨ + (µ + α)(µ + σ + ζ)(ξ + γ)µ
(K(Ũ)
F(Ũ)

− 1
)
.

From F′(Ũ) ≤ 0, K(Ũ) = F(Ũ) − ŨF′(Ũ) ≥ F(Ũ) and K(Ũ)
F(Ũ) − 1 ≥ 0. This implies that bi(W̃) > 0

for i = 0, 1.
Next, we verify b3(W̃)b2(W̃) − b1(W̃) > 0. which calculation, we obtain

b3(W̃)b2(W̃) − b1(W̃)

=(µ + α)((ξ + γ)
K(Ũ)
F(Ũ)

)2 + (µ + σ + ζ)((ξ + γ)
K(Ũ)
F(Ũ)

)2 + ((ξ + γ)
K(Ũ)
F(Ũ)

)2(βŨ + µ)

+ (µ + α)(βŨ + µ)(ξ + γ)
K(Ũ)
F(Ũ)

+ (µ + σ + ζ)(βŨ + µ)(ξ + γ)
K(Ũ)
F(Ũ)

+ (µ + σ + ζ)2(ξ + γ)
K(Ũ)
F(Ũ)

+ (µ + α)(µ + σ + ζ)(ξ + γ)
K(Ũ)
F(Ũ)

+ (µ + α)(µ + σ + ζ)2

+ (µ + σ + ζ)2(βŨ + µ) + (µ + σ + ζ)(µ + α)(βŨ + µ)

+ (µ + σ + ζ)(µ + α)(ξ + γ)
K(Ũ)
F(Ũ)

+ (µ + α)2 + (µ + α)2(µ + σ + ζ) + (µ + α)2(βŨ + µ)

+ (µ + σ + ζ)(ξ + γ)
K(Ũ)
F(Ũ)

(βŨ + µ)(ξ + γ)
K(Ũ)
F(Ũ)

+ (µ + α)(βŨ + µ)(ξ + γ)
K(Ũ)
F(Ũ)

+ (µ + α)

× (µ + σ + ζ)(βŨ + µ) + (βŨ + µ)2(ξ + γ)
K(Ũ)
F(Ũ)

+ (µ + σ + ζ)(βŨ + µ)2 + (µ + α)(βŨ + µ)2 + A,

where A = βS̃αθV̄(Ũ)(1 − Ũ). From the expression of S̃ and F(Ũ) = V̄(Ũ)(1 − Ũ), A = (µ +
α)(µ + σ + ζ)(ξ + γ) > 0. Hence, we can obtain b3(W̃)b2(W̃) − b1(W̃) > 0. Thus, from the Routh-
Hurwitz criterion [35], all roots of characteristic equation f1(λ) = 0 have negative real parts. Therefore,
equilibrium W̃ is locally asymptotically stable. This completes the proof. □
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Remark 2. In the above conclusions, we show that the unique endemic equilibrium is locally asymp-
totically stable based on conditions (a) and (b) in Lemma 1. However, the same conclusion is not
obtained for condition (c) in Lemma 1. Therefore, we give an interesting open problem of whether the
unique endemic equilibrium in condition (c) is also locally asymptotically stable.

Remark 3. In Theorem 8, in addition to conditions Rb0 > 1 or Rb0 = 1,HM > 0, additional hypotheses
F′(Ũ) ≤ 0 and condition (4.9) are also needed. Therefore, an interesting open question is whether
(4.9) can be directly verified. The other open question is whether condition F′(Ũ) ≤ 0 can be removed.

Remark 4. In Theorem 8, only the local asymptotic stability of equilibrium W̃ is established. Whether
we can further construct the appropriate Lyapunov function and use the LaSalle invariant principle
[33] or the geometric method [34] to obtain the global stability of equilibrium W̃ is still an open
problem.

Now, the stability of positive equilibrium W̃1 = (S̃ 1, Ẽ1, Ĩ1, Ũ1) of model (4.5) is considered in the
following theorem.

Theorem 9. If Rb0 < 1 and HM > 0, then positive equilibrium W̃1 is unstable.

Proof. Using the same calculation used in Theorem 8, the characteristic equation of model (4.5) at
equilibrium W̃1 is given in the following form:

f2(λ) = λ4 + b3(W̃1)λ3 + b2(W̃1)λ2 + b1(W̃1)λ + b0(W̃1) = 0,

where

b3(W̃1) =(ξ + γ)
K(Ũ1)
F(Ũ1)

+ (µ + α) + (µ + σ + ζ) + (βŨ1 + µ) > 0,

b2(W̃1) =(µ + α + µ + σ + ζ)(ξ + γ)
K(Ũ1)
F(Ũ1)

+ (µ + σ + ζ)(µ + α)

+
(
(ξ + γ)

K(Ũ1)
F(Ũ1)

+ (µ + α) + (µ + σ + ζ)
)
(βŨ1 + µ) > 0,

b1(W̃1) =(µ + α)(µ + σ + ζ)(ξ + γ)
(K(Ũ1)
F(Ũ1)

− 1
)
+ (µ + α + µ + σ + ζ)

× (ξ + γ)
K(Ũ1)
F(Ũ1)

(βŨ1 + µ) + (µ + α)(µ + σ + ζ)(βŨ1 + µ),

b0(W̃1) =(µ + α)(µ + σ + ζ)(ξ + γ)
K(Ũ1)
F(Ũ1)

βŨ1 + (µ + α)(µ + σ + ζ)(ξ + γ)µ
(K(Ũ1)

F(Ũ1
− 1)
)
.

