
MBE, 20(1): 241–268. 

DOI: 10.3934/mbe.2023011 

Received: 14 August 2022 

Revised: 04 September 2022 

Accepted: 05 September 2022 

Published: 30 September 2022 

http://www.aimspress.com/journal/MBE 

 

Research article 

GCS-YOLOV4-Tiny: A lightweight group convolution network for 

multi-stage fruit detection 

Mei-Ling Huang* and Yi-Shan Wu 

Department of Industrial Engineering & Management, National Chin-Yi University of Technology, 
Taichung, Taiwan 

* Correspondence: Email: huangml@ncut.edu.tw. 

Abstract: Fruits require different planting techniques at different growth stages. Traditionally, the 
maturity stage of fruit is judged visually, which is time-consuming and labor-intensive. Fruits differ in 
size and color, and sometimes leaves or branches occult some of fruits, limiting automatic detection of 
growth stages in a real environment. Based on YOLOV4-Tiny, this study proposes a GCS-YOLOV4-
Tiny model by (1) adding squeeze and excitation (SE) and the spatial pyramid pooling (SPP) modules 
to improve the accuracy of the model and (2) using the group convolution to reduce the size of the 
model and finally achieve faster detection speed. The proposed GCS-YOLOV4-Tiny model was 
executed on three public fruit datasets. Results have shown that GCS-YOLOV4-Tiny has favorable 
performance on mAP, Recall, F1-Score and Average IoU on Mango YOLO and Rpi-Tomato datasets. 
In addition, with the smallest model size of 20.70 MB, the mAP, Recall, F1-score, Precision and 
Average IoU of GCS-YOLOV4-Tiny achieve 93.42 ± 0.44, 91.00 ± 1.87, 90.80 ± 2.59, 90.80 ± 2.77 
and 76.94 ± 1.35%, respectively, on F. margarita dataset. The detection results outperform the state-
of-the-art YOLOV4-Tiny model with a 17.45% increase in mAP and a 13.80% increase in F1-score. 
The proposed model provides an effective and efficient performance to detect different growth stages 
of fruits and can be extended for different fruits and crops for object or disease detections. 
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1. Introduction 

With the advancement of science and technology, deep learning has gradually become the 
mainstream of artificial intelligence, and it has developed well in various fields. Among them, object 
detection, which detects the position and category of the target, has become more popular in recent 
years. The traditional image classification or image segmentation classifies the category of the image, 
but it cannot locate the position of the category in the image. Object detection is more complex and 
difficult. Existing object detection methods are divided into two-stage detection algorithms that pay 
more attention to detection accuracy and one-stage detection algorithms that advocate detection speed. 

In the traditional object detection method, the first proposed method is a two-stage detection 
algorithm. The R-CNN model proposed by Girshick et al. [1] in 2014 is the initial work of the two-
stage detection algorithm. Through the screening of Selective Search [2], multiple regions of interest 
are selected and input to the deep learning model AlexNet [3] to extract features. Then, the extracted 
features are used in the Support Vector Machine (SVM) for classification, and finally a bounding box 
is used to predict the location of the region of interest. 

Due to the emergence of R-CNN, deep learning has developed advanced technologies in object 
detection, and many scholars have proposed modified algorithms based on R-CNN. Girshick et al. [4] 
proposed the Fast R-CNN model by combining R-CNN and SPP [5]. It can adapt to the advantages of 
different spatial pooling layers and solve the limitation of not using fixed-size images to increase the 
accuracy of detection to 70%. Ren et al. [6] proposed the Faster R-CNN model, which uses the Region 
Proposal Network (RPN). Through end-to-end training, the Faster R-CNN can share the convolution 
features of the two during training, which synchronously classify the original frame of interest and 
greatly improve the detection time. Li et al. [7] proposed the Feature Pyramid Network (FPN) to solve 
the general problem that the detection positions of many object detection algorithms are located in the 
top layer of the entire model network. The FPN has a top-down network architecture, which improves 
the accuracy of the target detection model and has become the basic technology for many subsequent 
extended models. 

There are many related studies using two-stage object detection methods. Ghosh [8] proposed a 
new gait recognition method in 2022, using a modified Faster R-CNN to detect whether the pedestrians 
in the video are carrying objects. The proposed model used Long Short-Term Memory (LSTM) and 
Bidirectional Long Short-Term Memory (BLSTM) to identify the pattern of gait and was tested on 
four public gait datasets (OU-LP-Bag, OUTD-B, OULP-Age and CASIA-B). The research results 
show that the use of Faster R-CNN and BLSTM has better results, and the accuracy can reach 97.42%. 
Chen et al. [9] proposed a Faster GG R-CNN model by combining Genetic Algorithm (GA) and Faster 
R-CNN to detect textile defects in complex backgrounds. Performances were compared with three 
object detection models, including Faster R-CNN, MsDet and YOLOV3 in 2022. Faster GG R-CNN 
achieved a mAP of 94.57%, which was the highest among them all. In order to observe the wear state 
caused by mechanical equipment, Miao et al. [10] used industrial cameras to capture wear images of 
different types (Normal, Adhesion, Abrasive, Corrosion), and they modified the Faster R-CNN model 
by replacing the original ResNet backbone with the VGG16 network and adding FPN to improve the 
detection ability. Results were compared with YOLOV3 and SSD object detection models. The 
proposed Faster R-CNN model shows the best results, with a Precision of 99.25%, Recall of 99.00% 
and F-measure of 99.00%. 