From conditions Rb0 < 1 and HM > 0, H′(Ũ1) > 0 and H(Ũ1) = 0. Furthermore, F′(Ũ1) > G′(Ũ1) >
0 and F(Ũ1) = G(Ũ1). Hence, since

K(Ũ1)
F(Ũ1)

− 1 = −
Ũ1F′(Ũ1)

F(Ũ1)
< −

Ũ1G′(Ũ1)
G(Ũ1)

= −
βŨ1

βŨ1 + µ
,
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we can obtain

b0(W̃1) = (µ + σ + ζ)(µ + α)(ξ + γ)
[
(1 −

Ũ1F′(Ũ1)
F(Ũ1)

)βŨ1 − µ
Ũ1F′(Ũ1)

F(Ũ1)
]

< (µ + α)(µ + σ + ζ)(ξ + γ)
[
βŨ1 −

Ũ1G′(Ũ1)
G(Ũ1)

βŨ1 − µ
Ũ1G′(Ũ1)

G(Ũ1)
]

= (µ + α)(µ + σ + ζ)(ξ + γ)
[
βŨ1 −

Ũ1G′(Ũ1)
G(Ũ1)

(βŨ1 + µ)
]

= (µ + α)(µ + σ + ζ)(ξ + γ)[βŨ1 − βŨ1] = 0.

Hence, the characteristic equation f2(λ) = 0 has at least one positive root. Thus, positive equilibrium
W̃1 is unstable. This completes the proof. □

Finally, the stability of the positive equilibrium W̃2 = (S̃ 2, Ẽ2, Ĩ2, Ũ2) of model (4.5) is discussed.
Using the same calculation used in Theorem 8, we obtained the characteristic equation of model (4.5)
at equilibrium W̃2, which is given in the following form:

f3(λ) = λ4 + b3(W̃2)λ3 + b2(W̃2)λ2 + b1(W̃2)λ + b0(W̃2) = 0,

where

b3(W̃2) =(ξ + γ)
K(Ũ2)
F(Ũ2)

+ (µ + α) + (µ + σ + ζ) + (βŨ2 + µ) > 0,

b2(W̃2) =(µ + α + µ + σ + ζ)(ξ + γ)
K(Ũ2)
F(Ũ2)

+ (µ + α)(µ + σ + ζ)

+
(
(ξ + γ)

K(Ũ2)
F(Ũ2)

+ (µ + α) + (µ + σ + ζ)
)
(βŨ2 + µ) > 0,

b1(W̃2) =(ξ + γ)
K(Ũ2)
F(Ũ2)

(µ + α)(µ + σ + ζ) − βS̃ 2αθV̄(Ũ2)(1 − Ũ2) + (µ + α

+ µ + σ + ζ)(ξ + γ)
K(Ũ2)
F(Ũ2)

(βŨ2 + µ) + (µ + α)(µ + σ + ζ)(βŨ2 + µ),

b0(W̃2) =(µ + α)(µ + σ + ζ)(ξ + γ)
K(Ũ2)
F(Ũ2)

(βŨ2 + µ) − βS̃αθV̄(Ũ2)(1 − Ũ2)µ.

Obviously, bi(W̃2) > 0 for i = 2, 3. Furthermore, we can give the following theorem.

Theorem 10. Assume that F′(Ũ2) ≤ 0 and

b3(W̃2)b2(W̃2)b1(W̃2) > b1(W̃2)2 + b3(W̃2)2b0(W̃2), (4.10)

and condition (d) in Lemma 1 holds. Then, positive equilibrium W̃2 is locally asymptotically stable.

Proof. From the equations of which equilibrium W̃2 is satisfied, S̃ 2 =
(µ+α)Ẽ2

βŨ2
=

(µ+α)(µ+σ+ζ)Ĩ2

βŨ2α
. The fourth

equation of model (4.5) indicates that θĨ2 =
(ξ+γ)Ũ2

V̄2(Ũ2)(1−Ũ2) =
(ξ+γ)
F(Ũ2)Ũ2. In addition, S̃ 2 =

(µ+α)(µ+σ+ζ)(ξ+γ)
βαθF(Ũ2) .
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Hence, we can obtain

b1(W̃2) =(ξ + γ)
K(Ũ2)
F(Ũ2)

(µ + α)(µ + σ + ζ) − βS̃ 2αθF(Ũ2) + (µ + α + µ + σ + ζ)

× (ξ + γ)
K(Ũ2)
F(Ũ2)

(βŨ2 + µ) + (µ + α)(µ + σ + ζ)(βŨ2 + µ)

=(µ + α)(µ + σ + ζ)(ξ + γ)
(K(Ũ2)
F(Ũ2)

− 1
)
+ (µ + α + µ + σ + ζ)

× (ξ + γ)
K(Ũ2)
F(Ũ2)

(βŨ2 + µ) + (µ + α)(µ + σ + ζ)(βŨ2 + µ),

b0(W̃2) =(µ + α)(µ + σ + ζ)(ξ + γ)
K(Ũ2)
F(Ũ2)

(βŨ2 + µ) − βS̃ 2αθF(Ũ2)µ

=(µ + α)(µ + σ + ζ)(ξ + γ)
K(Ũ2)
F(Ũ2)

βŨ2 + (µ + α)(µ + σ + ζ)(ξ + γ)µ
(K(Ũ2)
F(Ũ2)

− 1
)
.

From the assumption F′(Ũ2) ≤ 0, K(Ũ2) = F(Ũ2) − Ũ2F′(Ũ2) ≥ F(Ũ2) and K(Ũ2)
F(Ũ2) − 1 ≥ 0. Finally,

bi(W̃2) > 0 for i = 0, 1.
Next, we verify b3(W̃2)b2(W̃2) − b1(W̃2) > 0. With calculation, we obtain

b3(W̃2)b2(W̃2) − b1(W̃2)

=(µ + α)((ξ + γ)
K(Ũ2)
F(Ũ2)

)2 + (µ + σ + ζ)((ξ + γ)
K(Ũ2)
F(Ũ2)

)2 + ((ξ + γ)
K(Ũ2)
F(Ũ2)

)2(βŨ2 + µ)

+ (µ + α)(βŨ2 + µ)(ξ + γ)
K(Ũ2)
F(Ũ2)

+ (µ + σ + ζ)(βŨ2 + µ)(ξ + γ)
K(Ũ2)
F(Ũ2)

+ (µ + σ + ζ)2(ξ + γ)
K(Ũ2)
F(Ũ2)

+ (µ + α)(µ + σ + ζ)(ξ + γ)
K(Ũ2)
F(Ũ2)

+ (µ + α)(µ + σ + ζ)2

+ (µ + σ + ζ)2(βŨ2 + µ) + (µ + σ + ζ)(µ + α)(βŨ2 + µ) + (µ + σ + ζ)(µ + α)(ξ + γ)
K(Ũ2)
F(Ũ2)

+ (µ + α)2(ξ + γ)
K(Ũ2)
F(Ũ2)

+ (µ + α)2(µ + σ + ζ) + (µ + α)2(βŨ2 + µ)

+ (µ + σ + ζ)(βŨ2 + µ)(ξ + γ)
K(Ũ2)
F(Ũ2)

+ (µ + α)(βŨ2 + µ)(ξ + γ)
K(Ũ2)
F(Ũ2)

+ (µ + α)(µ + σ + ζ)(βŨ2 + µ) + (βŨ2 + µ)2(ξ + γ)
K(Ũ2)
F(Ũ2)

+ (µ + σ + ζ)

× (βŨ2 + µ)2 + (µ + α)(βŨ2 + µ)2 + B,

where B = βS̃ 2αθV̄(Ũ2)(1 − Ũ2). From the expression of S̃ 2 and F(Ũ2) = V̄(Ũ2)(1 − Ũ2), B =
(µ + α)(µ + σ + ζ)(ξ + γ) > 0. Hence, we can obtain b3(W̃2)b2(W̃2) − b1(W̃2) > 0. Thus, from the
Routh-Hurwitz criterion [35], all roots of characteristic equation f3(λ) = 0 have negative real parts.
Therefore, equilibrium W̃2 is locally asymptotically stable. This completes the proof. □

Remark 5. In Theorem 10, we see that in addition to conditions Rb0 < 1 or HM > 0, the additional
hypotheses F′(Ũ2) ≤ 0 and condition (4.10) are also required. Therefore, an interesting open question
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is whether we can get that (4.10) directly holds when Rb0 < 1, HM > 0 and Rw ≤ 1. The other open
question is whether condition F′(Ũ2) ≤ 0 can be removed.

4.4. Uniform persistence

Now, we discuss the uniform persistence of positive solutions for model (4.5). We can establish the
following conclusion.

Theorem 11. Assume that Rb0 > 1; then, there is a constant ε > 0 such that for any initial value
x0 = (S 0, E0, I0,U0) ∈ R4

+ with E0 , 0, I0 , 0 and U0 , 0 solutions, the u(t) = (S (t), E(t), I(t),U(t)) of
model (4.5) satisfies

lim inf
t→∞

S (t) ≥ ε, lim inf
t→∞

E(t) ≥ ε, lim inf
t→∞

I(t) ≥ ε, lim inf
t→∞

U(t) ≥ ε.

Proof. For any initial point x0 = (S 0, E0, I0,U0) ∈ R4
+ with E0 , 0, I0 , 0 and U0 , 0, let

u(t) = (S (t), E(t), I(t),U(t)) be the solution to model (4.5) satisfying initial condition u(0) = x0. From
Theorem 6,

dS (t)
dt
≥ A − (µ + β)S (t).

By comparison principle, lim inft→∞ S (t) ≥ A
µ+β
. This shows that S (t) is uniformly persistent.

Define the set X = {x = (S , E, I,U) ∈ R4
+ : E > 0, I > 0,U > 0}. The boundary of X is ∂X =

{(S , E, I,U) ∈ R4
+ : E = 0 or I = 0 or U = 0}. Denote M∂ = {x0 ∈ R4

+ : u(t) ∈ ∂X,∀ t ≥ 0}.
Let M0 = {W0}. Clearly, M0 ⊂ ∪x0∈M∂

ω(x0), where ω(x0) is the ω-limit set of solution u(t) with
initial value u(0) = x0. Since x0 ∈ M∂, and u(t) ∈ ∂X for all t ≥ 0, we have E(t) ≡ 0, I(t) ≡ 0 or
U(t) ≡ 0. If E(t) ≡ 0, then from the third and fourth equations of model (4.5), we know that I(t) ≡ 0
and U(t) ≡ 0. Thus, model (4.5) is reduced to the following equation:

dS (t)
dt
= A − µS (t). (4.11)

From this, we can obtain limt→∞ S (t) = S 0, which implies that ω(x0) = {W0}. If I(t) ≡ 0, then from
the second and fourth equations of model (4.5), we know that I(t) ≡ 0 and U(t) ≡ 0. Thus, model (4.5)
is also reduced to Eq (4.11), which implies that ω(x0) = {W0}. If U(t) ≡ 0, then similar to the above
discussions, we obtain ω(x0) = {W0}. Therefore, we finally obtain M0 = ∪x0∈M∂

ω(x0). Moreover, M0 is
isolated and noncyclic in ∂X.