Cui et al. [11] created an image dataset of highway ground penetrating radar (GPR), which is an 
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underground survey device that detects road thickness. This study uses Faster R-CNN to detect GPR 
images to protect the safety of highway traffic and uses ResNet-101 as the main backbone of the 
network. The Average Precision (AP), Precision and Recall were 88.13, 97.70 and 89.13%, 
respectively. The results show that the proposed model detects the underground layer of expressways 
intelligently, and it identifies the images of GPR automatically. In addition, a method based on Faster 
R-CNN was proposed to detect Lung Nodules using the public database LIDC-IDRI [12]. The CT images 
marked by doctors were amplified and labeled, and ZF [13] and VGG16 were selected as the backbone 
models. Results were compared with Faster R-CNN, R-CNN and Fast R-CNN. The model with 
VGG16 demonstrated the best AP, of 91.20%, which is 8.80, 22.80 and 15.80% higher than APs from 
Faster R-CNN, R-CNN and Fast R-CNN, respectively. Yang et al. [14] proposed the MT-Faster R-
CNN model in 2020, which modified Fast R-CNN with multi-task learning on the KITTI dataset. This 
model generates 2D and 3D results based on a single vehicle image at the same time, which helps 
automatic vehicle driving. The above studies of the two-stage algorithms have shown good results in 
object detection. However, because the model consists of the regional proposal network and the 
classification network, it often causes longer detection time. In addition, due to the larger size of the 
model, it needs more advanced equipment. 

The one-stage detection algorithm eliminates the RPN in the two-stage, and it can directly detect 
the category of the object and regress the bounding box, thereby reducing the detection time. The most 
representative algorithm is You Only Look Once (YOLO). Redmon et al. [15] proposed YOLOV1 in 
2016 and used GoogleNet [16] as the backbone network, by extracting bounding boxes from images 
and directly predicting coordinate locations and categories. YOLOV2 was proposed in 2017 [17] by 
adding the RPN method proposed by Faster R-CNN. YOLOV2 uses the anchor box function, and it 
upgrades the original 224 × 224 resolution to 448 × 448, which greatly improve the detection speed. 
The weakness is that the results are not favorable on predicting small size objects. YOLOV3 [18] 
modified the backbone network GoogleNet to the DarkNet-53 of the ResNet model [19] and added 
FPN to predict different features to improve the detection of small objects. Focusing on the 
improvement of parameter quantity and accuracy, Bochkovskiy et al. [20] proposed YOLOV4 in 2020 
by combining the DarkNet-53 backbone network with CSPNet, proposed by Wang et al. [21]. The new 
backbone CSP DarkNet-53 reduces the computational complexity and memory cost, increases the 
accuracy and can use GPUs for model training and testing. 

Many scholars have applied the YOLO series in various fields. For example, based on YOLOV4-
Tiny model, Lin et al. [22] proposed a method using the K-median to identify and find the appropriate 
anchor box for the end images of bundled logs. The proposed model used three prediction heads and 
connected each head with SPP to extract small targets. Results show that the Precision, Recall and F1-
Score were 93.97, 94.91 and 95.00%, respectively. Kumar et al. [23] modified the YOLOV4-Tiny 
model and proposed ETL-YOLOV4 to detect masks by modifying the backbone network, adding a 
dense SPP network and using Mish as the activation function, adding Mosaic and CutMix images to 
increase the training performance. The mAPs of the proposed ETL-YOLOV4 model evaluated on 
FMD and MOXA open datasets reached 67.64 and 65.14%, respectively. The performance of the 
proposed model outperforms YOLOV3 and YOLOV4-Tiny models. Wang et al. [24] proposed the 
DSE-YOLO model using pointwise convolution and dilated convolution and adding exponentially 
enhanced binary cross-entropy (EBCE) and double enhanced mean squared error (DEMSE) loss 
functions to detect smaller fruits and distinguish different growth stages of fruits accurately. The 
results show that the mAP, F1-Score, and the parameter size on detection of multi-stage strawberry 



244 

Mathematical Biosciences and Engineering  Volume 20, Issue 1, 241–268. 

fruit images were 86.58, 81.59 and 224.39 MB, respectively. Compared with Faster R-CNN, SSD300, 
SSD512, YOLOV3, YOLOV4 and YOLOV5, DSE-YOLO achieves a balance between accuracy and 
number of parameters. 

Su et al. [25] proposed the YOLO-LOGO model by combining YOLOV5-L6 and Local Global 
(LOGO) on breast cancer detection. In the model, YOLOV5-L6 locates the tumor in the breast cancer 
image and then uses LOGO for segmentation. The F1-Socre and IoU were 74.52 and 69.37% on the 
CBIS-DDSM dataset and 69.37 and 61.09% on the INBreast dataset. Wu et al. [26] proposed the FMD-
YOLO model by combining Res2Net and Im-Res2Net-101 to extract features on mask detection. The 
FMD-YOLO model achieved APs of 92.00 and 88.40% on two open datasets, and it dominated eight 
object detection models, including Faster R-CNN, Faster R-CNN with FPN, YOLOV3, YOLOV4, 
RetinaNet, FCOS, EfficientDet and HRNet. Wang et al. [27] proposed the LDS-YOLO model in 2022 
to identify images of dead trees taken by drones, which confirms the area of dead trees in order to 
replant new trees in time. The LDS-YOLO model introduced SPP to increase the detection of smaller 
targets in UAV images. Considering it is to be combined with UAVs, depthwise separable convolution 
is used to reduce the model size to 7.60 MB. A similar application was found in Zhao et al. [28], using 
depthwise separable convolution, and the proposed model reduced the model size to 11 MB while 
maintaining an accuracy of 95.47% on detection of abnormal fish behavior just in time. 