Now we prove that K s(W0) ∩ X = ∅, where K s(W0) is the stable set of W0. By contradiction, we
assume that there is a x0 ∈ X such that limt→∞ u(t) = W0. Since Rb0 > 1, we can choose a sufficiently
small constant ε > 0 such that

αθ(V̄(0) − ε)β(S 0 − ε)
(µ + α)(µ + σ + ζ)(ξ + γ)

−
θ(V̄(0) − ε)ε

(ξ + γ)
− 1 > 0.

Thus, there is a t∗ > 0 such that S (t) ≥ S 0 − ε, U(t) < ε, E(t) < ε and I(t) < ε for all t ≥ t∗.
Furthermore, from limU→0 V̄(U) = V̄(0), we can also obtain V̄(U(t)) > V̄(0) − ε for all t ≥ t∗. The
following function is defined:

L(t) = E(t) +
µ + α

α
I(t) +

(µ + α)(µ + σ + ζ)
αθ(V̄(0) − ε)

U(t).
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Then limt→∞ L(t) = 0. When t ≥ t∗,

dL(t)
dt
=βU(t)S (t) − (µ + α)E(t) +

µ + α

α
αE(t) −

µ + α

α
(µ + σ + ζ)I(t)

+
(µ + α)(µ + σ + ζ)
αθ(V̄(0) − ε)

θI(t)V̄(U(t)) −
(µ + α)(µ + σ + ζ)
αθ(V̄(0) − ε)

θI(t)

× V̄(U(t))U(t) −
(µ + α)(µ + σ + ζ)
αθ(V̄(0) − ε)

(ξ + γ)U(t)

≥βU(t)S (t) −
(µ + α)(µ + σ + ζ)

α
I(t) +

(µ + α)(µ + σ + ζ)
αθ(V̄(0) − ε)

θI(t)(V̄(0) − ε)

−
(µ + α)(µ + σ + ζ)
αθ(V̄(0) − ε)

θI(t)(V̄(0) − ε)U(t)) −
(µ + α)(µ + σ + ζ)
αθ(V̄(0) − ε)

(ξ + γ)U(t)

=βU(t)S (t) +
(µ + α)(µ + σ + ζ)

α
I(t)U(t) −

(µ + α)(µ + σ + ζ)
αθ(V̄(0) − ε)

(ξ + γ)U(t)

≥
[
β(S 0 − ε) −

(µ + α)(µ + σ + ζ)
α

ε −
(µ + α)(µ + σ + ζ)(ξ + γ)

αθ(V̄(0) − ε)
]
U(t)

=
[ αθ(V̄(0) − ε)β(S 0 − ε)
(µ + α)(µ + σ + ζ)(ξ + γ)

−
θ(V̄(0) − ε)ε

(ξ + γ)
− 1
] (µ + α)(µ + σ + ζ)(ξ + γ)

αθ(V̄(0) − ε)
U(t).

Clearly, dL(t)
dt > 0 for all t ≥ t∗. Therefore, L(t) is an increasing function of t ≥ t∗. limt→∞ L(t) , 0,

which leads to a contradiction. Then, K s(W0)∩ X = ∅. According to theory of persistence for dynamic
systems, there is a constant ε such that for any x0 ∈ X,

lim inf
t→∞

E(t) ≥ ε, lim inf
t→∞

I(t) ≥ ε, lim inf
t→∞

U(t) ≥ ε.

Therefore, the uniform persistence of model (4.5) is obtained. This completes the proof. □

5. SEIR model with antibody response

In this section, the SEIR model with an antibody response is considered. We always assume that
Rw0 > 1 and Rw > 1 in this section. Hence, from (4.2), the fast time variable V̄(U) = ω

h in model (4.5)
is a constant that does not depend on U. Thus, model (4.5) takes the following form:

dS
dt
= A − βUS − µS ,

dE
dt
= βUS − (µ + α)E,

dI
dt
= αE − (µ + σ + ζ)I,

dU
dt
= θI

ω

h
(1 − U) − (ξ + γ)U.

(5.1)

The positivity and boundedness of model (5.1) has been established in Theorem 6 in Section 4.1.
The basic reproduction number for model (5.1) is defined as

R0 =
βS 0αθ

ω
h

(µ + α)(µ + σ + ζ)(ξ + γ)
.
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With the existence of equilibrium of model (5.1), the conclusion is given below.

Lemma 2. (i) If R0 ≤ 1, then model (5.1) has only disease-free equilibrium W0 = (S 0, 0, 0, 0) with
S 0 =

A
µ
.

(ii) If R0 > 1, then model (5.1) has a unique endemic equilibrium Ŵ = (Ŝ , Ê, Î, Û) with

Ŝ =
αθωh A + (µ + α)(µ + σ + ζ)(ξ + γ)

βαθωh + µαθ
ω
h

, Ê =
Aβαθωh − µ(µ + α)(µ + σ + ζ)(ξ + γ)

(µ + α)(βαθωh + µαθ
ω
h )

,

Î =
Aβαθωh − µ(µ + α)(µ + σ + ζ)(ξ + γ)

(µ + σ + ζ)(µ + α)(βθωh + µθ
ω
h )

, Û =
βαθωh A − µ(µ + α)(µ + σ + ζ)(ξ + γ)
βαθωh A + β(µ + α)(µ + σ + ζ)(ξ + γ)

.

The proof of Lemma (2) is simple. Hence, we omit it here. Based on the global stability of equilibria
W0 and Ŵ for model (5.1), the conclusion is given below.

Theorem 12. (i) If R0 ≤ 1, then disease-free equilibrium W0 is globally asymptotically stable.
(ii) If R0 > 1, then endemic equilibrium Ŵ is globally asymptotically stable.

Proof. For conclusion (i), we define the Lyapunov function L0 as follows:

L0 = S 0(
S
S 0
− ln

S
S 0
− 1) + E +

µ + α

α
I +

(µ + α)(µ + σ + ζ)
αθωh

U.

The derivative of L0(t) along with the solution W0 of model (5.1) is given by

dL0

dt
=µS 0 −

S 0

S
A + βUS 0 − µS + µS 0 −

(µ + σ + ζ)(µ + α)
α

I +
(µ + σ + ζ)(µ + α)

α

× I(1 − U) −
(µ + α)(ξ + γ)

αθωh
(µ + σ + ζ)U

=µS 0(2 −
S 0

S
−

S
S 0

) +
(µ + α)(ξ + γ)(µ + σ + ζ)

αθωh
(

βαθωh S 0

(µ + α)(ξ + γ)(µ + σ + ζ)
− 1)U

−
(µ + α)(µ + σ + ζ)

α
IU.

Clearly, if R0 ≤ 1, then dL0
dt < 0 and dL0

dt = 0 if and only if (S (t), E(t), I(t),U(t))=(S 0, 0, 0, 0). Accord-
ing to the Lyapunov theorem [39] and LaSalle invariable principle [33], W0 is globally asymptotically
stable.

For conclusion (ii), we define the Lyapunov function L1 as follows:

L1 = Ŝ (
S
Ŝ
− ln

S
Ŝ
− 1)+ Ê(

E
Ê
− ln

E
Ê
− 1)+

µ + α

α
Î(

I
Î
− ln

I
Î
− 1)+

(µ + α)(µ + σ + ζ)
αθωh (1 − Û)

Û(
U
Û
− ln

U
Û
− 1).

The derivative of L1(t) along with any solution Ŵ of model (5.1) is given by

dL1

dt
=βÛŜ + µŜ − µS −

Ŝ
S
βÛŜ −

Ŝ
S
µŜ + Ŝ βU + µŜ + (µ + α)Ê −

Ê
E
βUS − (µ + α)E

Î
I

+
(µ + σ + ζ)(µ + α)Î

α
−

(µ + α)(µ + σ + ζ)I
α

+
(µ + α)(µ + σ + ζ)I(1 − U)

α(1 − Û)

−
(µ + α)(ξ + γ)(µ + σ + ζ)U

αθωh (1 − Û)
−

(µ + α)(µ + σ + ζ)I(1 − U)Û
α(1 − Û)U

+
(µ + α)(µ + σ + ζ)(ξ + γ)Û

αθωh (1 − Û)
.

Mathematical Biosciences and Engineering Volume 20, Issue 1, 505–533.



525

From the equations in which equilibrium Ŵ is satisfied, we can easily obtain µ + σ + ζ = αÊ
Î

and (ξ+γ)Û
θV(1−Û)

= Î. Furthermore, we have (µ+α)(µ+σ+ζ)Î
α

+
(ξ+γ)Û(µ+α)(µ+σ+ζ)

αθ ωh (1−Û)
= 2(µ + α)Ê. Moreover, from

ξ + γ = θI1V(1−Û)
Û

, we also have − (µ+α)(µ+σ+ζ)U
αθ ωh (1−Û)

(ξ + γ) = −(µ + α)Ê U
Û

and then − (µ+α)(µ+σ+ζ)I
α

[−1 + 1−U
1−Û
−

(1−U)Û
(1−Û)U

]=− (µ+α)(µ+σ+ζ)
α

I (U−Û)2

U(1−Û)
− (µ + α)Ê IÛ

ÎU
. Finally, we can obtain

dL1

dt
=µŜ (2 −

Ŝ
S
−

S
Ŝ

) + βÛŜ −
Ŝ
S
βÛŜ + Ŝ βU −

Ê
E
βUS + 3(µ + α)Ê − (µ + α)E

Î
I

− (µ + α)Ê
U
Û
−

(µ + α)(µ + σ + ζ)I
α

(U − Û)2

U(1 − Û)
− (µ + α)Ê

IÛ
ÎU

=µŜ (2 −
Ŝ
S
−

S
Ŝ

) + (µ + α)Ê(4 −
Ŝ
S
−

ÎE
ÊI
−

IÛ
ÎU
−

US Ê
ÛŜ E

) −
(µ + α)(µ + σ + ζ)I

α

(U − Û)2

U(1 − Û)
.

Clearly, if R0 > 1, then dL1
dt ≤ 0 with dL1

dt = 0 only at Ŵ. According to the Lyapunov theorem [39] and
LaSalle invariable principle [33], Ŵ is globally asymptotically stable. This completes the proof. □

Let ψ = h
ω

indicate the total quantity of B cells in the host. At this point, the basic reproduction
number becomes the following:

R0 =
βS 0αθ

(µ + α)(µ + σ + ζ)(ξ + γ)ψ
.

We rewrite R0 =
1

(µ+σ+ζ) ·θ ·
1
ψ
· 1

(ξ+γ) ·β ·S 0 ·
1

(µ+α) ·α. Combining the explanation of basic reproduction
number Rb0 in Subsection 4.2, R0 decreases with the increase in the quantity of B cells in hosts, the
decrease in the incubation period of latent individuals and the survival period of environmental viruses,
the decrease in the infection rate of susceptible individuals infected with environmental viruses, and
the decrease in the emission rate of infected individuals releasing the virus into the environment.