The existing YOLO models consider the trade-off between detection speed and accuracy for real-
time detection. Some of them have applied SPP, added SE or used hybrid models to enhance the 
detection accuracy. There are many related YOLO applications on fruit detection. For example, Tian 
et al. [29] combined the DenseNet with YOLOV3 to detect growth stages of young, growing and 
mature apples effectively. Mirhaji et al. [30] used transfer learning on YOLOV2, YOLOV3 and 
YOLOV4 to detect oranges under different lighting conditions, and they used regression analysis to 
predict the number of oranges. In addition, YOLO-Tomato models detected tomatoes in a complex 
environment [31]. Modified YOLOV4 models detected diseases in fruits under challenging 
environments [32,33]. In order to be more applicable to real-time fruit detection, the size of the model 
is expected to be small. A modified DenseNet-fused YOLOV4 detected growth stages of mango under 
a complex environment efficiently [34]. In order to identify grapes in complex backgrounds accurately, 
Li et al. [35] modified the YOLOV4-Tiny model and added an attention module (Squeeze-and-
Excitation) to improve the detection ability on hidden grapes. Furthermore, the depth-wise separable 
convolution module is used to reduce the number of parameters to improve the real-time performance. 
Li et al. [36] modified the YOLOV4-Tiny model in 2021 to detect green peppers in complex 
backgrounds, and they added a multi-scale Adaptive Spatial Feature Fusion (ASFF) to enhance the 
detection ability for green peppers in small scale. However, using low-dimensional feature maps to 
increase the feature information of small targets will increase background noise and deteriorate the 
accuracy of object detection. Therefore, a new channel attention module, the Convolutional Block 
Attention Module (CBAM), is introduced to solve this problem. 

The Faster R-CNN consists of the RPN and the classification network, which prolongs the 
detection speed and cannot perform real-time detection for high-resolution fruit images. YOLO 
eliminates the RPN to detect the category of objects and regress the bounding box efficiently. Based 
on the advantage of fast detection speed of YOLO facilitating real-time detection, this study chooses 
and modifies the one-stage detection model YOLO for fruit image detection at different growth stages. 

The current study focuses on efficient and effective detection of fruit growth stages. Based on 
YOLOV4-Tiny, this study proposes a one-stage detection model, GCS-YOLOV4-Tiny, to examine 
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fruits with different sizes in a complex environment. For example, there were fruits occulted by leaves 
or branches, fruits with small sizes, fruits in poor light or multiple fruits in one image. This study 
modifies the backbone network CSP DarkNet-53-Tiny in YOLOV4-Tiny. The proposed GCS-
YOLOV4-Tiny model uses DIOUS-Non Maximum Suppression and chooses a k-means clustering 
algorithm to find a suitable anchor frame when detecting the object. In addition, the proposed model 
adds SE between CBL blocks to combine features of different resolutions and finally improves the 
performance. To enhance feature diversity, two SPP modules, which avoid the distortion caused by 
image scaling and fuse local and global features, were added before the full connection layer. 
Furthermore, the proposed model selects group convolution with fewer computational resources to 
reduce the model size greatly. With the smallest model size of 20.70 MB, the detection results 
outperform the state-of-the-art YOLOV4-Tiny model with a 17.45% increase in mAP and a 13.80% 
increase in F1-score. The proposed model provides an effective and efficient performance to detect 
different growth stages of fruits, which is beneficial for real-time detection. 

The rest of the paper is organized as follows. Section 2 expresses the related studies on SE, SPP, 
group convolution and YOLOV4-Tiny. Section 3 introduces the datasets and the details of the proposed 
GCS-YOLOV4-Tiny model. Section 4 presents the experiment results on three open datasets. Finally, 
Section 5 summarizes the proposed model and suggests future research. 

2. Related works 

2.1. YOLOV4-Tiny 

Wang et al. [37] proposed a one-stage detection YOLOV4-Tiny model, in 2020, which is a 
simplified version of YOLOV4. This model maintains the detection accuracy with a faster detection 
speed. The best advantage is that the model uses fewer parameters, performs instant detection and has 
the feasibility to integrate with embedded devices. The following scholars have used the YOLOV4-
Tiny model in different fields. Zhang et al. [38] used drones to capture images of ripe strawberries, 
immature strawberries and flowers. Based on the YOLOV4-Tiny model, the proposed RTSD-Net 
possesses fewer convolution layers and faster detection speed to benefit the development of robotic 
harvesting of strawberries. Yao et al. [39] proposed a modified YOLOV4-Tiny model for the detection 
of real-time traffic signs. Using the backbone network CSP-DarkNet-53-Tiny of the YOLOV4-Tiny 
model, the proposed model presents two feature layers of different scales to detect smaller objects. 

The ECA-Net model combines the main feature extraction of the YOLOV4-Tiny model with the 
attention mechanism to improve the feature extraction ability by modifying the YOLOV4-Tiny model 
to shoot images of insulators in high-voltage transmission lines with an aerial camera. The ECA-Net 
model improves the model accuracy from 81.01 to 91.19%, and the model size is 24.90 MB, which is 
suitable for embedded devices and reduces the work time of line transportation and inspection 
personnel [40]. Zhang et al. [41] used a modified YOLOV4-Tiny model in 2021 to identify the regions 
where the dials and indicators are located in a water meter image. The output prediction network in 
the YOLOV4-Tiny model is added as feature maps of three different scales, and the improved 
YOLOV4-Tiny detects the dial area of the image with high confidence and identifies the type of dial 
correctly. Li et al. [35] added an SE module to the YOLOV4-Tiny model to improve the performance 
on the detection of covered grapes. In addition, the depthwise separable convolution module is used to 
reduce the model size for the real-time detection of grapes by robots. In order to detect green peppers 
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in complex backgrounds, Li et al. [36] added an adaptively spatial feature fusion (ASFF) pyramid to 
YOLOV4-Tiny to detect small images of green pepper. The accuracy is as high as 96.91%, and the 
model size is 30.90 MB. 