When R0 = 1, we obtain the critical value of ψ as follows:

ψ0 =
βS 0αθ

(µ + α)(µ + σ + ζ)(ξ + γ)
.

Thus, according to Theorem 12, we obtain the following conclusions.

Corollary 1. If the number ψ of B cells in the host satisfies ψ > ψ0, then the disease between the hosts
will be extinct. In contrast, if ψ < ψ0, then the disease between the hosts will be persistent.

Remark 6. Corollary 1 shows that the increasing number of B cells in infected and susceptible in-
dividuals can effectively control the spread of diseases between the hosts. However, the main way to
increase the number of B cells in susceptible and infected individuals is to carry out active and effective
treatment and vaccination. Therefore, when a certain infectious disease appears in an area, actively
carrying out large-scale effective vaccination, timely treatment of patients who have been infected with
the disease, and effective treatment are important means of preventing the disease in a timely and
effective manner.
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6. Numerical examples

In this section, the theoretical results obtained in Theorems 7, 8 and 10 are illustrated by the follow-
ing numerical examples.

Example 1. In model (2.4), we choose the parameters A = 3, β = 0.0351, µ = 0.044, γ = 0.0151,
θ = 1.4×10−6, Λc = 5995, K = 1.51×10−6, m = 0.29, d = 0.16, p = 954, c = 61, σ = 0.05, α = 0.004,
ζ = 0.032, ξ = 0.035 and ω = 0.005.
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Figure 1. (a), (b): Times series phase of solutions (S (t), E(t), I(t),U(t)). (c): Three-dimensional phases of solu-
tion (S (t), E(t), I(t)). From the numerical simulation, we know that the solution converges to disease-free equilibrium
W0(S 0, 0, 0, 0).

(a) and (b) satisfy the initial values (S (k), E(k), I(k),U(k)) = (75 + 14 ∗ k, 50 + 15 ∗ k, 50 + 16 ∗
k, 0.08+ 17 ∗ k), where k = 1, ..., 20. (c) satisfies the initial values (S (k), E(k), I(k)) = (175+ 8 ∗ k, 80+
2 ∗ k, 60 + 2 ∗ k, 0.19 + 20 ∗ k), where k = 1, ..., 20.

By calculation, Rw0 = 1.0849 > 1 and Rb0 = 0.7208 < 1. Then, from Figure 1, the disease-free
equilibrium W0 = (68.1818, 0, 0, 0) of model (4.5) is locally asymptotically stable, which means that
Theorem 7 is true.

Example 2. In model (2.4), we choose the parameters A = 30, β = 0.0351, µ = 0.044, γ = 0.0151,
θ = 1.4×10−6, Λc = 5995, K = 1.51×10−6, m = 0.29, d = 0.16, p = 954, c = 61, σ = 0.05, α = 0.004,
ζ = 0.032, ξ = 0.035, b4 = 1 and w = 4 × 104.
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Figure 2. (a), (b): Times series phase of solutions (S (t), E(t), I(t),U(t)). (c): Three-dimensional phases of so-
lution (S (t), E(t), I(t)). From the numerical simulation, we know that the solution converges to endemic equilibrium
W̃ = (S̃ , Ẽ, Ĩ, Ũ).

(a) and (b) satisfy the initial values (S (k), E(k), I(k),U(k)) = (482 + 0.02 ∗ k, 280 + 0.07 ∗ k, 0.17 +
0.4 ∗ k, 0.29+0.5 ∗ k), where k = 1, ..., 20. (c) satisfies the initial values (S (k), E(k), I(k)) = (412+0.9 ∗
k, 247 + 0.9 ∗ k, 70 + 0.9 ∗ k, 0.29 + 0.9 ∗ k), where k = 1, ..., 20.

By calculation, Rw0 = 1.0849 > 1 and Rb0 = 7.2085 > 1. Model (4.5) has a unique endemic
equilibrium W̃ = (S̃ , Ẽ, Ĩ, Ũ)=(412.1898, 247.1593, 7.8463, 0.82). Furthermore, F′(Ũ) = −20658 < 0,
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HM = 14036.9165 > 0 and b3b2b1 − b4b2
1 − b2

3b0 = 1.7112e − 04 > 0. Then, Figure 2 shows that the
unique endemic equilibrium W̃ = (S̃ , Ẽ, Ĩ, Ũ) is locally asymptotically stable, which means that the
Theorem 8 is true.

Example 3. In model (2.4), we only need to choose parameters β = 0.0357, µ = 0.042, θ =
1.5 × 10−8, d = 0.2, c = 30 and w = 4 × 106; the other parameters are the same as those given in
Example 2.
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Figure 3. (a), (b): Times series phase of solutions (S (t), E(t), I(t),U(t)). (c): Three-dimensional phases of so-
lution (S (t), E(t), I(t)). From the numerical simulation, we know that the solution converges to endemic equilibrium
W̃ = (S̃ , Ẽ, Ĩ, Ũ).

(a) and (b) satisfy initial values (S (k), E(k), I(k),U(k)) = (500+3∗k, 100+3∗k, 0.19+0.5∗k, 0.23+
0.5 ∗ k), where k = 1, ..., 20. (c) satisfies the initial values (S (k), E(k), I(k)) = (680 + 5 ∗ k, 360 + 5 ∗
k, 150 + 1 ∗ k, 0.19 + 0.9 ∗ k), where k = 1, ..., 20.