2.2. SE 

SE consists of Squeeze and Excitation [42]. In recent years, many scholars have used the SE 
method to improve the performance of proposed models, and they have demonstrated good results in 
various fields. Wang et al. [43] proposed a SAR-U-Net network in 2021 to segment liver CT images 
automatically by adding SE in each convolutional unit of the U-Net encoder to self-adjust to learn 
image features and suppress irrelevant regions in a segmentation task. Adding a bottleneck block in 
the SE module to balance the nonlinear representation ability of the two fully connected layers and 
improve the detection ability, Ma et al. [44] proposed a MaSE-ResNeXt model for solving the rock 
slice image classification problem. The SE-ResNeXt model proposed by Khan et al. [45] in 2021 is to 
solve the recognition problem of Bengali handwritten composite characters by fusing channel spatial 
information and inter-channel dependencies through SE within local receptive fields. The SECNN 
model detects five diseases of pepper leaves with fewer parameters of 5.40 MB, and it achieves good 
results in the pepper leaf disease dataset in 2022 [46]. Huang et al. [47] proposed SESPNets for ship 
detection based on SE for optical remote sensing images. Alsarhan et al. [48] integrated SE modules 
into graph convolutional networks to obtain discriminative channel-wise features of the input feature 
matrix by highlighting the important features to enhance the recognition accuracy. 

2.3. SPP 

SPP was proposed by He et al. [5] in 2014 to solve the fixed size of the input image in two-stage 
objection detection RCNN, which causes some images to be deformed due to clipping. This could be 
solved by adding SPP after the convolutional layer and cutting the input image into multi-sizes to 
connect with the fully connected layer. Yee et al. [49] proposed a DeepScene model on scene 
classification via incorporating SPP into CNN to enable the multi-size training of the model. Prasetyo 
et al. [50] proposed a wing convolutional layer to enhance feature diversity and modified SPP to Tiny-
SPP for reduction of computational resources on detection of fish eye, tail and body. The SPP-LSTM-
NET combined SPP and LSTM network to predict PM 2.5 concentration, and it achieved better results 
than that of the traditional LSTM [51]. 

2.4. Group convolution 

Group convolution, first applied to the AlexNet model in 2012, was applied to split the network 
for execution on two GPUs. The method is to group the input feature maps and convolve each group 
of feature maps separately. Dividing the convolution into G groups, the parameter amount of this layer 
is reduced to the original 1/G. Scholars combined or modified group convolution in different fields. 
For example, Li et al. [52] proposed a classification method based on Interleaved Group Convolutions 
(IGCs) in 2019 to detect crop image datasets captured by sensors. IGCs shorten the training time of 
the model without reducing the classification accuracy, especially for training samples with long time 
series. Yang et al. [53] proposed a lightweight group convolutional network (LGCN) for single image 
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super-resolution (SISR) in 2019. Group convolution reduces the number of parameters of LGCN and 
gathers local information on SISR images gradually. In addition, the enhanced super-resolution group 
CNN (ESRGCNN) uses a 6-layer group augmented convolution block to enhance the representation 
of low-frequency features to improve the performance and speed of SISR [54]. 

3. Materials and methods 

3.1. Datasets 

1) The Mango YOLO dataset was created by Koirala et al. [55]. This dataset has only one category 
of mango. The images were taken in a dark environment, and the image size is 512 × 512 pixels. 
The dataset contains 1730 images in total. 

2) The Rpi-Tomato dataset contains tomato images of four different maturity levels (green, red, light 
red and red), and the number of images is 257 in total [56]. 

3) The F. margarita dataset contains images of three different growth stages (mature, immature and 
growing) of F. margarita [57]. Some images include more than one stage. Images are claasified 
into seven categories: (a) mature, (b) immature, (c) growing, (d) mature and immature, (e) 
mature and growing, (f) immature and growing and (g) mature, immature and growing. The 
original number of images is 1031, and data augmentation increases the total number of images 
to 6,617. 

Table 1. Three datasets. 

Dataset Class Training Validation Test Total 
Mango YOLO Mango 1300 130 300 1730 

Rpi-Tomato 

Green 40 19 9 

257 
Turning 30 19 15 
Light Red 30 19 12 
Red 30 19 13 

F. margarita 

Mature 2520 39 2559 
Immature 1064 16 1080 
Growing 406 6 412 
Mature and Immature 441 7 448 
Mature and Growing 1295 20 1315 
Immature and Growing 196 3 199 
Mature, Immature and Growing 595 9 604 

Table 1 displays the numbers of images, and Figure 1 shows examples of images for the three 
datasets. images (a1)–(a4) are from the Mango YOLO dataset; images (b1)–(b4) are examples of green, 
red, light red and red tomatoes from the Rpi-Tomato dataset; images (c1)–(c7) show examples of F. 
margaritas from the F. margarita dataset. Images in the Mango YOLO dataset exhibit occluded mango 
images in a low light environment; datasets of Rpi-Tomato and F. margarita represent scenes with 
natural images in real environments. Images of the above three datasets are used to test and evaluate 
the performance of object detection for the proposed GCS-YOLOV4-Tiny model. 
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(a1) (a2) (a3) (a4) 

    

(b1) (b2) (b3) (b4) 

    

(c1) (c2) (c3) (c4) 

   

 

(c5) (c6) (c7)  

Figure 1. Examples of three datasets. 