By calculation, Rw0 = 2.0258 > 1 and Rb0 = 1.0548 > 1. Model (4.5) has a unique endemic
equilibrium W̃ = (S̃ , Ẽ, Ĩ, Ũ)=(668.8068, 41.5242, 1.3395, 0.08). Furthermore, F′(Ũ) = 4434.3 > 0,
HM = 10232.2459 > 0 and b3b2b1 − b4b2

1 − b2
3b0 = 3.5990e − 06 > 0. Then, Figure 3 shows that the

unique endemic equilibrium W̃ is locally asymptotically stable, which means that Theorem 8 is true
even if F′(Ũ) > 0.

Example 4. In model (2.4), we choose the parameters A = 4, β = 0.0358, µ = 0.042, γ = 0.0151,
θ = 1.45 × 10−6, Λc = 5995, K = 1.51 × 10−6, m = 0.29, d = 0.16, p = 954, c = 61, σ = 0.05,
α = 0.004, ζ = 0.062, ξ = 0.035, b4 = 1 and w = 4 × 105.

(b) and (c) satisfy the initial values (S (k), E(k), I(k),U(k)) = (80+0.06∗k, 10+0.07∗k, 0.21+0.08∗
k, 0.21+0.09∗k), where k = 1, ..., 20. (d) satisfies the initial values (S (k), E(k), I(k)) = (80+1∗k, 20+1∗
k, 10+2∗k, 0.02+0.1∗k) and (S (k), E(k), I(k)) = (92+0.5∗k, 2+0.5∗k, 5+2∗k, 0.04+0.1∗k), k = 1, ..., 20,
where the second set of initial values was taken near the unstable equilibrium W̃1 = (S̃ 1, Ẽ1, Ĩ1, Ũ1).

By calculation, Rw0 = 1.0849 > 1 and Rb0 = 0.9081 < 1. Model (4.5) has two
positive equilibria which are W̃1 = (S̃ 1, Ẽ1, Ĩ1, Ũ1)=(92.0980, 2.867116, 0.0745, 0.04) and W̃2 =

(S̃ 2, Ẽ2, Ĩ2, Ũ2)=(79.0639, 14.7678, 0.3836, 0.24). Furthermore, F′(Ũ2) = −370.0812 < 0, HM =

926.4939 > 0 and b3b2b1 − b4b2
1 − b2

3b0 = 6.7554e − 06 > 0. Then, Figure 4 shows that the endemic
equilibrium W̃1 is unstable and that W̃2 is locally asymptotically stable, which means that Theorem 10
is true.

Example 5. In model (2.4), we only need to choose parameters β = 0.0356 and θ = 1.4× 10−6, and
the other parameters are the same as the parameters given in Example 4.

(b) and (c) satisfy initial values (S (k), E(k), I(k),U(k)) = (80 + 0.06 ∗ k, 7 + 0.07 ∗ k, 0.15 + 0.08 ∗
k, 0.12+0.09∗k), where k = 1, ..., 20. (d) satisfies initial values (S (k), E(k), I(k)) = (180+1∗k, 100+1∗
k, 10+2∗k, 0.2+0.1∗k) and (S (k), E(k), I(k)) = (89+0.5∗k, 4+0.5∗k, 5+2∗k, 0.07+0.1∗k), k = 1, ..., 20,
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Figure 4. (a): Diagram of function H(U) with U ∈ [0, 1]. (b), (c): Times-series phase of solution (S (t), E(t), I(t),U(t)).
(d): Three-dimensional phases of (S (t), E(t), I(t)). From the numerical simulation, we know that the solution converges to
endemic equilibrium W̃2 = (S̃ 2, Ẽ2, Ĩ2, Ũ2).
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Figure 5. (a): Diagram of function H(U) with U ∈ [0, 1]. (b), (c): Times-series phase of solutions (S (t), E(t), I(t),U(t)).
(b): Three-dimensional phases of solution (S (t), E(t), I(t)). From the numerical simulation, we know that the solution
converges to endemic equilibrium W̃2 = (S̃ 2, Ẽ2, Ĩ2, Ũ2).

where the second set of initial values was taken near the unstable equilibrium W̃1 = (S̃ 1, Ẽ1, Ĩ1, Ũ1).

By calculation, Rw0 = 1.0849 > 1 and Rb0 = 0.8817 < 1. Model (4.5) has two
positive equilibria which are W̃1 = (S̃ 1, Ẽ1, Ĩ1, Ũ1)=(89.8473, 4.9221, 0.1278, 0.07) and W̃2 =

(S̃ 2, Ẽ2, Ĩ2, Ũ2)=(81.9001, 12.1782, 0.3163, 0.19). Furthermore, F′(Ũ2) = 6093.1 > 0, HM =

316.3866 > 0 and b3b2b1 − b4b2
1 − b2

3b0 = 5.9487e − 06 > 0. Then, from Figure 5 shows that endemic
equilibrium W̃1 is unstable and that W̃2 is locally asymptotically stable, which means that Theorem 10
is true even though F′(Ũ2) > 0.
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7. Conclusions

In this article, we investigate an SEIR epidemic model (2.4) coupling virus transmission in the body
and vitro of hosts, incubation, humoral immunity and environmental effect, which are characterized
and linked by two subsystems, i.e., (2.1) and (2.3).

With respect to the virus transmission process with humoral immunity in the body of hosts, we
assume that the environmental contamination rate U(t) in model (2.3) remains constant at U (0 ≤
U ≤ 1) since the spread of virus infection within hosts is much faster than that in vitro of hosts. The
basic reproduction number Rw with an antibody response is defined, by which antibody-free infection
equilibrium A3(U) is globally asymptotically stable if Rw ≤ 1, while infection equilibrium A4(U) is
globally asymptotically stable if Rw > 1.