3.2. GCS-YOLOV4-Tiny 

The main purpose of this research is to propose a lightweight object detection model for real-time 
detection with favorable detection accuracy. The proposed GCS-YOLOV4-Tiny model is tested and 
evaluated in three different public datasets. The following describes the proposed model in detail. 
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1) Based on the studies in Section 2.1, YOLOV4-Tiny demonstrates the detection accuracy with a 
faster detection speed. The proposed GCS-YOLOV4-Tiny model uses DIOUS- Non Maximum 
Suppression (DIOU- NMS) [58] to replace NMS and chooses the k-means clustering algorithm 
to find a suitable anchor frame when detecting the object. This study modifies the backbone 
network CSP DarkNet-53-Tiny in YOLOV4-Tiny, as shown in Figure 3. 
Non maximum suppression (NMS) is commonly used in object detection models to solve the 

problem of multiple prediction frames around the predicting targets. The NMS removes the redundant 
frames using the Intersection over Union (IoU) metric. This study uses distance IoU (DIOU) [58] to 
consider the overlap area and the distance between two central points of bounding boxes. The formula 
is as follows: 

𝑅஽ூ௢௎ ൌ
𝑝ଶሺ𝑏, 𝑏௚௧ሻ

𝑐ଶ  (1) 

where 𝑅஽ூ௢௎ is the penalty for the predicted box and the target box, b and 𝑏௚௧  are the central points 
of the predicted box and the target box, p is the distance, c is the diagonal length of the smallest 
enclosing box covering the two boxes, and d is the distance of central points of two boxes. Figure 2 
illustrate the boxes and distances. 

𝑆௜ ൌ ቐ
𝑆௜，𝐼𝑜𝑈 െ 𝑅஽ூ௢௎ሺ𝑀, 𝐵௜ሻ ൏ 𝜀,

0，𝐼𝑜𝑈 െ 𝑅஽ூ௢௎ሺ𝑀, 𝐵௜ሻ ൒ 𝜀,
ቑ (2) 

𝑆௜ is the classification score; 𝑀 presents the predicted box with the highest classification score; 𝐵௜ 
is removed by simultaneously considering the IoU and the distance between central points of two 
boxes; 𝜀 is the NMS threshold. 

 

Figure 2. Distance of DIoU. 
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Figure 3. Architecture of YOLOV4-Tiny. 

2) Based on the studies in Section 2.2, it can be found that SE learns the features of the image and 
fuses the features of different channels automatically on image classification, image segmentation 
and object detection. Figure 4 shows the architecture of squeeze, excitation and SE. The proposed 
GCS-YOLOV4-Tiny model adds SE between the CBL block with 304 × 304 × 32 and the CBL 
block with 152 × 152 × 64 to combine features of different resolutions, which finally improves 
the performance of the model. 

3) The SPP module avoids the distortion problem caused by image scaling and fuses local and global 
features. The proposed GCS-YOLOV4-Tiny model adds two SPPs before the full connection 
layer to enhance feature diversity. Figure 5 represents the architecture of the proposed SPP. 

4) To speed up the training time, instead of using traditional convolution, the proposed GCS-
YOLOV4-Tiny model selects group convolution. As shown in Figure 6, the left-hand side 
describes the traditional convolution. The feature maps of input and output are 12 and 6, 
respectively. Using group convolution, the feature maps of input and output are 12 and 3, 
respectively, in the right-hand side of Figure 6. Group convolution requires fewer computational 
resources and reduces model size greatly. 
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(a) Squeeze. 

 

(b) Excitation. 
 

 

(c) Architecture of SE. 

Figure 4. Architecture of squeeze, excitation, and SE. 

 

Figure 5. Architecture of SPP. 
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Figure 6. Traditional convolution and group convolution. 

5) In summary, the proposed GCS-YOLOV4-Tiny model (a) selects YOLOV4-Tiny as backbone, (b) 
uses DIOUS- Non Maximum Suppression, (c) adds two SE blocks, (d) adds two SPPs and (e) 
replaces traditional convolution by group convolution. Figure 7 displays the architecture of the 
proposed GCS-YOLOV4-Tiny model. 

 

Figure 7. Architecture of GCS-YOLOV4-Tiny. 
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3.3. Evaluation metrics 

To evaluate the performance of the proposed GCS-YOLOV4-Tiny model, Eqs (3)–(8) illustrate 
the commonly used indices, including Precision, Recall, F1-Score, Accuracy Precision (AP), mean 
Average Precision (mAP) and Intersection over Union (IoU). 

Precision represents the number of positive class predictions that actually belong to the positive 
class. 

Precision ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑃
 (3) 

Recall represents the number of positive class predictions made out of all positive examples in 
the dataset. 

Recall ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑁
 (4) 

F1-Score combines Precision and Recall. 

F1 െ Score ൌ
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൅ 𝑅𝑒𝑐𝑎𝑙𝑙
 (5) 

TP (true positive) represents the number of positive categories that are correctly classified as positive; 
FP (false positive) represents the number of negative categories that are incorrectly classified as 
positive; FN (false negative) refers to the number of positive categories that are incorrectly classified 
as negative. 

Accuracy Precision (AP) is the area of the curve contained in the precision and recall, and it 
represents the accuracy of the detection. 

AP ൌ  ෍ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛ሺ𝐾ሻ

ெ

௄ୀଵ

△ 𝑅𝑒𝑐𝑎𝑙𝑙ሺ𝐾ሻ (6) 

mAP represents the average of Accuracy Precision. 

mAP ൌ
∑ 𝐴𝑃௜

௄
௜ୀଵ

𝐾
 (7) 

where M is the number of images, and K is the number of categories. 
Intersection over Union (IoU) is the fraction of the Area of Overlap divided by the Area of Union. 

IoU ൌ
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 (8) 

where the Area of Overlap (gray box in Figure 9) is the intersection between the predicted bounding 
box (red box in Figure 8) and the ground-truth bounding box (blue box in Figure 8), and the Area of 
Union (gray box in Figure 10) is the area encompassed by both the predicted bounding box and the 
ground-truth bounding box. 
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Figure 8. Ground-truth and prediction. 

 

Figure 9. Area of Overlap. 

 

Figure 10. Area of Union. 

4. Experiments and results 

Three datasets, Mango YOLO, Rpi-Tomato and F. margarita, were used in this study. The input 
image size was adjusted to 608 × 608 for GCS-YOLOV4-Tiny with a batch size of 64 epoch count of 6000 
learning rate of 0.001 and decay rate of 0.0005. The equipment used in the experiment is an Intel(R) 
Core (TM) i7-8700 @ 3.20 GHz CPU, NVIDIA GeForce RTX 2080. The whole experiments were 
performed using Python 3.8 [Python Software Foundation, Fredericksburg, Virginia, USA]. 

4.1. Ablation experiment 

To compare the performances of using DIOU-NMS, adding SE, adding SPP, or using group 
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convolution in YOLOV4-Tiny on the F. margarita dataset, this study conducted sixteen experiments 
and evaluated the performance of the proposed GCS-YOLOV4-Tiny model, as shown in Table 2. The 
APs for mature, immature and growing groups were 77.97, 87.25 and 63.98%, respectively, in the 
original YOLOV4-TINY model (experiment #1). The lowest AP occurs in the growing group for each 
of the experiments. The APs for mature and immature groups were above 90% for all experiments 
except experiment #1. The mAP was 76.40% in the original YOLOV4-TINY model (experiment #1), 
and it increased to 85.26% when using DIOU-NMS (experiment #2). The mAP values of most of the 
experiments (experiments #4, #9, #11, #12, #14, #15 and #16) when adding SPP were greater than 
90%. The highest mAP was 93.54%, when using DIOU-NMS and group convolution and adding SE 
and SPP into YOLOV4-TINY (experiment #16). It is worth noting that the AP of the growing group 
has been greatly enhanced from 63.98 to 87.69%, which makes a substantial contribution to mAP.  

Table 2. Ablation experiment of GCS-YOLOV4-Tiny. 

 
YOLOV4-
Tiny 

DIOU-
NMS 

SE SPP 
Group 
Conv. 

mAP 
(%) 

mature 
AP (%) 

immature 
AP (%) 

growing 
AP (%) 

1 X     76.40 77.97 87.25 63.98 
2 X X    85.26 97.08 91.79 66.91 
3 X  X   88.32 97.71 95.45 71.80 
4 X   X  90.44 97.17 92.22 81.93 
5 X    X 85.34 98.84 94.20 62.98 
6 X X X   92.09 97.73 92.60 85.93 
7 X X  X  89.98 97.39 90.33 82.83 
8 X X   X 90.39 98.73 92.69 79.75 
9 X  X X  92.33 98.54 92.19 86.25 
10 X  X  X 91.68 98.73 94.04 82.27 
11 X   X X 91.45 97.60 95.81 80.93 
12 X X X X  91.99 97.84 92.16 85.97 
13 X X X  X 92.04 98.74 94.10 83.28 
14 X X  X X 91.03 97.71 93.52 81.84 
15 X  X X X 93.06 97.04 92.09 90.06 
16 X X X X X 93.54 98.47 94.47 87.69 

Figure 11 presents the results of the ablation study including the APs for mature, immature and 
growing groups, mAP and model size for each experiment. The minimum model size is 18.20 MB, 
from experiment #5, which is the original YOLOV4-TINY model using group convolution. 
Unfortunately, the mAP of experiment #5 is not favorable. The model size for experiment #16, with 
the highest mAP, is 20.7 MB. Therefore, experiment #16 is the final architecture of the proposed GCS-
YOLOV4-Tiny model. 
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Figure 11. Ablation experiment of GCS-YOLOV4-Tiny. 

4.2. Results on Mango YOLO 

The proposed GCS-YOLOV4-Tiny model was first evaluated using the Mango YOLO dataset, 
which has only one category. The performance values of GCS-YOLOV4-Tiny, including AP, Recall, 
F1-Score, Precision and Average IoU are 91.91, 79.00, 88.00, 98.00 and 81.10%, respectively. Table 3 
compares the performances of the related studies using the same dataset. 

Table 3. Results of Mango YOLO dataset. 

Study Model AP Recall F1-Score Precision 
Average 
IoU 

Koirala et al. 
(2019) [55] 

MangoYOLO 81.15% − − 98.86% − 

Kateb et al. 
(2021) [59] 

FruitDet 81.50% − − 99.18% − 

Kateb et al. 
(2021) [59] 

YOLOV3 80.90% − − 98.60% − 

Kateb et al. 
(2021) [59] 

YOLOV4 81.20% − − 98.62% − 

Bochkovskiy et al. 
(2020) [20] 

YOLOV4-Tiny 72.78% 55.00% 71.00% 100.00% 80.71% 

This study GCS-YOLOV4-Tiny 91.91% 79.00% 88.00% 98.00% 81.10% 

The proposed GCS-YOLOV4-Tiny achieves the highest AP, while the best Precision is using 
YOLOV4-Tiny. Figure 12 displays detection results from the proposed GCS-YOLOV4-Tiny model. 
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The proposed model detects most of the mangos, even though some of them are covered by leaves. 

  

(a1) (a2) 

  

(a3) (a4) 

Figure 12. Examples of GCS-YOLOV4-Tiny on Mango YOLO dataset. 