As is the SEIR model without an antibody response, we assume that the virus load in the body of
hosts will tend to reach equilibrium, i.e., the fast time variable V(s) in model (2.4) satisfies V(s) =
V̄(U) = 1

c (g(U) + pT ∗3(U)) in Theorems 4. The basic reproduction number Rb0 is defined, from which
we find that disease-free equilibrium W̃0 is locally asymptotically stable if Rb0 < 1, while the unique
positive equilibrium W̃ is locally asymptotically stable if Rb0 > 1 (or Rb0 = 1 and HM > 0) and
F′(Ũ) ≤ 0. When Rb0 < 1 and HM > 0, the system has two different positive equilibria W̃1 and W̃2 with
U1 < U2, which means that system (4.5) experiences backward bifurcation at Rb0 = 1. Meanwhile, W̃2

is locally asymptotically stable if F′(Ũ2) ≤ 0 and W̃1 are unstable.
Furthermore, for the SEIR model with an antibody response, we assume that the fast time variable

V(s) in model (2.4) satisfies V(s) = V̄(U) = ω
h in Theorems 4. The basic reproduction number R0

is defined, by which we find the disease-free equilibrium W0 is globally asymptotically stable when
R0 ≤ 1, while the unique endemic equilibrium Ŵ is globally asymptotically stable if R0 > 1.

From the numerical examples we know that F′(Ũ) ≤ 0 and F′(Ũ2) ≤ 0 are pure mathematical
conditions, and can only be used to prove the local stability of endemic equilibria W̃ and W̃2. Generally,
we hope that the local stability of model (4.5) can only be determined by the basic reproduction number
Rb0, but we used some additional conditions to do that. So we have summarized several open problems.
The first is whether condition F′(Ũ) ≤ 0 and F′(Ũ2) ≤ 0 can be taken off in the proof of Theorems
8 and 10. The second is whether we can get that (4.9) directly holds. The third one is whether we
can further establish an appropriate Lyapunov function to obtain the global stability of W̃. We will
continue to investigate these questions in the future.

The results obtained in this paper show that the strength of antibodies in hosts has a great effect on
the spread of diseases between hosts. When the antibodies in hosts do not work or are weak, the results
obtained in Section 4 show that backward bifurcation could occur. Even if the basic reproduction
number Rb0 is less than 1, the disease will continue to spread, which will results in the control of the
spread of disease between hosts being very difficult, making it difficult to effectively treat the disease.

When hosts have an extensive antibody response, the results obtained in Section 5 show that the
spread of disease between hosts will be easy to control. Under antibody action, the basic reproduction
number R0 could be less than 1, and the diseases between hosts could be effectively controlled if we
could decrease the incubation period of latent individuals, increase the production rate of B cells in
hosts, and reduce the virus concentration (or load) both in the environment or in the body of hosts.
Therefore, based on the above discussion with the explanation of the basic reproduction number R0,
we can take the following prevention and control measures.
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1. Vaccination and antibody immunotherapy. After vaccination, susceptible individuals will widely
produce antibodies , which could effectively prevent the virus from invading. Even if a susceptible
individual is infected by the virus, due to the effect of the antibody response, the amount of virus
in hosts can only reach V̄(U) = ω

h , so most of the infected individuals will only have some minor
symptoms, and will not experience long-term infection. Furthermore, if antibody immunotherapy is
performed on susceptible individuals, it will increase the number of antibody cells ψ in infected hosts,
and eventually make the basic reproduction number R0 less than 1, then the spread of disease will be
effectively controlled until the disease eliminated.

2. Timely strict isolation and treatment of infected individuals, isolation control of close human
contacts. These measures could effectively prevent close contact between infected and susceptible in-
dividuals, and reduce the release of virus into the environment by infected individuals, further reducing
the infection rate of susceptible individuals and the virus emission rate of infected individuals, and fi-
nally making the basic reproduction number R0 less than 1, this could effectively control the disease
transmission between hosts until its disappearance.

3. Legitimately expand the range of management, supervision and publicity, e.g., wearing masks
(surgical masks, goggles, etc.), practicing safe social distancing in public or crowded places, frequent
hand-washing, exercising of the body, maintain a healthy diet, and obtaining sufficient rest. These
measures could effectively reduce the infection rate of susceptible individuals, so that the basic repro-
duction number R0 will be less than 1, effectively controlling the spread of disease.

4. Manually eliminating the virus in the environment. These measures could not only effectively
improve the clearance rate of environmental viruses but also reduce the average survival period of
environmental viruses. Therefore, the basic reproduction number R0 would be less than 1, the spread
of disease would be effectively controlled, and the disease would eventually become extinct.

In this paper we proposed the SEIR model (2.4) coupling virus transmission both in body and vitro
of hosts. Since the virus infection changes process in host is much faster than the disease transmission
process between hosts, to simplify discussions, we assumed that the environmental contamination rate
U(t) in the fast time model (2.3) remains constant at U, and then, the fast time variable V(s) in the
slow time model (2.1) reaches its equilibrium V̄(U) while the state of disease transmission between the
host is unchanged. Thus, we established the coupled model (4.1). Obviously, model (4.1) is a special
limit state coupled model. In this paper, we mainly investigated the dynamical behavior of model (4.1).
However, it is more realistic to directly investigate the coupling model (2.4) with both fast time s and
slow time t. Particularly, in model (2.4) we can assume that fast and slow times satisfy t = ωs is
sufficiently, where ω is an enough small positive number. Therefore, an interesting open problem is to
investigate coupling model (2.4) with assumption t = ωs. We will discuss this problem in the future.
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