4.3. Results on Rpi-Tomato 

The second dataset used in this study is Rpi-Tomato, with tomato images of four different maturity 
levels (green, red, light red and red). Related studies include Moreira et al. [56], which applied SSD 
MobileNet v2, YOLOV4 and HSV Color Space. This study executed YOLOV4-Tiny and the proposed 
GCS-YOLOV4-Tiny. Results are shown in Table 4. Among the four classes, the lowest AP occurred 
in the “Turning” class, while the highest AP comes from the “Light Red” class in both YOLOV4-Tiny 
and GCS-YOLOV4-Tiny models. YOLOV4-Tiny and GCS-YOLOV4-Tiny models outperform SSD 
MobileNet v2, YOLOV4 and HSV Color Space on most of the performance indices.  

The GCS-YOLOV4-Tiny model results are similar to the YOLOV4-Tiny model results on the 
Rpi-Tomato dataset. Figure 13 displays detection results from the proposed GCS-YOLOV4-Tiny 
model for four classes in the Rpi-Tomato dataset. Figure 13 (b1)–(b4) present green, red, light red and 
red classes, respectively. 
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Table 4. Results of Rpi-Tomato dataset. 

Study Model Class AP Recall F1-Score Precision 
Average 
IoU 

Moreira et al. 
(2022) [56] 

SSD MobileNet v2 

Green 

62.70% 

70.09% 

65.93% 

77.27% − 
Turning 55.88% 59.38% − 
Light Red 40.82% 60.61% − 
Red 84.00% 80.77% − 

Moreira et al. 
(2022) [56] 

YOLOV4 

Green 

68.87% 

84.66% 

74.16% 

85.38% − 
Turning 67.65% 70.77% − 
Light Red 59.18% 76.32% − 
Red 64.00% 88.89% − 

Moreira et al. 
(2022) [56] 

HSV Color Space 

Green 

68.10% 

98.31% 

70.93% 

98.24% − 
Turning 63.24% 50.00% − 
Light Red 42.86% 58.33% − 
Red 68.00% 89.47% − 

Bochkovskiy 
et al. 
(2020) [20] 

YOLOV4-Tiny 

Green 85.85% 75.00% 73.00% 72.00% 58.78% 
Turning 52.74% 78.00% 53.00% 40.00% 32.83% 
Light Red 98.33% 92.00% 92.00% 92.00% 72.59% 
Red 93.75% 94.00% 97.00% 100.00% 85.24% 

This study 
GCS-YOLOV4-
Tiny 

Green 71.31% 71.00% 77.00% 85.00% 65.59% 
Turning 65.82% 67.00% 67.00% 67.00% 49.22% 
Light Red 99.36% 88.00% 74.00% 100.00% 81.17% 
Red 81.25% 81.00% 90.00% 100.00% 77.22% 

  

(b1) (b2) 

  

(b3) (b4) 

Figure 13. Examples of GCS-YOLOV4-Tiny on Rpi-Tomato dataset. 
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4.4. Results on F. margarita 

YOLOV3, YOLOV3-Tiny, YOLOV4, YOLOV4-Tiny and GCS-YOLOV4-Tiny models were 
tested using the F. margarita dataset [57] with five-fold cross validation. Results from the proposed 
GCS-YOLOV4-Tiny are shown in Table 5. The AP values for mature, immature and growing were 
98.34 ± 0.75, 93.72 ± 1.53 and 87.80 ± 2.11%, respectively, and the mAP was 93.42 ± 0.44%. The Recall, 
F1-score, Precision, and Average IoU of GCS-YOLOV4-Tiny were 91.00 ± 1.87, 90.80 ± 2.59, 90.80 
± 2.77 and 76.94 ± 1.35%, respectively. 

Table 5. Results of GCS-YOLOV4-Tiny. 

Fold mAP mature AP 
immature 
AP 

growing 
AP 

Recall F1-Score Precision 
Average 
IoU 

1 93.91% 98.00% 93.22% 90.51% 90.00% 90.00% 90.00% 77.52% 
2 93.41% 99.48% 96.02% 84.72% 94.00% 95.00% 95.00% 76.07% 
3 93.54% 98.47% 94.47% 87.69% 91.00% 91.00% 92.00% 78.95% 
4 92.71% 98.31% 92.45% 87.37% 89.00% 88.00% 88.00% 75.51% 
5 92.85% 97.43% 92.42% 88.69% 91.00% 90.00% 89.00% 76.66% 
Average 93.42% 98.34% 93.72% 87.80% 91.00% 90.80% 90.80% 76.94% 
STDV 0.44% 0.75% 1.53% 2.11% 1.87% 2.59% 2.77% 1.35% 

Table 6 records the training time for each fold in the GCS-YOLOV4-Tiny model. The average 
training time for each fold is 3hr 34min. 

Table 6. Training time of GCS-YOLOV4-Tiny. 

Fold Training time 
1 3hr 34min 
2 3hr 33min 
3 3hr 36min 
4 3hr 33min 
5 3hr 35min 
Total 17hr 51min 
Average 3hr 34min 

Table 7 compares the performance metrics for models of YOLOV3, YOLOV3-Tiny, YOLOV4, 
YOLOV4-Tiny and the proposed GCS-YOLOV4-Tiny models. ANOVA evaluates the differences 
among models. The proposed GCS -YOLOV4-Tiny model scores the highest mAP of 93.42%. The 
same results were found for mature AP, immature AP, growing AP, Recall, F1-Score, Precision and 
Average IoU. Notably, the proposed GCS-YOLOV4-Tiny model largely improved the AP to 87.80% 
in the growing group, as the values were around 60–70% in the other four models. 

Figure 14 uses box plots to illustrate the performances of the above five models. Obviously, the 
proposed GCS-YOLOV4-Tiny model achieves higher averages with smaller standard deviations and 
dominates the other four models in all metrics. 
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Table 7. Performance comparisons of five models. 

Model mAP 
mature 

AP 

immature 

AP 

growing 

AP 
Recall F1-Score Precision 

Average 

IoU 

GCS-

YOLOV4

-Tiny 

93.42 
± 0.44 

98.34 

± 0.75 

93.72 

± 1.53 

87.80 

± 2.11 

91.00 

± 1.87 

90.80 

± 2.59 

90.80 

± 2.77 

76.94 

± 1.35 

YOLOV3 
83.67 

± 1.16 

86.68 

± 1.26 

93.33 

± 1.27 

70.98 

± 3.36 

80.60 

± 2.70 

81.20 

±2.59 

81.80 

± 3.42 

68.82 

± 3.29 

YOLOV3

-Tiny 

80.54 

± 1.27 

85.74 

± 0.93 

90.95 

± 1.04 

64.95 

± 4.48 

78.80 

± 2.17 

78.60 

±1.52 

78.00 

± 1.22 

64.31 

± 1.21 

YOLOV4 
83.90 

± 1.84 

93.10 

± 1.93 

91.10 

± 1.09 

67.51 

± 4.03 

88.20 

± 2.17 

81.00 

± 1.41 

75.00 

± 2.35 

63.66 

± 2.15 

YOLOV4

-Tiny 

75.97 

± 0.83 

78.46 

± 0.43 

86.67 

± 0.58 

62.76 

± 2.57 

72.80 

± 0.84 

77.00 

± 1.87 

81.20 

±3.77 

68.45 

± 4.44 

P 0.00** 0.00** 0.00** 0.00* 0.00** 0.00** 0.00* 0.00* 

*p<0.05; **p<0.01 

 

Figure 14. Box plots of the five models. 

In addition to the performance metrics in Table 8, this study compares the average training times, 
Billion Float Operations (BFLOPs) and model sizes among the five models in Table 8. YOLOV4 has 
the longest average training time of 14hr 26min, the highest BFLOPs of 127.26 and the maximum 
model size of 244 MB. The average training time of GCS-YOLOV4-Tiny is 3hr35min, which is a little 
bit longer than that of YOLOV4-Tiny. A similar situation occurs for BFLOPs. Although YOLOV4-
Tiny has a shorter average training time and fewer BFLOPs than those of GCS-YOLOV4-Tiny, the 
model size of GCS-YOLOV4-Tiny is 20.70 MB, which is smaller than that of YOLOV4-Tiny 
(22.40 MB). Figure 15 plots the mAP values and model sizes for the five models. Obviously, the 
proposed model achieves the highest mAP of 93.42% with the smalles model size of 20.70 MB. 
Figure 16–20 show detection examples on the F. margarita dataset by YOLOV3, YOLOV3-Tiny, 
YOLOV4, YOLOV4-Tiny, and the proposed GCS-YOLOV4-Tiny models. 
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Table 8. The average training times, BFLOPs and model sizes. 

Model Average Training Time BFLOPs Model Size (MB) 
GCS-YOLOV4-Tiny 3hr 35min 10.20 20.70 
YOLOV3 5hr 02min 65.32 234.00 
YOLOV3-Tiny 3hr 44min 5.45 33.10 
YOLOV4 14hr 26min 127.26 244.00 
YOLOV4-Tiny 3hr 28min 6.79 22.40 

 

Figure 15. The mAP values and model sizes for five models. 

YOLOV3 

    
(a1) (a2) (a3) (a4) 

   

 

(a5) (a6) (a7)  

Figure 16. Detection examples by YOLOV3. 
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YOLOV3-

Tiny 

    
(b1) (b2) (b3) (b4) 

   

 

(b5) (b6) (b7)  

Figure 17. Detection examples by YOLOV3-Tiny. 

YOLOV4 

    

(c1) (c2) (c3) (c4) 

   

 

(c5) (c6) (c7)  

Figure 18. Detection examples by YOLOV4. 
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YOLOV4-

Tiny 

    
(d1) (d2) (d3) (d4) 

   

 

(d5) (d6) (d7)  

Figure 19. Detection examples by YOLOV4-Tiny. 

GCS-

YOLOV4-

Tiny 

    
(e1) (e2) (e3) (e4) 

   

 

(e5) (e6) (e7)  

Figure 20. Detection examples by GCS-YOLOV4-Tiny. 
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5. Conclusions 

Based on YOLOV4-Tiny, this study proposes a one-stage detection model, GCS-YOLOV4-Tiny, 
to examine fruits with different sizes in a complex environment. The proposed GCS-YOLOV4-Tiny 
model uses DIOUS-NMS and adds SE and SPP modules. Furthermore, the group convolution was 
applied to reduce model size greatly. With the smallest model size of 20.70 MB, the detection results 
outperform the state-of-the-art YOLOV4-Tiny model with a 17.45% increase in mAP and a 13.80% 
increase in F1-score on the F. margarita dataset. The proposed model provides an effective and 
efficient performance to detect different growth stages of fruits, which is beneficial for real-time 
detection. 

This study mainly selects the one-stage detection YOLO algorithm and focuses on construction 
of a lightweight network to perform real-time detection on fruit growth stages. The two-stage detectors 
RCNN, SSD and mask-RCNN were not compared in this study. Furthermore, due to the limitation of 
hardware equipment, this research did not use the latest YOLO version. Although the performance of 
the proposed model is favorable, there is the possibility to modify the architecture of the proposed 
model or of using the latest network version to achieve better performance in the future. 
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